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Abstract

Artificial neural networks have successfully been used in a variety of tasks, e.g., image classification, object
detection, or pattern recognition. Due to the combination of increased computational power and optimized
network architectures tremendous breakthroughs were achieved in machine learning shifting the focus of
current research of various disciplines to this promising technique. In this study, Inception-based, residual,
and densely connected neural networks were trained on synthetic PIV datasets. The networks were tested
on two real measurement datasets, namely zero pressure gradient turbulent boundary layer flow (TBL) and
turbulent channel flow with an alternating pressure gradient, to assess the performance of end-to-end PIV
image processing based on artificial neural networks (ANN). The results were compared to commercial and
self-developed PIV post-processing tools. The comparison of the results from ANN based PIV analysis with
standard PIV algorithms shows that very deep neural networks match the results of standard PIV algorithms
in real measurement setups and can achieve comparable mean absolute errors when trained on synthetic PIV
datasets.

1 Introduction

In the recent years, common tasks of computer vision, e.g., object detection and recognition, have improved
dramatically due to significant advances in the field of machine learning. Low-cost high performance pro-
cessing units in combination with a higher amount of reasonable training data led to outstanding break-
throughs in deep learning and convolutional neural networks (CNNs), as presented by [Krizhevsky et al.
(2012). Furthermore, techniques like dropout (Hinton et al.|(2012))) and new activation functions, e.g., rec-
tified linear units (Glorot et al.| (2011)), helped to increase the performance of deep learning algorithms.
CNNss are a special kind of multi-layer neural networks, designed to recognize visual patterns directly from
pixel images with minimal preprocessing. Compared to normal artificial neural networks, CNNs are ar-
ranged in three dimensions (width, height and depth) and are sparsely connected such that the output of
the current layer is only influenced by a specific number of input neurons. The basic intuition assumes
that images consist of local patches of values (features) that correlate highly in space allowing CNNs to
recognize patterns with extreme variability, and with robustness to distortions and simple geometric trans-
formations. Especially in the field of object detection and pattern recognition, CNNs gave rise to significant
breakthroughs (Silver et al.|(2016), Redmon and Farhadi| (2016), (Goodfellow et al.| (2014)) outperforming
human designed algorithms or even human performance itself. As a consequence, first attempts were made
to transfer these algorithms to different fields of fluid mechanics, e.g., turbulence modeling (Beck et al.
(2018))), active flow control (Couchot et al.|(2013)), and digital image processing (Lee et al.| (2017)), the lat-
ter of which is a crucial part of flow analysis using image based measurement techniques like particle-image
velocimetry (PIV) and particle-tracking velocimetry (PTV). Standard PIV algorithms typically compute the
cross-correlation of small windows between two frames to predict the most probable displacement of the
particle pattern. State-of-the-art PIV algorithms additionally use a wide range of other methods and algo-
rithms, e.g., subpixel interpolation (Nobach and Honkanen| (2005))), multigrid correlation schemes (Scarano
and Riethmuller| (1999)) or an automatic outlier detection (Westerweel and Scarano (2005)) to achieve a
better accuracy forming very complex algorithms.



Considering the vast development and progress in deep learning, the question arises in how far deep
neural networks can be trained to perform PIV processing. First conceptual studies were already reported
in the literature (Rabault et al.| (2017), [Lee et al.| (2017)) using different shallow neural network architec-
tures stacking a maximum of two convolutional and two fully connected layers. To address more complex
and diverse tasks, the recent trend is to increase the number of layers (Goodfellow et al.| (2016))) and the
layer size (Zeiler and Fergus|(2013)), [Sermanet et al.| (2013)), while using dropout (Hinton et al.| (2012)) to
address the problem of overfitting. Unfortunately, this simple solution comes with two major drawbacks.
First, deeper networks typically come at the expense of a higher number of parameters, causing the enlarged
network to be more prone to overfitting, especially if the number of labeled examples in the training set is
limited. Second, a uniformly increased network size increases the necessary computational resources dra-
matically requiring carefully designed network architectures. Subsequent to the breakthrough of |Krizhevsky
et al. (2012), many attempts have been made to improve AlexNet’s original architecture. Based on Hebbian
principle, Szegedy et al.| (2014)) designed a sparsely connected convolutional architecture in order to deal
with salient image parts varying massively in size. As a consequence of this substantial variation in infor-
mation, choosing the right kernel size of convolutional operations becomes non-trivial. A larger kernel is
preferred for information that is distributed more globally and a smaller kernel is preferable if information
is concentrated locally. [Szegedy et al.| (2014) heavily used 1x1 convolutions mainly serving as dimension
reduction prior to computationally more expensive 3x3 and 5x5 convolutions. Thus, a significantly deeper
and wider network was created at only marginally increased computational costs. The Inception-v1 network
architecture contained five times less parameters compared to AlexNet and achieved even better error rates.
Further improvements were achieved by |He et al.|(2015a)) using ultra-deep CNNs. Since deeper models are
harder to train and suffer from degradation (He et al.| (2015a)), He et al.| (2015b)), the authors introduced
a new residual learning framework. Having reformulated the underlying equation of the network layers,
they forced the neurons to learn residual functions with reference to their preceding layer inputs rather than
learning unreferenced functions. This allowed errors to be propagated directly to the preceding units. As a
consequence, these networks are easier to train and optimize while being ultra-deep. Considering the suc-
cess of short cuts in deep neural networks, architectures supporting further inter-layer communication are
the next logical step. Huang et al.| (2016) presented densely connected neural networks, connecting each
layer to every other following layer in a feed-forward fashion. Compared to standard convolutional neu-
ral networks where the number of direct layer connections equals the corresponding number of layers L,
DenseNets are characterized by L(L+ 1)/2 direct connections. This maximized inter-layer communication
is achieved such that the feature-maps of all preceding layers are used as inputs while the output of the
L-th layer is forwarded as input to all subsequent layers. Therefore, DenseNets have several compelling ad-
vantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature
reuse, and substantially reduce the number of parameters.

Hence, the scope of the current study is to evaluate the performance of deep neural networks containing
different Inception modules, residual connections, and densely connected layer blocks. For this, these net-
work architectures are trained on different synthetic PIV image datasets. Subsequently, the trained networks
were used to determine the velocity field in two real measurement setups. To assess the performance of
the neural networks, the results from both test cases are compared to results achieved using standard PIV
processing algorithms. Section 2 and 3 explain the datasets and the individual network architectures, while
the results are presented in Section 4. Finally, in Section 5 a conclusion is drawn.

2 The Datasets

Three synthetic classes of image datasets with continuously increasing levels of complexity are used to test
the performance of state-of-the-art neural network architectures. Synthetic images have two major benefits.
First, it is possible to generate an infinite number of labeled training images and second, any desired flow
condition can easily be created without further data augmentation. The first class of datasets is characterized
by artificial label augmentation (ALA), i.e., the underlying velocity field is approximated by a second-order
polynomial as reported in Rabault et al.| (2017). Thus, the labels consist of the velocity in the x- and y-
direction parallel to the Jacobian and Hessian of the underlying flow. This kind of artificial label enrichment
provides additional flow field information to the network and thus, simplifies the learning process. The
intensity distribution of the particles is approximated by the following Gaussian distribution as recommend
in |[Raffel et al.| (2018)
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where I, is the particle intensity, d; the effective particle diameter, and (x),,y,) the coordinates of the
particle center. Particle intensity and diameter are randomized within typical PIV thresholds (80 < I <
255, 1 px < d, < 5 px). Note that the particle intensity is not integrated over the entire window domain.
The second dataset class intends to solely predict velocity data without providing further flow information
when backpropagating through the network. In this approach, no Jacobian and Hessian of the velocity field
(NoJH) are considered anymore. The intensity distribution is still approximated using the Gaussian distribu-
tion described by e (1). The final synthetic dataset class (IPI) aims at reproducing highly realistic PIV flow
data. Here, the particle intensity is integrated over the entire image domain using the following approach
(Lecordier and Westerweel (2004))
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where ¢ denotes the standard deviation of the Gaussian corresponding to the particle diameter.

Every class contains four diverse types of datasets, and each dataset consists of 10° training and 10°
validation image pairs. The first two datasets of each class are characterized by a constant particle density
but differ in the maximum allowed particle shift. While the maximum displacement of the first dataset (D1)
is limited to s,,, = 4 px similar to Rabault et al.| (2017}, the maximum particle shift of the second dataset
(D2) is set to s, = 10 px allowing for more realistic displacements since values in this range are common
for real PIV datasets. The displacement of datasets D3 and D4 equals the maximum displacement of D1 and
D2. Additionally, the effects of a varying particle density, i.e., the particle density of each image varies in a
range of +75% compared to D1 and D2, are considered.

Each synthetically generated image pair has a size of 32x32 px per image at a color depth of 8 bits
grayscale. Both snapshots of each image pair are stacked on top of each other forming a 4-dimensional input
matrix. Additionally, the neural networks were tested on two real measurement datasets, namely a turbulent
boundary layer (TBL) with spanwise traveling surface waves (Roggenkamp et al.| (2019)) and a turbulent
wavy channel flow (TCF) (Rubbert et al.[(2017))). The TBL experiments are conducted in a subsonic closed-
loop wind tunnel containing a 1700 mm long, 1400 mm wide, and 20 mm thick flat plate mounted in the
open test section. A high-speed 2D/2C PIV setup is used to capture the influence of the wave motion on the
outer part of the boundary layer at Reg = 1200 consisting of one Photron Fastcam SA3 (1024x1024 px? at
12 bit) equipped with an Infinity K2 long-distance microscope and a double pulsed Nd: YAG laser (Quantel
Twins BSL 140). In the TCF study, two wavy channel geometries of sinusoidal shape with a wavelength of
100 mm were investigated at three Reynolds numbers Re; = 202, 350, and 534. The reference measurement
setup comprised a SCMOS camera (PCO Edge 5.5, 2560x2160 px? at 16 bit) equipped with a Zeiss macro
lenses (f = 100, fimax = 2) and a dual cavity Nd:YAG-laser (New Wave Solo 200XT). For all details, the
reader is referred to the two manuscripts.

3 The Architecture

The performance of different state-of-the-art neural network structures was tested and compared to the re-
sults of a standard neural network consisting of 1 convolutional and 3 fully connected layers comparable to
that reported by Rabault et al.[ (2017). First, the performance of Inception modules was analyzed. Based
on the idea of |Arora et al.| (2013)) that features of high correlation are clustered into groups, [Szegedy et al.
(2014) assumed that these units can be grouped into filter banks. This means that a lot of clusters concentrate
in a single region and, hence, can be covered by a single 1x1 convolution. Following this idea, |Szegedy et al.
(2014)) stated that clusters which are spatially more spread can be covered by convolutions of larger kernel
size, e.g., 3x3, 5x5, or 7x7 and, consequently, are arranged in parallel branches next to each other resulting



in a deep and significantly wider artificial neural network. The output of these different branches are finally
concatenated and are forwarded to the next module. The first Inception based network is called Inception-A
and contains one module consisting of four different branches as shown in Figure[I(a)] The second impor-
tant idea of Inception architectures is a feature dimension reduction such that 1x1 convolutions are added
in branches prior to kernels of larger size. The idea behind this approach is that 1x1 convolutions preserve
the spatial dimensions of the input while they reduce the depths significantly by combining feature maps.
This can be seen as a generalized representation of the input. As a consequence, computational bottlenecks
are avoided. The second Inception based CNN (Inception-C) as shown in Figure [I{d) is mainly inspired by
the latest Inception-v4 network (Szegedy et al.|(2016)). This network is significantly deeper compared to
Inception-A and uses factorization of computationally expensive filters into smaller and asymmetric con-
volutions (a 7x7 convolution is split into a convolution of 7x1 followed by a convolution of 1x7) further
reducing the computational effort.

The second network architecture incorporates residual connections as introduced by He et al.|(2015a)). In
theory, stacked convolutional neural networks can asymptotically approximate any function F'(x), where x
denotes the input. The same holds if a neural network is explicitly forced to learn the residual function of the
problem, e.g., R(x) = F(x) — x. He et al.| (2015b) found that this residual reformulation helps in fighting the
degradation problem of very deep neural networks, since CNNs struggle in approximating identity mappings
by multiple nonlinear layers. Explicitly reformulating learning as a residual function allows the weights
of the nonlinear layers to converge against zero to create identity mappings. Thus, this approach allows
significantly deeper neural networks. Our ResNet architecture is a plain 67-layer deep network as shown
in Figure ResNet architectures preserve information explicitly through identity connection, i.e., many
layers contribute very little and can randomly be dropped during training. [Huang et al.| (2016) extended the
idea of inter-layer connections and introduced densely connected neural networks (DenseNet). DenseNets
explicitly differentiate between information that is added to the network and information that is preserved.
In other words, a specific layer augments the feature extraction process by accessing the feature maps of
all preceding layers and concatenating its own new feature maps. Therefore, each layer has direct access to
the gradients from the loss function and the original input signal at the same time, leading to an improved
flow of information and gradients throughout the network. No redundant feature maps are learned and fewer
network parameters are necessary to achieve similar performance compared to plain network types. The
specific architecture of the current DenseNet is shown in Figure It consists of four Dense Blocks
where each of the first three Dense Blocks is followed by a Transition Block to reduce the spatial feature
size. No further compression was applied.

4 Results

The performance of the different network architectures is analyzed in efficiently learning challenging flow
conditions. All networks were implemented in Tensorflow (Abadi et al.| (2015)) using the Keras High-
Level API (Chollet et al.| (2015)). Due to the regression nature of the PIV problem, the loss is chosen to
be the mean squared error while the evaluation metrics is defined as the mean absolute error. A standard
Adam-Optimizer (Kingma and Bal (2014)) was applied to train the networks starting at an initial learning
[r =0.00025. Furthermore, the learning rate was reduced by a factor of 5 once the evaluation metrics stopped
improving. The minimum learning rate was set to [7,,;, = 10~%. This learning rate scheduler showed the best
results in the current study. The results discussed in the following are “typical”, representing neither best
nor worst cases. We trained every test case of each network for 200 epochs three times independently from
scratch and finally averaged the mean absolute error. All computations were run on multiple GPUs (Geforce
RTX 2080Ti, Nvidia Titan RTX). The hyperparameters of the training process are summarized in Table[I]
For comparison, the synthetic images are evaluated using the commercial PIV software PIVview and our
self-developed inhouse PIV processing code PascalPIV. Different processing runs were performed applying
single and multi pass as well as multi grid methods. The multi pass (3 passes) and grid (initial window size of
64x64 px) runs were performed on images of 96x96px using a third order accurate B-Spline interpolation on
all passes. The absolute mean error is slightly higher compared to that in the literature and ranges from 0.04
to 0.09 px depending on the specific dataset. The in-house PIV code achieved a mean absolute error of 0.004
px. Again, images of 96x96 px were analyzed further subdivided into windows of 32x32px with an overlap of
75%. In total, 6 iteration steps using a symmetric integral predictor scheme with image distortion (Lanczos4
image interpolation scheme, third order B-Spline accuracy) were performed. A normalized median test was
applied to detect spurious vectors inbetween each iteration loop. However, please note that this processing
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Figure 1: Deep network architectures: (a) Inception-A: Inception based network using a single Incep-
tion module, (b) ResNet-A: ResNet architecture with 67 layers augmented by residual connections, (c)
DenseNet-A: DenseNet architecture incorperating four Dense blocks and 3 Transition blocks, (d) Inception-
C: Inception-v4 based network architecture combining multiple diverse Inception and reduction modules.
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Table 1: Shared hyperparameters of the network architectures
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Figure 2: Absolute mean error of the different network architectures generating predictions for the four
datasets in all dataset classes: (a) artificially augmented labels (ALA), (b) reduced number of training labels,
no Jacobian and Hessian during training available (NoJH), (c) integrated particle intensity (IPI); The yellow
bar denotes the results of a standard PIV algorithm.

was run simultaneously on 12 cores taking approximately 100 minutes to evaluate 10° images. Further note
that this processing run was solely intended to demonstrate the best possible result of a high-performance
state-of-the-art PIV algorithm. Compared to the current neural networks, this algorithm assesses 9 times
more particle information and requires minimum 130 times more time.

The following questions are addressed by the experimental evaluation using synthetic and real experi-
mental data.

1. How does the artificial neural network approach perform compared to other standard PIV algorithms
for processing high-dimensional input data such as synthetic PIV images?

2. Can deeper and more complex neural networks achieve higher accuracy?
3. How do deeper neural networks perform on PIV data of real measurement setups?

4. Do artificial neural networks generate predictions faster than cross-correlation based PIV algorithms?

4.1 Synthetic Flow Data

Our results are summarized in Figure[2](a)-(c) and show in general that artificial neural networks can achieve
the same level of accuracy compared to standard PIV algorithm. In contrast to the results presented in the
literature (Rabault et al.|(2017), |Lee et al.[|(2017)) we were able to show for the first time that our CNN-based
approach can even outperform the PIV algorithm on synthetic PIV images. Overall, two general trends can
be identified. First, increasing the maximum particle shift from s,,,, = 4 px to s, = 10 px increases the
mean absolute error of the shallow networks (ANN, Inception-A) significantly by a factor of approximately
5. In contrast, the deeper neural networks (Inception-C, ResNet-A, DenseNet-A) are not comparably prone
to an increased maximum particle displacement resulting in a doubled mean absolute error for s,,,, = 10 px
compared to the results of a maximum particle shift s,,,, = 4 px. Second, a largely varying particle density
has only a minor influence on the performance of the neural networks. Thus, it can be assumed that the
networks learn feature maps for all kind of different particles, i.e., variation in shape, intensity.

Note that the shallow ANN achieved a slightly higher mean absolute error compared to the literature
(Rabault et al.| (2017)). This deficit can be remedied by further optimizing the specific hyperparameters.
However, additional optimization loops were intentionally refrained because first, this shallow ANN serves
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as a statistical baseline for comparison with deeper architectures and second, the general performance of
different ultra-deep network architectures sharing the same hyperparameters is compared. In general, the
results in Figure [2|illustrate that ANN-conv1 and Inception-A can achieve the same accuracy as a standard
PIV algorithm on datasets with reduced maximum particle displacement, D1 and D3, but cannot provide a
sufficient accuracy in more challenging tasks. Figure [2] evidences that deeper neural networks can outper-
form standard PIV algorithms, but it does not become clear which architecture performs best given the same
hyperparameters. On some datasets, e.g., ALA D2, ALA D4, or NoJH D3, Inception-C computes slightly
smaller errors while DenseNet-A (NoJH D4, IPI D2) or ResNet-A (ALA D3) achieve the highest accuracy
on others. In general, the absolute mean errors of the current deep neural network approaches (Inception-C,
ResNet-A, DenseNet-A) are comparable. Figure [2(a)|illustrates that all three deep neural network architec-
tures clearly outperform the standard PIV algorithm, while Figure 2(b)] shows that the same architectures
compute predictions with errors in the same order of magnitude as standard PIV algorithms. Remember that
the neural networks predict the displacement vectors of NoJH based on training with a reduced number of
labels. Thus, it can be assumed that the additional information contained in the Jacobian and Hessian might
facilitate neural networks to approximate mapping functions that connect image data to the underlying flow
physics. In other words, it means that a neural network could be used to extract an approximation of the
underlying flow physics data either numerically or experimentally. However, this statement requires further
proof which will be part of our future work. Figure shows that the absolute mean error of D2 and D4 of
the deep architectures is slightly higher compared to standard PIV algorithms, while the predictions for D1
and D3 are equally accurate.

The error distributions with respect to the particle displacement, as shown in Figure [3] reveal that the
absolute mean error computed by our deep neural networks are spread homogeneously. The mean of the
absolute mean error of ResNet-A is slightly biased and the variance is slightly higher compared to PIVview
(cf. [3(a)). Surprisingly, the bias of the absolute mean error as well as the variance of DenseNet-A are
higher than the ones of ResNet-A and PIVview (cf. [3(b)). The variance of the absolute mean error of
Inception-C is on the same order of magnitude compared to a commercial software tool, however, the mean
correlates linearly with the particle displacements meaning that negative displacements are overpredicted
while positive displacements are underpredicted. Although the deep neural networks can generate accurate
predictions, they cannot reach the performance of our self-developed high-performance PIVcode PascalPIV.
The variance of the absolute mean is lower by a factor of 10-100 compared to the neural networks. However,
predicting particle displacements of PIV images using deep neural networks is at least 130 times faster. In

comparison, the deep neural networks needed 12-47 seconds to compute 10° images, while the commercial
tool needed for the same dataset 10 minutes and the in-house PIV processing code even 100 minutes.

4.2 Qualitative evaluations

The network structures are used to evaluate their prediction of real flow cases compared to standard PIV
algorithms. Note that the networks have been trained and validated using only synthetically generated train-
ing sets, meaning that the neural networks have by no means been adapted to real flow data. Afterwards, the
trained neural networks were used to generate predictions for two flow cases: The first study contains phase-
locked PIV measurements in an actively drag-reduced turbulent boundary layer described in Roggenkamp
et al.| (2019). The second measurement setup investigated streamline segment scaling in a turbulent wavy
channel flow (Rubbert et al.| (2017)).
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The predictions of the trained neural networks are shown in Figure ] Note that no further post-
processing, e.g., outlier detection, interpolation or filtering, was applied. In general, all networks are ca-
pable of predicting the overall flow topology only varying in the number of spurious vectors. The deep
neural networks show a remarkably good agreement compared to a standard single-pass PIV algorithm and
even achieve less spurious vectors (cf. fi(a)| Inception-C, ResNet-A, DenseNet-A). In contrast, the shallow
neural networks cannot match the accuracy of an available algorithm and show a significant amount of spu-
riously computed velocity vectors mostly underpredicting the true value (dark spots) (cf. f(a)) ANN-convl,
Inception-A). The number of strong overpredictions (bright spots) as seen in the results of the standard PIV
algorithm is negligible due to the nature of convolutional neural networks. It is well reported (Martius and
Lampert| (2016), Trask et al.| (2018))) that CNNs struggle to extrapolate a relationship from observable nu-
meric patterns due to the use of non-linear activation functions (ReLu or Leaky-ReLu in our case) in the
hidden layers. However, such activations are a crucial part of learning abstract relations between input data
and labels. Hence, CNNs prove to be good in detecting and extracting numerical patterns seen within the
training data but fail to extrapolate to new conditions. This lack of extrapolation capability is in some way
beneficial in PIV applications since strong overpredicted velocity vectors are simply not possible. This,
however, also reduces the generalization ability of trained PIV networks meaning that experiments in which
the particle shift is beyond the specific maximum displacement might not be evaluated with high accuracy.

Considering the second measurement setup, one can see that the shallow neural networks are not capable
of generating accurate predictions. A large number of spuriously computed velocity vectors interfere with
the predicted underlying flow leading to a very noisy flow field prediction (cf{4(b)] ANN-conv1, Inception-
A). The high inter-layer communication inherent to DenseNet-A (cf. DenseNet-A) allows this network
architecture to compute predictions with a low absolute mean error since learning of redundant feature maps
is minimized. The generalization ability of our plain residual neural network seems to be insufficient to pre-
dict the particle displacement as accurate as the other two deep architectures. In contrast, the Inception-C
network benefits from its very wide structure considering spatially spread feature clusters even in deeper
layers. As a consequence, Inception-C reaches the same performance as DenseNet-A on the synthetic test
sets and predicts the flow characteristics of the actively drag-reduced turbulent boundary layer with a similar
accuracy compared DenseNet-A.

5 Conclusion

This manuscript presented an evaluation of deep neural network architectures that can be used for end-to-
end learning in PIV applications. The current deep neural networks showed a performance comparable to
standard PIV algorithms on all datasets. Furthermore, it has been shown that the current approach of deep
neural networks accurately predicts particle displacements for different maximum pixel shifts. Especially
wide (Inception-C) and deep networks with strong inter-layer communication (DenseNet-A) are suitable
for learning mapping functions between high-dimensional input data, PIV image pairs, and the underlying
flow physics. Beside the impressive results of CNNs learning to generate correct predictions on particle
displacements, the presented approach is a first step. Sophisticated and highly optimized PIV algorithms
achieve, at time writing, a more robust performance with lower variance. In future work, we will focus
on improving the generalization ability of the trained neural networks. Improvements might be achieved
using deeper residual networks (100+ layers) or aggregated residual networks applying some aggregated
transformations in a grouped convolution manner as proposed by Xie et al. (2016) which enables a residual
network to become not only deeper but also significantly wider. Potentially, neural arithmetic logic units
composed of neural accumulators as introduced by [Trask et al.|(2018) might help in improving the networks
extrapolation capability.
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