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Abstract

A kinetic-energy-based approach to modeling unsteady forces on an accelerated sphere is implemented for
the purpose of fluid velocity extraction with non-Stokesian tracer particles. An expression for the force due
to the energized-mass concept of |Galler et al.| (under review) is developed, with contributions due to rate of
shear-layer growth and quasi-steady drag. The model exhibited strong agreement with 2D particle image
velocimetry and direct force measurements performed for two cases of an accelerated sphere. The dynamic
model was applied to the case of a non-ideal particle responding to a velocity perturbation, with a relative
velocity between the body and fluid. Compared to the velocity response predicted by conventional force
models, the energized mass model resulted in additional force, and therefore greater acceleration, during
the change in fluid velocity. The relaxation to steady state was then slowed due to the relative acceleration
between the body and steady flow.

1 Introduction

Large-scale particle image velocimetry (LS-PIV) and large-scale particle tracking velocimetry (LS-PTV)
are required for the study of flows such as the atmospheric boundary layer (ABL), where in situ measure-
ment domains are on the order of 10 x 10 m? (Nemes et al.,[2017). [Rosi et al.|(2014) and [Toloui et al. (2014)
characterized mean properties of the atmospheric boundary layer (ABL) using an LS-PTV system with soap
bubble tracers and LS-PIV using natural snowfall as tracers, respectively. In addition, Terra et al.| (2017)
exhibited success measuring drag with hydrogen-filled soap bubbles in a wind tunnel, however their mea-
surement domain was much smaller than those characteristic of the ABL. Large particles have been shown
to provide sufficient response for estimation of mean flow properties over very large measurement domains
however, velocity perturbations remain a challenge due to the particles’ non-Stokesian time-response. To
mitigate the error due to time-lag associated with an inertial response, dynamic modeling of the tracer par-
ticle’s motion allows for a flow velocity correction, where the true flow velocity can be “backed-out” from
measured particle trajectories.

Classical force modeling techniques decompose the force response of a body into acceleratory, steady, and
history effects, as summarized by |(Odar and Hamilton| (1964) in their low Reynolds number investigation of
forces on a sphere. The acceleratory and steady components of the force have been described by [Theodorsen
(1935)) and [von Karman and Sears|(1938)) in the terms of non-circulatory and circulatory forces, where fluid
inertia and added-mass comprise the non-circulatory component of the force, while bound and wake vortices
make up the quasi-steady component. Such a breakdown of the forces has inspired contemporary models for
the estimation of forces in viscous flows (Baik et al., 2012} |Graham et al., [2017), however, the applicability
of potential-flow added-mass to force modeling in separated flow remains in question. The ability of large-
scale particle tracking techniques to extract information from unsteady flows is hindered by the limitations
of available low-order models.

The current study presents a kinetic-energy based approach to modeling unsteady forces on a heavy spherical
tracer. Experimental results are used to validate the model for a basic case, before extension to the more
complex scenario of an inertial particle subject to a changing freestream velocity. The modeled velocity
response of a non-Stokesian test article is presented and compared with predictions from classical dynamic



models. The ultimate goal of the presented modeling approach is the extraction of fluid velocity from the
inertial response of a non-Stokesian tracer particle.

2 Tracer particle response modeling

In this section, particle response to velocity perturbations will be discussed, and the modeling technique
developed for particle response correction.

2.1 Classical models of particle time-response

The net force on a tracer particle is defined as the particle mass times acceleration. Assuming buoyancy
and gravitational forces to be negligible, the net force is then solely due to the drag force on the body.
Classically, Stoke’s flow is assumed for tracer particles, which show near-perfect flow-fidelity. The drag
force for a sphere in Stokes’ flow is written as:

D =6muR(u—U). (1)

Stokes’ drag is generally appropriate for traditional tracer particles, which typically experience low Reynolds
number regimes and are of Stokes number less than one. For large tracer particles, such as bubbles or natural
snowfall, the Stokes drag assumption breaks down due to their large size and significant density relative to
air. In such regimes, the classical force breakdown into quasi-steady and added mass components can be
used (Brennen| (1982)). Quasi-steady drag force is defined in the familiar form as:

D= %CDp(u —U)nR?. ()

For unsteady problems with significant acceleration, an added mass force is added to the quasi-steady drag
to model the acceleration of the fluid due to the body. The additional force contribution is written as:

du—U)
—a 3)

where K is the added mass coefficient for a sphere. The linear addition of quasi-steady drag and potential-
flow added-mass forces has been shown to suffer from significant error when compared to experiment. The
limits of added mass theory were evaluated by Fernando et al.|(in press), who experimentally investigated the
force on a circular flat plate for several acceleration moduli at high Reynolds number. A discrepancy between
measured and analytically determined values was reported when comparing direct force measurements to
forces modeled by Equation[3] When the model was compared to experimental results, up to 40% of the
measured peak force was not accounted for by the force model. At the limit of impulsive motions, where
potential theory should be most applicable, the discrepancy asymptoted to 20%. An alternative approach to
unsteady force estimation is necessary for systems involving separated flow.
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2.2 Energized-mass framework

A Kkinetic-energy-based force model (Galler et al.| under review)) has shown promise for an accelerated cir-
cular disk, a canonical test case characteristic of flow separation during a rapid acceleration. The same
framework can be applied to a spherical particle experiencing a gust, shown schematically in Figure[I(a)}
A particle of radius R and mass M will experience a drag force D due to an impinging gust, u(¢). In turn,
the particle will accelerate and move at some velocity, U(¢). The time trace of the gust is shown schemat-
ically in Figure@ where the gust is comprised of two stages. First, a ramp of time length, T,, during
which the flow velocity increases from zero to a final velocity, Uy. Figurec) and (d) present a conceptual
schematic for energized mass formation during the motion, showing how the energized mass evolves in time.

Galler et al.| (under review)) showed a region of energized fluid that developed around the plate, and the
amount of “‘energized mass” was measured in time. The force was decomposed into two terms, as shown in
Equation[d}
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Figure 1: Schematics outlining the tracer particle-gust system: (a) The model evaluates the velocity re-
sponse, U (1), of the tracer particle, which experiences a drag force of D due to an impinging (uniform) gust
front of velocity u(t). (b) u(z) represents the linear gust ramp followed by a steady velocity. (c) and (d)
Schematic of energized mass growth for a sphere impulsively started from rest between arbitrary time steps.
Time ¢#; is during the early phase of acceleration, where the flow is still attached, and the energized mass
is a small region close to the body. Time #, shows a later stage of the motion. Flow has separated, and the
energized mass region has stretched downstream, while the region upstream of the body has changed little.

where m, is the instantaneous energized mass, U is the body velocity and ¢ is time. The energized mass
method showed good agreement with direct force measurements, proving its viability as a force-estimation
technique.

For the case of a large tracer particle responding to a gust, the energized mass approach can be used to
solve for the flow velocity by modifying Equation[] for the case of a “slip” or relative velocity between the
body and surrounding fluid. The differential equation that describes the motion of the sphere is written in
Equation[5] where M is the mass of the body, U is the body velocity and u is the flow velocity:

oU) dm, od(u—"U)
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To satisfy Equation and compute u(z), the energized mass must be known or predicted. An analytical

model for the energized mass growth is proposed:

M
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where A is the projected area of the sphere, C, is the drag coefficient, and d is the shear layer thickness, as
defined by |Brown and Roshko|(1974). Both terms are integrated over 7, the time period of interest. The first
term accounts for the steady accumulation of kinetic energy in the fluid, proportional to the body velocity
and drag coefficient. Logically, this term must be equal to the quasi-steady kinetic energy at the limit of
steady motion, and has been written as such. The second term is the accumulation of energized mass in
the developing shear layer, modeled by the shear layer mass flow rate. The shear layer volume is modeled
as a spherical shell of fluid around the body with an experimentally-determined thickness. As the shear
layer forms, proportional to the acceleration and velocity, kinetic energy is transferred to the fluid and the
energized mass grows. Modeling the affect of body acceleration in this manner encapsulates the effect of
viscosity. Compared to potential-flow added mass, which is a constant proportional to the displaced fluid
mass, the energized mass is allowed to grow in time, incorporating the history of the fluid.

dr, (6)
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Figure 2: a) Towing tank facility showing the sphere mounted to the sting and submerged in the tank. The
inset shows the location of the force transducer. b) Experimental setup showing the location of the cameras,
laser sheet and field of view (FoV). c¢) Velocity profiles for the two cases studied. The acceleration occurs
over s = 0.5D and s = 0.125D, after which the body was towed at a steady velocity.

3 Experimental methods

To apply the kinetic-energy-based approach to large tracer particles, the energized mass of a sphere was
measured using 2D-PTV. Experiments were performed in the optical towing tank facility at Queen’s Uni-
versity. The facility has a cross sectional area of 1 m?, and total length of 15 m. The sphere, with diameter
D =0.25 m, was towed from rest to a final Reynolds number of 50,000 for acceleration moduli, a* = aD /U 2
0f O 5 and 2, motions representative of large amplitude and rapid velocity perturbations (Fernando et al

. Force was measured using a six-component, ATT Nano force transducer, with a static resolution of
0. 125 N. Three Photron SA4 high-speed cameras, with resolutions of 1024 x 1024 px were used to capture
the flow field. A 40 mJ per pulse Photonics Nd: YLF high-speed laser was used to produce an approximately
2 mm thick laser sheet in the xy-plane. The field of view for each individual camera measurement was 1.2D
x 1.2D in size and located at the horizontal midspan of the sphere along the lower half of the sting, as shown
in Fig[2] The fields of view were stitched together for a total field of view of 3.6D x 1.2D in size.

4 Results and discussion

4.1 Measurement and prediction of energized mass

Figure[3|shows the region of energized fluid around the sphere visible in the PTV snapshot for two instances
in time for the a* = 2 case. For brevity, a snapshot of the a* = 0.5 case has been omitted as the topology
is qualitatively similar. The evolution of the energized mass in time can be seen in Figure[d] There exists a
clear trend in the growth of the energized mass that can be separated into two phases, marked by the kink
in the curve that occurs at the end of acceleration. The first phase is dominated by the effects of accel-
eration while the second is composed of the wake development and relaxation to steady state. The slope
of the second phase eventually converges to the steady rate of energy transfer between the body and the fluid.

Using Equation |§[, the energized mass history of the sphere was predicted for both cases measured exper-
imentally, shown in Figuredl The trends of the energized mass growth are captured, however there are
significant discrepancies that should be noted. After completing the acceleration, the experimental data
shows a relaxation period over which the flow reaches steady state, which has been shown to be dictated by
vortex roll-up and steady wake formation (Fernando et al. (2017)). The model does not capture the relax-
ation phase because it is purely a function of body kinematics. Modification of the terms or coefficients to
account for the time associated with wake formation would benefit the model with respect to capturing the
energized mass associated with the relaxation period. With the modeled energized mass, the forces can be
predicted, as shown in Figure@ Strong agreement is seen with directly measured forces, though the same
discrepancies are present as with the energized mass prediction. The relaxation and wake formation phases
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Figure 3: Particles coloured by instantaneous kinetic energy non-dimensionalized by body kinetic energy
visualize the energized mass of fluid growing around the plate, shown for the a* = 2 case.(a) The energized
mass region forms around the sphere during the acceleration phase. (b) The sphere has completed its accel-
eration at t* = (.25 and the energized mass region has begun to stretch downstream. The upstream energized
mass region covers a similar area as the previous snapshot, but has increased in magnitude.
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Figure 4: Modeled and measured energized mass plotted against non-dimensionalized displacement, sx.
The energized mass has been non-dimensionalized by the displaced fluid volume of the body. (a) a* = 0.5
and (b) a* = 2 show similar energized mass magnitudes but differ in the slope during the acceleration and
relaxation. The model captures the trends of measured energized mass growth but with clear discrepancies
during the relaxation period.

are neglected, and will require model modification to more accurately capture. Notably, the model is able to
predict a rise to the force peak, with some overshoot.

To the end of velocity extraction, the model has been applied to the time-response of a sphere subject to
a non-dimensionalized gust of wavelength 1D, presented in Figure[6] A sphere with diameter of 5 cm and
mass of 0.1 grams was simulated as an arbitrarily large and heavy test article, representative of the test article
to be used in future experiments. Evidently, the tracer accelerates quickly during the gust before relaxing to
a quasi-steady rise to the freestream. Compared to the conventional added-mass model, the energized mass
approach predicts a faster acceleration and exhibits an additional effect on the response of the sphere during
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Figure 5: (a) and (c) Modeled force history plotted against non dimensionalized displacement, sx and com-
pared to forces obtained via force balance, and PTV data for a* = 0.5 and a" = 2 respectively. (b) and
(d) The predicted force broken down into acceleration and rate of change of mass terms from Equationd]
Note the relative contributions from the rate of change of mass term and acceleratory terms, showing the
contribution from the rate of change of energized mass. The main trends of the sphere force response are
captured by the model, however the relaxation phase is clearly omitted.
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Figure 6: Tracer response to a gust using energized-mass-based model compared to the potential-flow added
mass model of Equation 4. Note the enhanced response of the energized-mass model, predicting a faster
rise in tracer velocity, due to the rapid increase in forces. As the tracer relaxes, a slower climb to freestream
velocity follows.

the steady component of the gust, impeding its rate of acceleration to the freestream velocity. Additionally,
Stokes’ drag predicts an unrealistic response, as expected. Finally, considering only quasi-steady drag results
in a response that lags behind the other models during the acceleration. Once the gust has reached steady-
state, the quasi-steady model over-predicts the body’s acceleration due to the lack of a relative acceleration
term. Experimental validation is in progress.

5 Conclusions and outlook

An energized-mass approach to force estimation was applied to the response of a non-Stokesian tracer par-
ticle experiencing a rapid velocity perturbation for applications to fluid velocity extraction from measured
tracer trajectories. A model for the growth of energized mass was proposed, comprised of quasi-steady
and acceleratory mass accumulation. Two terms were used in the expression, one proportional to shear layer
growth, and a second proportional to the instantaneous body velocity and drag coefficient. The predicted en-
ergized mass time-history and resultant forces agreed well with experimental results for a sphere accelerated
from rest, with expected discrepancies during the relaxation phase of the flow. Energized mass growth can
be sufficiently described by shear-layer formation during the acceleration phase, and quasi-steady energy
transfer thereafter. The proposed model was used to predict the velocity response of a large tracer and com-
pared against conventional force modeling techniques for a strong velocity perturbation. The energized-mass
approach predicted a greater acceleration during the gust phase, before an impeded climb to the freestream
velocity. Optical measurements of the trajectory of a sphere free to respond to a gust are currently underway
to validate model predictions and evaluate the accuracy of the inverse technique.
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