13th International Symposium on Particle Image Velocimetry — ISPIV 2019
Munich, Germany, July 22-24, 2019

On the use of machine learning algorithms for the
calibration of astigmatism PTV

Christian Cierpka'*, Jorg Konig', Min(%ian Chen?, David Boho?, Patrick
Maider

! Technische Universitt Ilmenau, Institute of Thermodynamics and Fluid Mechanics, Ilmenau, Germany

2 Technische Universitt Ilmenau, Group for Software Engineering for Safety-Critical Systems, Ilmenau,
Germany

* christian.cierpka@tu-ilmenau.de

Abstract

Microfluidic devices become more an more popular in many chemical, process engineering and biologi-
cal applications. The fluidic channels in these devices have typical dimensions of several ten to hundred
micrometer. In order to measure the three-dimensional velocity field, where volume illumination and out-
of-plane gradients are sources of major bias errors, astigmatism particle tracking has become a valuable
tool to circumvent these biases (Cierpka and Kaihler, 2012) and is widely used for different applications
(e.g. [Liu et al.| (2014); Holtzer et al.| (2007); Rossi et al.[| (2011)). The principle is based on a cylindrical
lens placed within the observation light path and the determination of the elliptical distortion of the particle
images (Cierpka et al., 2011b; [Rossi and Kahler, 2014)). Since the system relies only on the addition of the
cylindrical lens, it allows for a cheap and easy extension of traditional fluorescence microscopes into sys-
tems capable to measure the volumetric three component velocity field. For a calibration, usually particle
images from particles placed on several known distances in front of the objective lens are evaluated and a
parametric fit function for the particle images width and height with depth position is determined (Cierpka
et al.L [2011a). This procedure strongly relies on the evaluation of single particle images that may be taken
in different i1llumination conditions and are subjected to image aberrations and noise. Therefore, the esti-
mated width and height show a certain scatter for particles located at the same depth position depending
on the particle size, the signal-to-noise ratio, position within the field of view, variations in laser light in-
tensity, etc.. Depending on the experimental conditions, this may add up to a random error for the position
measurement in depth direction of up to several percent of the total measurement range. To obtain a more
robust and reliable calibration function and to cope with overlapping particle images, recent advances in the
field of machine vision offer new possibilities. The present study, therefore, aims to compare classical data
evaluation and calibration by image processing with machine learning approaches for APTV.

1 Introduction

1.1 Astigmatism particle tracking velocimetry

Microfluidic devices show a high potential in several fields including chemical processing, medical sci-
ence, biology and energy conversion among others. Very often the fluid flow is strongly three-dimensional.
Modern velocity measurement techniques such as particle image velocimetry (PIV) or particle tracking ve-
locimetry (PTV) are very often applied. The flow is seeded with tracer particles and illuminated by laser
light. On the one hand the laser illumination usually results in an illumination of the whole fluid volume due
to the small scales on the other hand the flow can only be observed from one direction via microscopes. In
order to measure the three-dimensional velocity field astigmatism particle tracking (APTV) uses astigmatic
optical aberrations caused by the introduction of a cylindrical lens in the light path (Cierpka et al.,[2011b;
Rossi and Kéhler, [2014). For a calibration, usually particle images from particles placed on several known
distances in front of the objective lens are evaluated and a parametric fit function for the particle images
width and height with depth position is determined (Cierpka et al., |2011a). For that procedure the width



and the height of individual particle images have to be determined reliably. Since the particle images may
have been taken in different illumination conditions and are subjected to additional image aberrations and
noise, the estimated width and height show a certain scatter for particles located at the same depth position.
This uncertainty depends on the particle size, the signal-to-noise ratio, position within the field of view,
variations in laser light intensity among others. Depending on the experimental conditions, this may add
up to a random error for the position measurement in depth direction of up to several percent of the total
measurement range. Furthermore, a high seeding concentration is beneficial for a dense spacing of the final
velocity vectors. A high seeding concentration usually results into a considerable amount of overlapping
particle images that are difficult to detect by standard image processing.

1.2 Deep neural networks for image annotation and flow measurements

To obtain a more robust and reliable calibration function and to cope with overlapping particle images, recent
advances in the field of machine vision pose a new approach. Machine learning algorithms are a powerful
tool in classifying images. In previous work, a technique was developed that automatically identifies 2,770
German plant species and builds upon latest deep learning approaches. Achieving accuracies well beyond
80% on a single plant image in this extremely fine-grained classification problem impressively demonstrate
the potential of machine learning (Seeland et al.,[2019; Wildchen and Mider;, 2018; [Wildchen et al., 2018).
(Dunker et al., 2018)), utilized deep learning techniques to classify the species and the age of phytoplankton
captured in microscopic images with a cytometer. To be successfully applied to the calibration problem in
particle tracking, such algorithms have to be trained with a set of training images with known depth position.
Once the network is trained, the algorithm is capable of determining classes within a set of actual images
although large deviations of the individual images due to the above mentioned issues are present. The big
advantage of neural networks is that no specific knowledge about the process to analyze is necessary from
a first point of view and the algorithms are robust even for very noisy images. However, a large amount of
already annotated training data is required to train the network. Furthermore, for the training data the classes
or structures to look for have to be obtained by classical tools. The increasing computer performance, already
available pretrained networks and their large applicability to different problems have let to an increased use
for fluid dynamic purposes.

Grant and Pan| (1995) were among the first studies using neural networks for the determination of the
fluid velocity via PTV and PIV. In the first approach, already multi-layer beural networks (three and four
layer) were used to determine the particle image displacement in successive frames. The images in this early
work were not analyzed by the network but using classical image processing methods. The particle image
center positions were fed within a binary image into the network. The amount of correctly matched particle
images in these studies were always larger than for classical methods in low seeding concentration images
(50 to 500 particle images in double exposure per image). Later the same authors used networks to classify
between overlapped and non-overlapped particle images to exclude outliers (Grant and Panl [1997). Using
cellular neural networks for PTV higher matching probability at low computational time was found by Ohmi
and Sapkotal (2006)). Recently deep convolutional networks were used to determine the velocity vectors in
densely seeded flows (Cai et al., 2019; [Lee et al.,|2017). Since for training different flows (wall bounded,
bluff body, uniform) were used, the algorithm was capable to be applied to a variety of flow situations.
Although the results are quite promising, the computational cost were much larger than using classical
correlation methods. However, machine learning algorithms are a powerful tool in classifying the particle
images itself and were already used for macroscopic APTV using large particles (O(1 mm)) and extract
Gaussian features of the corresponding particle images (Franchini et al.,2019). Deep networks were recently
also applied to analyze flow features as for example turbulent superstructures in a flow with heat transfer
based on their footprint in the temperature field (Fonda et al., 2019). The ever increasing performance of
these networks will not only help to analyze flow features, but also to improve measurement techniques
in the near future. The aim of the study is therefore, to quantitatively determine if a deep convolutional
neural network yields better results for an image analysis and calibration of APTV measurements. The final
particle pairing will be done with advanced classical algorithms described in |Cierpka et al.| (2013)).

1.3 Preliminary test

To test if a deep neural network can be useful for the calibration of microscopic APTV images, a first
preliminary study using experimentally calibration images was performed. For this reason a particle solution
was placed on a microscope slide and imaged via a microscopic setup using an additional cylindrical lens
(f = 200 mm). Since particle images in this first test will be attributed to a certain class (in this case depth



position), about 12,000 individual particle images at depth positions between 0 yum and 96 um with a step
size of 3 um, resulting in 33 classes, were produced. The particle positions for this first test were determined
using classical image preprocessing (Cierpka et al., |2011a). The images were than cropped around the
particle image positions to yield sub-images with 180 x 180 pixel. By the known distance of particles
images, sub-images with more than one particle image as well as particle images cut by the boarder of the
whole image were excluded. The whole set of 11,807 sub-images was subdivided into 80% of the individual
particle images for training, 10% for a validation and another 10% for actual testing. From these about
1,200 particle images for testing 97.54% were correctly matched with the right class, i.e. the correct depth
information. For the remaining part the correct class was among the first three most probable classes which
gives space to an optimization and was due to the image noise since real experimental images were used.
As the application of the deep neural network was successfully shown, synthetic particle images, where the
ground truth is known and the signal-to-noise ratio can be varied, will be presented in section [2| The final
aim of the current study, using synthetic images, is to determine systematically the robustness, accuracy and
limitations of the approach in comparison to classical image analysis in section 3]

2 Synthetic test case

2.1 Image generator

In order to have particle images with known ground truth a synthetic particle image generator was applied.
The algorithm is based on the mathematical background derived by Rossi and Kihler| (2014) and generates
particle images from the known optical setup including (magnification, focal length of the cylindrical lens,
distance of the camera, wavelength of the light, refractive index of the medium, etc.). In the current case
particle images were produced for a typical setup using a magnification of 20 and a focal length of 200 mm
for the cylindrical lens. The final distance between the two focal planes of the APTV setup was 40 um.
The particle image width and height using the in-house particle image detection software resulted in a size
distribution between 20 and 100 pixels. The vertical distance was varied from O to 90 um in steps of 1 ym.
In total 150 calibration images for each vertical position were created. For each of the calibration images a
random number of more than 8 particle images were randomly distributed over a 2560 x 2175 pixel space
to avoid overlapping particle images to a good extend. This results in a total number of about 8 x 150 x 91
~ 110,000 individual particle images.

Figure 1: Synthetic particle images without noise (left) and with random noise with an SNR = 1 (right).

For the simulation of a typical measurements scenario same settings were used and 1,000 images with
more than 20 individual particle images in each of them were generated which corresponds to a particle
concentration of about 2 x 1073 vol. %. The particle positions were varied from -14 yum to 104 um, since
in reality very often smaller volumes were successively measured in a larger channel to increase the spatial
resolution in the depth direction. For these images the signal-to-noise-ratio (SNR) was varied from no
noise to SNR =1 to 1,000. The SNR is defined as the squared mean intensity of the pixels divided by the



noise power. In order to generate noisy particle images, the mean intensity of the illuminated pixels was
determined. Based on the mean intensity the variance of the noise was set according to the definition of
the SNR applying the SNR level prescribed for each data set. Finally, Gaussian white noise with zero mean
intensity and the determined variance was added to the images. In Fig.[I|the final images without noise (left)
and with random noise with an SNR = 1 (right) can be seen. For better visibility the images were inverted
and the contrast was enhanced.

2.2 Classical image processing

For the image processing the same settings were used for the synthetic images with and without noise. For
preprocessing a Gaussian smoothing using a 9 x 9 pixel kernel and a ¢ of 5 were used, followed by a
median subtraction using a 3 x 3 pixel kernel. For the detection of regions where particle images might
exist a global threshold of 10 counts was applied. The width and the height of the particle images were
allowed to vary between 12 and 250 pixels to cover a broad range. For the in-plane position and the width
and height sub-pixel accuracy was reached using a correlation with a Gaussian (Cierpka and Kéhler, 2012).

To exclude strong outliers from the boarder of the image due to half cut particle images only particle
images with a center position distance of at least 100 pixels to either boarder are considered valid. Since
such a criterion can also be used in real measurements on the basis of the detected particle images this is a
valid procedure. No other outlier filters were used to remove for example results from partly overlapping
images as can be seen in Figl[l] Therefore, in total 94,363 individual particle images were taken for the
calibration as described in greater detail in |Cierpka et al|(2011a).

2.3 Shallow neural networks for data fitting

A second approach is to train shallow neural networks to fit features that were extracted by classical image
processing as mentioned above. A similar approach was already used to determine temperatures by fitting
the Hue value of thermochromic liquid crystals (Moller et al., 2019). The main benefit is, that the robust
image processing that was already proven to yield reproducible results can be used and no model function
for the optical behavior must be considered. That means, even if the theoretical change of the width and the
height of the particle images over depth position is not known and valuable results can be achieved, even
when the actual change of width and height differs strongly from the theoretical one due to large optical
aberrations for example.

In order to test such a system a shallow network with three hidden layers and a small number of neurons
(10 for the first layer, 30 for the second layer and 5 for the third layer) was used. For the training 80% of the
data from the same data set as obtained from the classical image processing was used taking AX and AY as
input. The Matlab toolbox for fitting with neural networks was used for training using standard parameters.
The network was trained from scratch for ten times and the training state with the lowest deviation between
estimated and real Z-position was taken for the calibration.

2.4 Deep neural network

The final aim of using a deep neural network is to apply the method to the whole processing chain. Therefore
the particle image annotation shall be done by a faster region convolutional network (R-CNN). The idea of
a faster R-CNN is that, if there are two CNN:gs, the first one is used to generate the region proposals to find
each candidate image for the particles. The second is the classification of candidate regions and bounding-
box regression. If there is only one CNN, two specific tasks can be launched simultaneously, which saves
time. The first few layers need to calculate the convolution. If they are allowed to share the parameters,
their own specific objectives and tasks are achieved only in the last few layers. Then, an image can use these
shared convolution layers for only one forward propagation and, at the same time, can also find the region
proposals, classification, and bounding-box regression (Ren et al., 2015).

The input of the Region Proposal Network (RPN) is an image of any size, and the output is a set of object
proposals. RPNs use a small network to perform a sliding scan on a convolutional feature map, which is the
last shared convolutional layer. Through this sliding window, the convolutional feature map is mapped to a
low-dimensional feature (256 in Fig[2), which is an intermediate layer. Finally, the low-dimensional feature
is fed into the two sibling fully connected layers. Namely, a box-regression layer and a box-classification
layer. The centre of each sliding window corresponds to k anchor boxes, which are associated with a
scale and aspect ratio. There are three scales (128, 256, 512) and three ratios (1:1, 1:2, 2:1). So, each
sliding window has nine anchors. The box-regression layer predicts the parameter of the proposal region



corresponding to each anchor, which is (X,Y,AX,AY). The box-classification layer determines whether the
proposal region is in the foreground (object) or the background (non-object). The structure of the Region
Proposal Networks is shown in Fig.

As can be seen the Faster R-CNN uses shared convolutional layers so that region proposals are compu-
tationally cost-effective. Furthermore, unlike the traditional Region-of-interest generation method, such as
a selective search achieved by using a CPU, RPNs can be implemented on a GPU.
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Figure 2: Region Proposal Network. The centre of each sliding window is corresponding to k anchor boxes
with three scales and three ratios.

The implementation of this strategy was done as follows: ResNet-101/citeHe2015, a standard deep
neural network architecture was used to extract features from the input image tensor. Batch normalization
was used for all feature extractors after the convolutional layers. The optimizer for Faster R-CNN is asyn-
chronous SGD with momentum of 0.9. The initial learning rate was 3 x 10~* and the learning rate is reduced
by 10x after 900K iterations and then 10x after 1.2M iterations. For weight initialization, a truncated nor-
mal initializer was used with a standard deviation of 6 = 0.01. In order to prevent the typical overfitting
problem for smaller samples, L2 Regularization was added. Because an object should be equally recogniz-
able as its mirror image, it is necessary to flip an image. At this point, horizontal flipping of an image as
data augmentation was used for the faster R-CNN. The particle image depth regression was implemented
using Keras. Inception V3 (Szegedy et al. 2015), a standard deep neural network architecture, was used
to extract features from the input image tensor. The initial learning rate was set to 0.01. The optimizer for
depth regression is Adam with exponential decay. The initial learning was fed into the exponential decay,
and at each epoch the learning rate was reduced by 2.4. In total the number of training epochs was 800 and
the batch size was set to 32.

3 Results

To test the applicability of the process the calibration data was used to determine a calibration and calculated
the mean absolute error (mae) from the difference between the estimated and the known depth position mae
= <‘Zest — Zreal‘>’ where (...) indicates the average. For the calibration data with the classical method the
mean average error is mae = 0.046um. In Fig. [3| the estimated depth position Zgsg¢ vs. the actual known
depth position Z .., for the synthetic calibration data is shown for the case of the classical image processing
on the upper left side. The red line corresponds to a perfect match between both values. As can be seen for
the classical image processing most of the points lie in the vicinity of the true value. Some strong outlier can
be seen especially between both focal planes at 25 < Z < 65um. However these outliers most often have
a large Euclidian distance to the calibration curve and could be removed by the application of a filter (see
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Figure 3: Estimated depth position Zeg; vs. actual depth position Z,., for classical image processing (upper
left), the fit with a shallow neural network (upper right) and the use of the deep neural network (lower left).
The red circles in the upper left part show particle images that have a distance of more than 2 pixels from
the calibration curve. Probability density function of the deviation between estimated depth position Zegt
and actual depth position Z.,; for classical image processing (black dash-dot line), the fit with the shallow
neural network (red dotted line) and the use of the deep neural network (blue line).

for example figure 6 in (Cierpka et al., 2011a))). The red circles for example indicate particle images that
would be excluded if a maximal distance of 2 pixels would be allowed. For the calibration with the classical
methods using the outlier filter mae reduces to mae = 0.024 um, excluding in total about 12% of the data.
Since this filter is not available for the deep neural network, it was not applied in the following analysis.
However, despite some strong outliers the calibration matches the known depth position quite well.

The fit with the shallow neural network is shown on the right side of the upper row. The mean average
deviation is even lower (mae = 0.033 um). Some outliers can also be seen here, especially close to the focal
planes, where the change in width and height with deft position is low.

For the deep neural network the data for training (i.e. the calibration data) cannot be used to estimate
the error since the algorithm would take the exact position known from the training. Therefore 10% of the
calibration data was not used for training and can now be taken to estimate the mean absolute error to be
mae = 0.364 um. This value is a factor of 8 larger in comparison to the other methods. On the lower left part
of Fig.[3]it can be seen that the distance of the points to the line for an ideal match is in general a bit larger
without showing strong outliers than the other methods. A similar behavior can be seen at the probability
density function of the deviation from the true value which is shown in the same figure on the lower right
part.

The pdf for the classical image processing (black dash-dot line) and the fit with a shallow neural network



(red dotted line) show similar distributions with a high probability of a very low deviation. The probability
for a deviation of +0.5um is already three orders of magnitude lower than the maximum value in the center.
The pdf for the deep neural network (blue line) shows a bit broader distribution which means small and
large deviations have a considerable high probability. However, the maximum is in the center, i.e. at low
deviations, which means that the technique in general is applicable and further improvements can help to
optimize the results.
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Figure 4: Yield for classical image processing.

The processing for the randomly distributed particle images with and without noise was done using the
same parameters for the classical image preprocessing and the deep neural network, respectively. Within one
image more individual particle images from different depth position were present and the number of overlap-
ping particles increases (Cierpka et al.,[2013). This and the increasing noise level reduces the number of valid
detections. Since the determination of the width and height is now also subjected to a higher uncertainty
the calibration results as well as the in-plane positions show higher uncertainties. Since a direct assignment
of the detected and simulated images is not possible a particle tracking approach was used to determine the
distance between a simulated and a detected particle image. In the case of a perfect match the distance would
be zero for all three directions. The probabilistic particle tracking algorithm was used (Cierpka et al., 2013
allowing a maximum displacement of +10 pixels for the in-plane direction. Since the in-plane position can
be extracted with much lower uncertainty the PTV approach was forced to determine the in-plane distance
with a much larger priority by premultiplying the Z-values with 10~5. For the later analysis the proper range
was restored.

In Fig. 4] the yield calculated as ratio between the actual valid determined particle images pairs divided
by the number of simulated particle images is shown. As can be seen for the lowest SNR using the above
mentioned data processing for the classical method yield in about 82% of valid detected particle pairs. This
value increases with increasing SNR up to 90.5% for the images without noise. It has to be mentioned that
this number depends strongly on the settings. Since within this study only the depth position was of interest,
the yield for both methods would be the same. However, in a later approach also the in-plane position shall
be determined by a neural network which may increase the yield significantly, especially for the cases with
higher noise level.

For the data of the processsing with the deep neural network the out-of-plane position could be directly
compared to the real value since the actual positions were taken from the synthetic image generator. There-
fore not particle tracking had to be applied. This means no errors due to wrong particle pairing are present in
the data. However, if particles overlap they most often show a strong deviation from the real depth position.
These particle images would be filtered by the pairing approach, which would result in a lower amount of
strong outliers for the classical data processing in comparison to the deep neural network.

In Fig. 5] the mean absolute error for all directions for the classical image processing and fit with a
shallow neural network can be seen over SNR. For the images without noise the lines indicate mae < 0.03
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Figure 5: Mean absolute error (mae) determined from all distances between evaluated particle positions to
known particle positions for different coordinate directions for classical image processing (blue, red, black
curves) and the use of the deep neural network (cyan curve).

pixel for the in-plane direction using the classical image processing. The deviation increases by one order
of magnitude to mae ~ 0.3 pixel for an SNR of 1. For the out-of-plane direction the mae < 0.18 um for the
case without noise (which is a factor of 4 larger than for the calibration data) and mae ~ 1.9 um for an SNR
of 1 are determined using the classical image processing. For the uncertainty usually the standard deviation
is taken as a first estimate. For SNR = 1 6 = 2.5um which corresponds to £2.8 % of the measurements
range. For the case without noise the value reduces to £0.4 %. For the calibration with the shallow neural
network the mean absolute error is in the order of mae ~ 1.8...3.0um with no clear trend. By inspecting the
distribution of the error it can be seen that the largest deviation appears at the boundary in depth direction,
i.e. at 0 and 90 um. However, it seems that the error is quite stable over SNR. Using the deep neural network
on the testing data results in mae = 9.01 um for the case without noise (which is a factor of 18 larger than for
the calibration data). This is much larger than for the preliminary test case. However, even for large noise
levels this value stays about constant. For an SNR of 1 the mean absolute deviation is mae = 10.62um,
thus the mae is not affected by the SNR in the same way as the classical image processing, where the mae
increases about a factor of 10 from the case without noise to the case with SNR = 1. However, the standard
deviation is in the order of 6; ~ 16 um for all test cases. This would result in an uncertainty of 18% and has
to be improved in future studies.

4 Conclusion

It was shown that machine learning algorithms and deep neural networks can be applied to determine the
particle positions using APTV. However, using classical image processing a very low mean absolute error
of only 0.046 um was determined, whereas the training of a deep neural network based on the images gives
for the same data a mean absolute error of 0.08 um. Using classical image processing an a fit by a shallow
neural network results in an even lower mean absolute deviation of only 0.033 um which was the lowest
value reached in the current investigation. However, the good results for the classical image processing can
be explained as the underlying model function was also used for the image generation. If this function would
not be known due to strong aberrations or non-spherical particles shallow neural networks could be used to
fit features extracted by classical image processing. So far this approach results in mean absolute errors that
were always better than the classical image processing with a classical calibration. It has to be stated again
that another benefit for this approach is that no a-priory knowledge of the calibration function has to fed into
the model.

The results for the deep neural network are not yet in the same order of magnitude. However, it was



shown that the deep neural network is very robust to noise. Since image noise is always problematic, espe-
cially in microfluidics, this might be a valuable option after further improvement on the training parameters.
Using the deep neural network on the other hand as well for the image annotation has the benefit, that even
less knowledge in image preprocessing and image analysis is necessary and the technique is very robust
to noise. Therefore it may be used more frequently by researchers from different fields. The results may
also be applied to any other three-dimensional method relying on particle image variation with depth di-
rection (Cierpka and Kéhler, [2012)) and will therefore be of general use. It would also be possible to use
non-spherical randomly shaped and oriented particles like bacteria, cells, or proteins as typically examples
for biological applications (Barnkob et al., 2015). Not only the velocity determination but also a clustering
of types of particles may be possible within one data evaluation step. This opens a broad applicability.
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