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Abstract

We present the experimental results of a turbulent variable-density (VD) jet inside a wind tunnel. Our goal
is to study the differences in the kinematics and dynamics of the small scales between constant- and VD
flows — the knowledge is important to the development of physics-based turbulence closure models. To
obtain the full velocity gradient tensor (VGT) needed in the analysis, we used time-resolved stereoscopic
particle image velocimetry (SPIV) together with the Taylor’s frozen turbulence hypothesis to reconstruct the
jet volume at a streamwise location that was sixteen jet diameters (16D) from the jet nozzle. We found the
following for the dense SFg jet: (1) it experiences less fluid deformation (left panel in figure 3), (2) it has
a weaker normalized vortex-stretching term, and (3) conditional statistics based on the different quadrants
in the QR-plot show that it has stronger enstrophy production/destruction contributions to the total ®;s;;®;
than that observed in the air jet.

1 Introduction

Turbulent flows involving variable densities are commonly found in the atmosphere, ocean, and industrial
processes. In flows where the variations in fluid density are small, fluid inertia is essentially unaltered and the
varying density can be treated as a source of buoyancy only. This is the Boussinesq approximation for small
density differences, and it implies symmetry in mixing behaviors i.e. heavy-into-light and light-into-heavy
fluids behave the same. When the density variations are large, the non-negligible differential momentum
of fluid parcels create asymmetry in mixing behaviors (Livescu and Ristorcelli, 2007, 2008). This brings
interesting observations such as the recently observed negative turbulent kinetic energy (t.k.e.) production at
the centerline of a dense sulphur hexaflouride (SFg) jet discharged into a coflowing stream of air (Charonko
and Prestridge, 2017). A negative t.k.e. production is indicative of a small-to-large scale energy transfer. In
a follow-up paper, Lai et al. (2018) identifies the stretching of turbulent eddies by mean flow gradients as
the physical mechanism responsible for the negative production.

To better understand the effects of variable density on the phenomenology of the small scales, we present an
experimental study on variable-density turbulent jets, which is a continuation of our earlier works (Charonko
and Prestridge, 2017; Lai et al., 2018). In §2, we briefly review the tool used to study behaviors of small
scales in turbulence - the scalar invariants of the velocity gradient tensor (VGT). In §3, we gives the details
of our experiments and describe how we obtain the full VGT from the data. We then examine the fluid
deformation and the mechanism of vortex-stretching in §4, followed by a conclusion in §5.

2 Theory

Fluid turbulence is a multiscale phenomenon which strongly couples a wide range of spatio-temporal scales
together by nonlinearities (Pope, 2000). It is a physical process characterized by the continuous generation
of velocity derivatives - both in space and time (Tsinober, 2009). Because the derivative is mostly con-
tributed by the small scales, the velocity gradient tensor (VGT) A = A;; = du; /dx;, where u is the zero-mean
fluctuating velocity, contains a wealth of information on the behaviors of small scales (Meneveau, 2011).
This is seen in the transport equations of the enstrophy w;®; (0 =V x u = €;;A;), and the square of the



Frobenius norm . /5;;5;; of the rate-of-strain tensor s = (A + A") /2. For incompressible flows, the equations
are:
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In both equations, the terms under the curly bracket on the r.h.s can be positive or negative. They are,
however, positive on average and thus represent source terms in turbulent flows (Tsinober, 2009). In partic-
ular, the strain amplification term in eq.(1) is responsible for creating intense dissipative regions in turbulent
flows whereas the vortex-stretching term in eq.(2) is interpreted to be the physical mechanism responsible

for interscale energy transfer in turbulence. The spatio-temporal correlation of dissipation and enstrophy in
turbulent flows is an active research area to understand the phenomenology of turbulence (Ooi et al., 1999).

The velocity gradient tensor is a second-rank tensor and has three scalar principal invariants (invariant under
any orthogonal rotations of the coordinate system): P = Tr(A) = %, 0= —%Tr(AAT) and R = —Det(A),
collectively known as the first, second and third principal invariants. For our air and SFq jets, the flow is
essentially incompressible, leading to P = 0. The joint probability density function (PDF) between Q and R
- the QR-plot - is a tool used to infer local flow topologies and to study the mechanism of vortex-stretching
in turbulent flows (Chong et al., 1990).

In eq.(1) and (2), s;; and o; is related to the symmetric and skew-symmetric parts of A = s+ Q, respectively.
The skew-symmetric spin tensor Q = (A — AT) /2 is related to @; by ®; = —¢,;4Q jx. Both s and Q have their

own principal invariants - (1) Py, = P =Tr(s), Qs = —%sijsij, R, = —%sijsjkski and (2) Po =0, Qq = %‘QUQU =

iwicoi, Ro = —%misi ;. The strain self-amplification and vortex-stretching terms can be expressed as the
following,
3R, = sijsusi =0 +B 47 3)
—4Rg = @;s;;0; = 0} 0cos* (0, ex) + 0F Peos’ (0, ep) + 0 Ycos* (0, ey) 4)

where (o, 3,7) and (eq,ep,ey) are the set of eigenvalues/vectors of s. The third invariants of s and Q thus
represent the generation/destruction of strains and enstrophy in turbulent flows. Together with their second
invariants (Qjs,Qq) that characterize whether a flow region is dominated by strains or enstrophy (swirling
motions), they form a complete set of tools to study the behaviors of fine-scale turbulence. We apply the
above formulation to a turbulent variable-density jet.

3 Experiments

To obtain all nine components of the VGT, simultaneous measurements of the turbulent velocity field inside
a three-dimensional fluid volume is needed. This can be realized using holographic or volumetric particle
image velocimetry (PIV) (Westerweel et al., 2013). The experimental setup usually consists of multiple
independent camera views with the understanding that the accuracy of flow measurements increases with
the number of cameras, or with the use of just one camera together with a more elaborate optical setup and
post processing routines as realized in the experiments reported by Zhang et al. (1997). For turbulent flows
having a dominant convecting velocity in one direction, it is possible to bypass the requirement of a true
volumetric measurement - by using Taylor’s frozen turbulence hypothesis to turn temporal information into
spatial information along the direction of the convecting velocity. Its root can be traced back to hot-wire
measurements in which the turbulent velocity at a spatial location, a few micros large, is rapidly sampled
in time in excess of kilohertz. The temporal frequency is usually much higher than the shortest temporal
scale in the flow and therefore the fluctuating velocity field appears to be frozen and it can be treated as
being passively convected downstream without any distortions. Applying the hypothesis to convectional



two-dimensional PIV is an alternative to volumetric PIV because it provides full field measurement over
a region. A number of previous studies have employed this technique to study behaviors of small-scale
turbulence in a constant-density air jet (Ganapathisubramani et al., 2008) and in space-filling, fractal square
grids (Gomes-Fernandes et al., 2014). We employ this technique to acquire the data needed to analyze the
behaviors of small-scale turbulence in a variable-density jet.

The experimental facility is a Sm-tall, open-circuit wind tunnel located at the Los Alamos National Labora-
tory. Details of this facility are described in Charonko and Prestridge (2017), and we give a brief description
of our setup in the following. Figure 1 shows a schematic of the present setup. The wind tunnel has a
square cross-section of 0.524m-by-0.524m in which a turbulent jet is discharged into the tunnel center via a
copper pipe. The pipe has an internal diameter D = 11mm, and the exiting flow is that of a fully-developed
turbulent pipe flow. Simultaneous measurements of the jet’s velocity and density fields were made at 16D
downstream from the pipe exit using stereoscopic (SPIV) and planar laser-induced fluorescence (PLIF). The
combined measurement system was operated at high imaging frame rates together with two high repetition
rate lasers - a green laser and a UV laser. The jet material is either pure SF¢ gas or air, giving a VD SFe-
into-air turbulent jet or a air-into-air turbulent jet. The latter is a Boussinesq flow and serves as the control
experiment for the VD jet. For binary systems involving the mixing of two fluids, the Atwood number
At = (Pheavy — Plight)/ (Pheavy 1 Plight) characterizes the strength of VD effects. At the pipe exit, it is equal to
0.69 and O for the SF¢ jet and air jet, respectively. In this talk, we will focus on the velocity field data and
look at the small-scale kinematics using the statistics of A;;.
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Figure 1: Experimental facility in the present study - an open-circuit wind tunnel having a turbulent jet
discharged into a coflowing stream of air. A combined, high-speed, simultaneous stereoscopic PIV and
planar LIF system is used to measure both velocity and density fields at a jet cross-section that is 16D (jet
diameter D = 11mm) downstream from the jet nozzle.

Because of the inherent PIV measurement noise, the raw 2D3C data have been filtered by a 2D Gaussian
kernel at the two-dimensional measurement plane. The Gaussian kernel has a full width at half maximum
(FWHW) equals to two times the size of the PIV interrogation window. Our approach is different from
that adopted by Ganapathisubramani et al. (2008) who used a 3D Gaussian kernel; the computed statis-
tics of the fine scales from the present data using a 3D kernel are less satisfactory. Table 1 tabulates the
relevant flow parameters of the two jets in the present study. At the measurement station, both jets had a
turbulent Reynolds number on the order of Re) ~ 100. The temporal sampling resolution is smaller than
one-half of the Kolmogorov time scale, and thus, satisfying the Nyquist-Shannon sampling criterion. The
experimental spatial resolution expressed in terms of the Kolmogorov length scale 1 is between 4-61 in
both jets. To resolve the smallest dissipative scales in turbulent flows, a spatial resolution comparable to M
is required. However, for VGT statistics, in particular the characteristic “teardrop” shape in the QR-plot, it



Flow property at x; = 16D Air jet SF; jet

Mean axial velocity, U; (m/s) 4.5 6.0
Tunnel coflow velocity, U, (m/s) 1.3 0.7
Root-mean-square axial velocity, i} ms (/) 0.69 0.84
Velocity half-width, by, (mm) 12 9.1
Taylor microscale, A = /15uu . /pErr (mm) 3.24 3
Kolmogorov length scale based on €y, 1 (mm) 0.15 0.09
Kolmogorov time scale based on &gy, Ty (ms) 1.2 0.93
Experimental spatial resolution 3. x3.77m 6mn x6m
Experimental temporal resolution 0.371y, 0.481,
Estimated mean dissipation rate, e (m?/s’) 9.7 9.7
Mean dissipation rate based on full VGT, &g (m?/s*) 12.5 10.5
Mean dissipation rate based on local axisymmetric turbulence, €, (m?/s%) 12.1 10
Jet Reynolds number Re = pU,D/u 3150 12856
Turbulent Reynolds number Rey = putj mmsA/u 127 280

Table 1: Flow properties of the present jets. Jet diameter D = 11mm, jet exit velocity U, = 5.26m/s, and

the dynamic viscosity of air and SF¢ gas is u = 1.8 x 10~ kg/m/s. The gas density p is taken from the data
reported in Charonko and Prestridge (2017).

has been shown that this is reliant upon a mix of dissipative and inertial range scales larger than the Taylor
microscale A (Buxton et al., 2017). The spatial resolutions of the present data satisfy this criteria (the ratio
A/n =24 —33 in table 1). Another criterion to check the adequacy of spatial resolution is based on the
velocity derivative skewness Sk - a third order velocity statistic related to the vortex-stretching term ;s;;®;.

For a wide range of turbulent flows with Re; in the range 102-10% and in different configurations, Sk is in
the range -0.3 to -0.5 (Sreenivasan and Antonia, 1997). Here, we have taken Sk to be equal to the average
value of the skewness of the three normal derivatives A;;,A»; and Asz. For the air jet, Sk = —0.34 and the
value of skewness for each normal derivative is (-0.36,-0.33,-0.33). These near-equal values suggest that
vortex-stretching is isotropic in space at the small-scales (Lai et al., 2018).

A UsS— —5 — 8> . U D,
Erall = BAiinj, €oxi = B[gA%1 +2A%,4+2A%, + gA§3], €t = 483(;1) 5)

In table 1, we also show the mean turbulent dissipation rate computed with the local axisymmetric turbu-
lence expression €,; shown in eq.5 (George and Hussein, 1991). For both jets, this value is within £5% of
that obtained using the full VGT &g. The standard deviation of the ratio €, /€, is about 0.06 for both jets,
showing that the conditions of local axisymmetric turbulence are satisfied. The dissipation computed based
on the measured velocity gradients is also closed to, but larger than, the estimate €. based on large-scale
flow properties.

An example of the reconstructed volume of an air jet is shown on the left panel in Figure 2. We have vali-
dated our results to those reported in the earlier study by Ganapathisubramani et al. (2008). An example is
shown on the right panel of Figure 2; the probability density functions (PDF) of the alignment cosine angles
between the vorticity vector and the eigenvectors (€q, €, €y) of s from both studies are in good agreement -
o and ep, the intermediate extensive eigenvector, are preferentially aligned.

4 Results

Figure 3 shows the PDFs of the three normalized eigenvalues (., B,y)xnz /v of s (left panel). Common to

both jets, the mean values behave as @, 3 > 0 and 7 < 0 with |y| > @& > . The weakly positive B indicates
that a fluid element has on average two mutually orthogonal axes in extension (together with o) which sug-
gests that sheet-like flow structures are statistically more common than tube-like ones, and this tendency is
unaltered by VD effects. Fluid elements in the SFg jet, however, experienced weaker deformations as seen in
the smaller magnitudes of the eigenvalues (dashed lines). This agrees with the smaller growth rate (0.052)
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Figure 2: (Left) An example of the reconstructed air jet volume using high-speed SPIV data at a jet cross-
section. x; is the streamwise direction, and (x,x3) are the two in-plane orthogonal directions of the jet
cross-section. Turbulent vortices are visualized in red using the Q-criterion. The cut planes show contours
of the viscous dissipation field - highly dissipative regions surround turbulent vortices. (Right) Probability
density function of the alignment cosine angles between the eigenvectors of the velocity gradient tensor
du;/dx; and the vorticity vector @ in an air jet - solid lines are from present experiments and dotted lines are
from experimental data in Ganapathisubramani et al. (2008).

of the SF¢ jet velocity half-width when compared to that (0.068) of the air jet (Charonko and Prestridge,
2017). On the right panel of figure 3, we plot the PDF of the normalized vortex-stretching term w;s;;®;. Itis
well-known that its mean is positive in turbulent flows, and this fact is observed in the both jets. The com-
parison on the results of the present air jet (blue solid line) between and that in Ganapathisubramani et al.
(2008) (black solid line) is very good. It is interesting to see that the SF¢ jet had a much weaker normalized
vortex-stretching than the constant-density jets.

In table 2, we compare the statistics of the fine scales from the present two jets with those from forced homo-
geneous isotropic turbulence (HIT) (Li et al., 2008, DNS data) and from an atmospheric surface boundary

layer (Kohlmyansky et al., 2001, field data). For HIT, it can be shown analytically that ®? = 25;;5;; and
©;s;;®; = —%s,- S k5ki- These two relations are not strictly satisfied in both of our jets and in the field data,

all of which are heterogeneous, but are accurate to within 10%. The skewness —oi and —Y3, normalized by
the strain self-amplification term, of the most extensive () and compressive () eignevalues of s are quite
similar among the heterogeneous flows but are larger than those of HIT in magnitude. The same can be said

for the three components, 0)%7\.,‘C082(0), e;), of the vortex-stretching term ®;s; ;®;. We, however, note that the

magnitudes of 7 o.cos?(®,ey) and |@Z ycos?(,ey)| appear to be enhanced (by about 15-20% compared
to the air jet and field data) in the variable-density SF¢ jet. The simultaneous enhancement in these two
terms is due to the “near” incompressibility of the flow - it holds strictly for incompressible flows. Finally,
it is interesting to see that the contribution by the intermediate eigenvalue  to vortex stretching and strain
self-amplification is not affected by density gradients at all.

The vortex-stretching term involves the alignment of the vorticity vector with the eigenframe of the rate-
of-strain tensor. Since cos(®, W) = ®- W/|o||/W|, the magnitude of vortex-stretching is dependent on the
alignment cosine angle between ® and the vortex stretching vector W = ®;s;;. In figure 4, we see that the
PDF of this alignment angle skewed towards positive values - as required by a ®;s;;®; > 0 - for all flows
included here. Density gradients in the SF¢ jet do not change this behavior. The PDFs of all heterogeneous
flows collapse quite nicely to each other whereas that of HIT is more positively skewed. This last observa-
tion can be understood from the ratio of the average of the vortex stretching term and the vortex compression
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Figure 3: Probability density functions of (left) eigenvalues of the velocity gradient tensor du;/dx; and (right)

the vortex-stretching ®;S;;®; term in the enstrophy ®?-equation. Solid lines are data from a constant-density
air jet and dashed lines are data from a variable-density SFj jet.

term in table 2 - this ratio is 1.85 for HIT and about 1.6 for the other three heterogeneous flows.

Because vortex-stretching and dissipation are intimately linked to the notion of energy cascade in turbulent
flows, we look at the correlation coefficients of ;s;;®; and s;;s jxsy; with enstrophy and strain magnitude
in table 3. It should be noted that viscous dissipation is proportional to the square of strain magnitude,
€ = Vs;;s;j, the strain self-amplification term controls the growth and decay of dissipation (eq.(1)).

We now look at the joint PDF of Q and R and study flow topologies in a statistical sense. To ensure the accu-
racy of present statistical results, we include only data points that have a velocity divergence error |P = a“’

less than 0.08(v/1?), as in Gomes-Fernandes et al. (2014), in figures 5-7. This divergence error crlterlon
retains 36% and 25% of the full dataset for the air jet and SFg, respectively. In both cases, the number of
retained data points is between 8-10 millions. In figure 5, we present the QR plots measured in both jets.
The probability contours are plotted from 10~! to 107>, It is evident that the characteristic “teardrop” shape

is seen in both jets. However, the area bounded by the 10~ contour is smaller for the variable-density SFg
jet, a reflection of a smaller normalized vortex-stretching term shown in figure 3.

Figure 6 shows the joint PDFs of the invariants of the rate-of-strain tensor, Qs and R,. This plot is used to
diagnose the topology of regions in the flow with high strain rates i.e. dissipation. It can be seen that both
jets have very similar results - the probability contours are biased towards positive values of R;. Because
Ry = —5;;8jkSki/3 = —afy, R, takes the sign of B, where R, > 0 means that there are two extension principal
directions that give rise to sheet-like structures. Further, the maximum of each contour does not lie on the
right branch of the Veillefosse tail (Chong et al., 1990, black solid line, R, > 0). Instead, the maxima lie in a
region sandwiched between the Veillefosse tail and the red line representing a bi-axial stretching state - this
state is characterized by eigenvalues of s having the ratios o : B : Y= 3 : 1 : —4. This result is in agreement
to those reported in many other turbulent flow configurations. Density gradients inside the SFg jet do not
seem to alter this general observation.

Figure 7 shows the joint PDFs of Q; and Qq. This plot tells us whether vortex tubes or irrotational dissipa-
tive structures are favored in a turbulent flow. The diagonal line (dashed line) represents vortex sheet where



Statistics Turbulent flows

Forced HIT* Air jet VD SF jet ASL*
o JHU Database Present data Present data Kohlmyansky et al. (2001)

0)1-2/51']'5‘[]' 2 1.87 1.86 <2

_O)[Sjj&/SjijkSkl’ 1.32 1.25 1.27 < 1.33
—(xj/s,-jsjksk,- 1.10 1.64 1.93 1.62
—[ﬁ/sl‘]‘Sijkl‘ 0.05 0.05 0.05 0.05
_73/Sijsjkski -2.16 -2.69 -2.98 -2.67

7 0Lcos?(®, eq) /@5, 0; 0.89 1.53 1.71 1.44
®? Bcos?(w, eg)/W;s;;0; 0.59 0.40 0.40 0.47
7 Ycos?(®, ey) /05, ®; -0.48 -0.93 -1.11 -0.91
07 0cos? (0, eq) /|07 Yeos? (o, ey)| 1.85 1.65 1.54 1.58
Re), 433 122 280 10*

Table 2: Statistical results of the fine scales in various turbulent flows. (o, 3,y) are eigenvalues of the rate-
of-strain tensor s. *Direct numerical simulation data from (Li et al., 2008). *Atmospheric surface layer

(ASL) field data from Kohlmyansky et al. (2001).

Turbulent flows - (HIT*, air jet, SF¢, ASL*)

0;$;j0; —8ijS jkSki (,l)i.S‘ijO)j/(,0[2 _Sijsjkski/sjzj
o? (0.55,0.37,0.34,0.36) (0.31,0.17,0.17,0.14) (0.14,0.12,0.11,0.13) (0.17,0.10,0.08,0.10)
Sl-zj (0.47,0.34,0.32,0.30) (0.78,0.68,0.64,0.38)  (0.39,0.30,0.26,0.23) (0.54,0.46,0.41,0.28)
—SijS jkSki (0.54,0.39,0.40,0.15) / / /
—Sijsjkski/sizj / / (0.48,0.29,0.28,0.02) /

Table 3: Correlation coefficients of the vortex-stretching term ;s;;®; and strain self-amplification term
58 jkSki with enstrophy wl-z and strain magnitude s;;s;;. *Direct numerical simulation data from (Li et al.,
2008). *Atmospheric surface layer (ASL) field data from Kohlmyansky et al. (2001).
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Figure 4: Probability density function of the alignment cosine angle between vorticity @ and vortex stretch-
ing vector W = ®;s;;. HIT - direct numerical simulation data from (Li et al., 2008). ASL - atmospheric
surface layer field data from Kohlmyansky et al. (2001).

OR-quadrants Proportion of total volume (%)
Forced HIT* Alr jet SFg jet
JHU Database Buxtonl0* Present data Present data
S1 27.3 29 32.6 329
S2 26.5 24 19.5 18.7
S3 10 10 11.3 11.3
S4 36.2 37 36.6 37.1

Table 4: Data fraction corresponding to each of the four quadrants S1 to S4 in a QR-plot. *Direct numerical
simulation data from (Li et al., 2008). *Experimental data from Buxton and Ganapathisubramani (2010).

—Q; = Qq. Again, the results for both jets are similar with vortex tubes being more favorable in regions
with high Qg values i.e. enstrophy - the maximum value of Qg is always greater than that of —Q; on such
probability contours. Density gradients inside the SF¢ jet do not modify this propensity of turbulent flows.

To study the role of different flow structures on the generation/destruction of enstrophy, we consider con-
ditional statistics based on the different quadrants in the QR-plots shown in figure 5 (Buxton and Ganap-
athisubramani, 2010). Four quadrants {Sy }y— 2,34 can be defined using the Veillefosse tails and the vertical
line R = 0. Of events in the four quadrants, only events lying within S1 are capable of enstrophy destruction
i.e. decreasing enstrophy by compression. The quadrant S4 is mainly responsible for enstrophy amplifica-
tion via the inviscid mechanism of vortex-stretching. We first look at the data fraction of each quadrant in
table 4. Not surprisingly, S4 has the highest data fraction because of the teardrop shape - about 37% of the
total flow is swirling and is being stretched along its rotational axis. The second most populated quadrant
is S1 where the flow is swirling but is under compression. S2 signifies flow with high strain rates, hence
dissipative structures, and accounts for about 20% of the total. From a comparison between previous and
the present data, it appears that the distribution of these data fractions/flow structures is not strongly altered
by density gradients (table 4).

We now turn to the contributions to the vortex-stretching term @;s;;®; from the different flow structures
found in the QR-plot in table 5, i.e., the conditional contribution (®;s; o) j) si. Previous data from constant-
density flows, forced homogeneous isotropic turbulence (HIT)(Re) = 433) (Li et al., 2008) and an air jet
(Re), = 160) (Buxton and Ganapathisubramani, 2010), are added for comparison. S1 is the only quadrant
capable of reducing enstrophy, termed enstrophy destruction in Buxton and Ganapathisubramani (2010),
among the four quadrants. S4 is the quadrant dominating the production of enstrophy, and S2 and S3 are
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Figure 5: Joint probability density functions of the second Q and third R invariants of the velocity gradient
tensor du;/dx; in an air jet (left) and a SF jet (right). The contours are probability densities plotted on a

log;g scale. Qg = i(oi2 is the second invariant of the spin tensor 2. The QR-plot can be divided into four
regions, {Sy} N=1234, to analyze the contributions of different flow structures to the production of enstrophy.
The shown data are conditioned to have values of |P| < 0.08(v/n?).

QR-quadrants (05:;0;)s, /0:5;;0;
Forced HIT* Air jet SF¢ jet
JHU Database Buxtonl0* Presentdata Present data
S1 -0.48 -0.40 -0.36 -1.0
S2 0.75 0.69 0.72 0.64
S3 0.48 0.54 0.73 0.77
S4 2.44 2.44 2.66 3.10

Table 5: Different contributions (0;s;;®;)s, to the total vortex-stretching term @;s;;®; conditioned on the
four quadrants S1 to $4 in a QR-plot. *Direct numerical simulation data from (Li et al., 2008). *Experimental
data from Buxton and Ganapathisubramani (2010).

comparable in their positive contributions to enstrophy.

5 Conclusion

This study investigates the small-scale kinematics of a turbulent, variable-density SFg jet. To obtain the
required three-dimensional velocity fields, we have reconstructed pseudo volumes of the jet by applying
Taylor’s frozen turbulence hypothesis to a time-resolved stereoscopic PIV dataset obtained at a jet cross-
section. We have found the following results for the variable-density jet: (1) it experiences weaker (in
magnitude) fluid deformation, (2) it has a weaker normalized vortex-stretching term, (3) its QR-plot exhibits
a teardrop shape, (4) the density gradients do not seem to alter the propensity to form tube-like swirling
structures surrounded by sheet-like, highly dissipative structures, and (5) conditional statistics based on the
different quadrants in the QR-plot show that it has stronger enstrophy production/destruction contributions
to the total ®;S;;®; than that observed in the air jet.

Based on this work, laboratory experiments are currently underway to combine time-resolved stereoscopic
PIV and planar laser-induced fluorescence (PLIF) to obtain simultaneous volumetric velocity and density
fields. These results will be used to better understand the interplay of density gradients with velocity in the
VD jet.
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Figure 6: Joint probability density functions of the second Q; and third R; invariants of the rate-of-strain
tensor s;; in an air jet (left) and a SF¢ jet (right). The contours are probability densities plotted on a logjo
scale. The red solid line represents Ry = (—Q;)*/?a(1 4+ a)(1 + a + a*)~*/*> where a = B/a = 1/3, and
the ratio of eigenvalues of s are a0 : B :y=23:1: —4. The shown data are conditioned to have values of
|P| < 0.08(v/1?).
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