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Abstract  

The success stories of High-Altitude Pseudo-Satellites (HAPS) from the previous test 

flights have led to a serial production of the platform, ready to be deployed as a flexible 

alternative to satellites with fixed orbits. With the current flight endurance record of 

almost 26 days, the platform is suitable for long-term missions, which are to monitor 

ground activities continuously from the stratosphere.  

 

The challenges HAPS have to face are numerous, mainly due to the dynamic 

environment and the time-dependent mission requirements that the light-weight platform 

with energy-efficient electro-motors can hardly cope with. For the deployment to be 

commercially viable (i.e. reducing manpower in operation, increasing mission success 

rate etc.) and for safety purposes, increasing the degree of automation is essential. This is 

applicable for the mission planning aspect as well.  
 

This work proposes an automated mission planner, of which the goal is to advice the 

HAPS operator to make fast and right decisions during planning prior to mission 

execution, working thus towards a “single-operator, multiple-HAPS” setup.  

 

Some insights of the platform and the ongoing development of airspace regulations 

for stratospheric unmanned aircraft are first provided. Deriving from the trend, a realistic 

mission scenario is conceived, in which HAPS are commanded to monitor ground 

activities at different areas. Time-varying environment (i.e. weather, airspace availability 

etc.) and time-dependent mission requirements are realistically stated as well.  

 

Given the complexity of the mission planning problem, it is dealt with module-wise. 

The most insidious problem in the estimation (during planning) of the spatial and 

temporal states of the HAPS is foremost tackled using a flight path planner, which can 

solve a kinodynamic path planning problem in a vector field. A hierarchical task planner 

guided by a genetic algorithm is integrated as a high-level planner to decompose the 

problem into smaller ones that the flight path planner can solve. To avoid frequent need 

for a replanning, a plan repair via reactive avoidance can be triggered in the presence of 

unforeseen but scarce obstacles. The planning methods are implemented; the 

functionalities and feasibility are validated using a six degree-of-freedom HAPS 

simulator and real historical weather data. 
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Zusammenfassung  

Die Erfolgsgeschichten der High-Altitude Pseudo-Satellites (HAPS) aus den bisherigen 

Testflügen haben zu einer Serienproduktion der Plattform geführt, die als flexible 

Alternative zu Satelliten mit festen Umlaufbahnen eingesetzt werden kann. Mit dem 

aktuellen Flugdauerrekord von fast 26 Tagen eignet sich die Plattform für 

Langzeitmissionen, die die Bodenaktivitäten von der Stratosphäre aus kontinuierlich 

überwachen sollen.  

 

Die Herausforderungen, denen sich die HAPS stellen müssen, sind vielfältig, vor 

allem aufgrund des dynamischen Umfelds und der zeitabhängigen 

Missionsanforderungen, die die leichtgewichtige Plattform mit energiesparsamen 

Elektromotoren kaum bewältigen kann. Für einen wirtschaftlich sinnvollen Einsatz (d.h. 

Reduzierung des Personaleinsatzes im Betrieb, Erhöhung der Missionserfolgsrate etc.) 

und aus Sicherheitsgründen ist eine Erhöhung des Automatisierungsgrades unerlässlich. 

Dies gilt auch für den Aspekt der Missionsplanung.  

 

In dieser Arbeit wird ein automatisierter Missionsplaner konzipiert und entwickelt, 

dessen Ziel es ist, den HAPS-Betreiber zu beraten, um vor der Missionsdurchführung 

schnelle und richtige Entscheidungen bei der Planung zu treffen und so auf ein "Single-

Operator, Multiple-HAPS"-Setup hinzuarbeiten.  

 

Zunächst werden einige Einblicke in die Plattform und die Weiterentwicklung der 

Luftraumregelung für stratosphärische unbemannte Flugzeuge gegeben. Aus dem Trend 

abgeleitet wird ein realistisches Missionsszenario konzipiert, in dem HAPS zur 

Überwachung der Bodenaktivitäten in verschiedenen Gebieten befohlen werden. Dabei 

werden auch sich ändernde Umgebungsbedingungen (d.h. Wetter, Luftraumverfügbarkeit 

etc.) und zeitabhängige Missionsanforderungen realistisch angegeben.  

 

Aufgrund der Komplexität des Missionsplanungsproblems wird es modulweise 

behandelt. Das tückischste Problem bei der Abschätzung (während der Planung) der 

räumlichen und zeitlichen Zustände des HAPS wird vor allem mit einem Flugbahnplaner 

angegangen, der ein kinodynamisches Pfadplanungsproblem in einem Vektorfeld lösen 

kann. Ein hierarchischer Aufgabenplaner, der auf einem genetischen Algorithmus basiert, 

wird als High-Level-Planer integriert, um das Problem in Kleinere zu zerlegen, die der 

Flugwegplaner lösen kann. Um eine häufige Neuplanung zu vermeiden, kann bei 

unvorhergesehenen, aber seltenen Hindernissen eine Planreparatur durch reaktive 

Vermeidung ausgelöst werden. Die Planungsmethoden werden implementiert; die 

Funktionalitäten und die Machbarkeit werden mit Hilfe eines Sechs-Grad-Freiraum-

HAPS-Simulators und realen historischen Wetterdaten validiert.
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1 Introduction 

Civil Unmanned Aerial Systems (UAS) possess a total market estimated at $73,5 billion 

over the next decade, making the systems one of the most exciting market-pull 

developments. The market for low-cost High-Altitude Low-Endurance (HALE) will 

emerge to almost $2 billion by 2026, and are dominated by big players like Airbus, 

Facebook and AeroVironment, which develop long-endurance stratospheric UAS 

[Finnegan, 2017].  

 

HALE systems are used as remotely operated UAS, which are commonly employed 

to pursue tasks in which the presence of humans on board would result in being 

uneconomical, uncomfortable or hazardous. Solar-powered HALE are also commonly 

known as High-Altitude Pseudo-Satellites (HAPS). An example HAPS platform can be 

seen in Figure 1. The main applications of the platform consist of providing internet to 

rural areas or to monitor ground activities continuously. Even if HAPS could be deployed 

by the military, HAPS fall in general into the category of “low-cost” systems [Finnegan, 

2017], meaning cost efficiency is critical, which does not only concern the production 

cost, but also the operation cost; the latter is  a motivating factor to increase autonomy by 

reducing piloting to cut the continuous fix operation costs and thereby improve the 

economic viability [Johnson et al., 2017]. 

 

HAPS are very often constructed using light-weight material and motors with modest 

thrust to reduce the bulkiness and to increase endurance. These properties penalize 

however the maneuverability, because the platform is more sensitive to its time-varying 

physical environment, i.e. wind, convection, icing, turbulences etc. The dynamics also 

depend on the wind vector field, which cannot be neglected since wind magnitude can be 

of the same order of magnitude as the airspeed of a HAPS. Similar challenges are also 

experienced by Autonomous Underwater Vehicles (AUVs). The case of HAPS is but 

more challenging; as a fixed-wing platform, it cannot halt in the air. Therefore, apart from 

the economic benefits, increasing the autonomy of HAPS operation is also desirable for 

safety purposes. 
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Figure 1. Zephyr 7 during launch ©Airbus Defence and Space GmbH 

Many works attempt to solve the notorious path planning problem for a vehicle subject 

to constraints of its dynamics in a vector field [Lolla et al., 2012] (which could or could 

not be applied to HAPS). The path planning problem is even more challenging when the 

vector field varies over time. Although some solutions have been proposed, even in the 

case where static and dynamic obstacles are present [Lolla et al., 2015; Otte et al., 2016], 

little is documented on a more general mission planning problem, in which the vehicle is 

required to carry out tasks while subject to inhomogeneous constraints expressed at 

different abstraction levels for different purposes (e.g. mission constraints, environment 

constraints, platform-related dynamics constraints etc.). Some of these constraints are 

even known only partially at the moment the plan is computed, for example information 

concerning the time-varying environment (e.g. wind field, critical weather zones etc.). 

This can be even more challenging in a large- scale operation area for missions that span 

over long durations, since the complexity of most path planning methods increase with 

the state space and time domain.  

 

 
 

Figure 2. A screenshot on the live flight path of Kelleher in summer 2018 

© flightradar24 
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This work presents a framework that intends to solve the HAPS pre-execution mission 

planning problem1, i.e. mission planning performed prior to mission execution, which is 

essential since HAPS operate in a managed airspace [Everaerts and Lewyckyj, 2011], in 

which case the flight plans are often required to be communicated in advance.  

 

1.1 Typical HAPS Platform and its Challenges 

This work focuses on solar-powered HAPS that are designed to stay in the lower 

stratosphere over long periods to carry out missions but are confronted with challenges 

mentioned above. 

 

The term HAPS was coined to refer to the class of light-weight long-endurance UAS 

that are a viable and more flexible alternative to fixed-orbit satellites in a number of 

applications [Klöckner, 2016] due to their extreme endurance. The HAPS depicted in 

Figure 1, Zephyr 7, was tested in 2010 and holds the record for a continuous unmanned 

flight of 14 days. Later in summer 2018, Zephyr S was tested again under the name 

“Kelleher” in Arizona and broke the record of its predecessor with a continuous 

unmanned flight of 25 days, 23 hours and 57 minutes2. 

 

Using the Automatic Dependent Surveillance – Broadcast (ADS-B) data available in 

JSON3 from ADS-B Exchange4, some insights of the flight paths and flight performance 

of Zephyr S during the test in Arizona above Yuma (see Figure 2) within an area of about 

100 km × 50 km5 can be viewed. Note that the flight performance analysed here is 

derived from the observed position data from the test flight of the Zephyr S (dubbed 

Kelleher).  More general parameters of a HAPS will be discussed in the following section. 

Although the analysed data might not be directly relevant for this work, and the 

interpretation has to be done without insider information of the missions, some platform-

specific properties can be recognized, which are important to justify the implemented 

framework. 

 

Figure 3 shows the flight path of the ascending flight during the first test day and the 

flight path of the descending flight right before landing on the last day. It is interesting to 

observe, from Figure 3a and Figure 3c that the lateral flight paths (i.e. flight path projected 

on the latitude-longitude plane) are rather random. The climb from 6 km to the operation 

altitude of 18 km takes more than 4 hours, as seen in Figure 3b. The ascending phase is 

almost uninterrupted, with steady increase of altitude, which is expected, since the start 

can be planned to take place under perfect weather conditions or delayed if any difficult 

weather conditions appear. The descent of 8 km takes more than 8 hours, as seen in Figure 

                                                 
1  The term “offline mission planning” is avoided here since the usual “offline” 

planning is performed even before the operation has begun. However, HAPS operates 

continuously; but mission planning is required at certain intervals before the execution of 

the mission-related tasks, much like mission planning for satellites.  
2 https://www.airbus.com/newsroom/press-releases/en/2018/08/Airbus-Zephyr-Solar-

High-Altitude-Pseudo-Satellite-flies-for-longer-than-any-other-aircraft.html (last visited 

on 4 March 2019) 
3 JSON (JavaScript Object Notation) is a text data format for easy reading and writing 

manually by a human and efficient to parse and generate by a machine. It is object-

oriented and comparable to, but more compact than XML (Extensible Markup Language).  
4 https://www.adsbexchange.com/ (last visited on 4 March 2019) 
5 As a rule of thumb, 1° in the World Geodetic System 1984 (WGS84) is about 110 

km. 

https://www.airbus.com/newsroom/press-releases/en/2018/08/Airbus-Zephyr-Solar-High-Altitude-Pseudo-Satellite-flies-for-longer-than-any-other-aircraft.html
https://www.airbus.com/newsroom/press-releases/en/2018/08/Airbus-Zephyr-Solar-High-Altitude-Pseudo-Satellite-flies-for-longer-than-any-other-aircraft.html
https://www.adsbexchange.com/
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3d, which could be due to more challenging circumstances, in which a safe landing is 

required as soon as possible. The vertical profile of the flight path shows that the platform 

was required to fly laterally (see the phases of level flight) for a couple of times (start and 

end of lateral flights are labelled with the colored markers), while the lateral profile shows 

that the aircraft travelled, during the lateral flights, often also from one area to the other 

(also labelled with the corresponding colored markers), which suggests that Kelleher was 

trying to access other safe vertical corridors. 

 

 
 

a. Flight path projected on the 

latitude-longitude plane during 

the ascending flight on the 11th 

July 2018 

 
 

b. Flight path projected on the 

vertical plane during the 

ascending flight on the 11th July 

2018 

 

 
 

c. Flight path projected on the 

latitude-longitude plane during 

the descending flight on the 6th 

August 2018 

 
 

d. Flight path projected on the 

vertical plane during the 

descending flight on the 6th 

August 2018 

  

Figure 3. Ascending flight of Kelleher on the first day of test (11 July 2018) and 

descending flight before landing on the last day (06 August 2018) 
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a. Lateral flight path on 21st July 

2018 

 
 

b. Lateral flight path on the 30th July 

2018 

  

Figure 4. Flight paths projected on the latitude-longitude plane during mission 

flight on different days 

The “random-walk” observed from the flight paths are not limited to lower-altitude 

flight during start and landing (see Figure 3a and Figure 3b), but also during the routine 

flight at operation altitude, as seen in Figure 4, in which flight paths projected on the 

latitude-longitude plane of different days are depicted. A random flight path profile 

similar to a glider plane is expected: the wind effect on the aircraft cannot be completely 

neglected, since the HAPS is equipped with weak electro-motors for energy-saving 

purposes. 

 

 
 

Figure 5. Ground speed of Kelleher obtained from ADS-B data  

(Test day is relative to local time) 

 

Furthermore, with the weak electro-motors, the aircraft may fly at airspeeds 

comparable to that of a racing cyclist. This analogy can be deduced from Figure 5, in 

which the ground speed obtained from ADS-B (‘Spd’ in the JSON data field) during the 

complete test and converted from knots to m/s (to comply with the standard metric units 
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used in the rest of the work) is shown. The test day on the x-axis is computed relative to 

local time (UTC-7 in Arizona). The ground speed of the platform at the operation altitude 

varies between 5 m/s and 35 m/s, with a mean value of about 20 m/s, while the wind 

speed at the operating altitude of HAPS is normally of the range of 0-5 m/s and could be 

up to 10 m/s or more [Brasefield, 1949].  

 

 
 

a. Height above mean sea level 

during the test with respect to the 

test day in local time 

 
 

b. Partial zoom-in: Climb after 

sunrise and descent before sunrise 

(evaluated at local time) 

  

Figure 6. Vertical flight profile of Kelleher;  

delimited in gray are the sunset and sunrise time 

 

Another interesting feature is the vertical flight profile over time of the aircraft, as 

illustrated in Figure 6. The height of the aircraft oscillates periodically, a characteristic 

commonly known as the “yo-yo” flight [Klöckner, 2016]. In the partial zoom-in in Figure 

6b, the climb takes place after sunrise, when the sun is way above horizon to illuminate 

the solar panels of the HAPS more efficiently, while the decent of about 1-1.5 km is 

observed slightly before sunset, or rather once the sun is no longer high above the HAPS. 

 

As a fixed-wing aircraft equipped with weak motors, HAPS is also expected to have 

limited dynamics. The track angle is available from the ADS-B data (“Trak” in the JSON 

data field). Although the track turn rate is not exactly the turn rate of an aircraft [Beard 

R. W. and McLain, 2012], the first order derivation with respect to time of the track angle 

data provides valuable information on the dynamics of the aircraft, which can be obtained 

using the simple formulation: (𝜒(𝑡 + Δt) − χ(t))/Δt. However, due to the numerous 

anomalies in the ADS-B data obtained, e.g. abrupt jumps in the track angle values, 

missing epochs etc., the first order derivation only takes into account consecutive data 

with a time difference equal to Δ𝑡 = 1 min, which is the time interval of the ADS-B data. 

Plotted in Figure 7 is the cumulative occurrence probability of the track turn rate: 

 

𝑃𝑜𝑐𝑐(𝑋̇) = ∫ 𝑝(𝜒̇) 𝑑𝜒̇ 
𝑋̇

0

. 
 

1-1 

 

Due to the numerous abrupt jumps in the track angle values, some track turn rates are 

unrealistic. But the plot shows that almost 90% of the track turn rates are below 3°/s.  
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Figure 7. Cumulative occurrence probability of the track turn rate for Kelleher 

 

The data analysis of Kelleher is although based on rather incomplete data, and 

represents only a specific platform, from which even its future-generation build is likely 

to deviate, it does provide insights on how the cutting-edge solar-powered HAPS 

performs airborne, from which the challenges it could face can be deduced.  

 

Table 1. Properties of a HAPS and the challenges in planning it poses 

Properties Challenges during operation 

High operating altitude  The planning or takeoff and landing can be 

time consuming. 

Long endurance  

(continuous operation for weeks or 

months) 

Operating cost is high, and the ground crew 

can be distracted while performing repetitive 

tasks. 

Light-weight  Sensitive to adverse weather conditions (see 

Section 1.2). 

Low airspeed  Wind effects cannot be neglected, and critical 

weather zones cannot be assumed static. 

Fixed-wind and large wingspan  Limited maneuverability. 

Battery capacity  Energy management and the use of motors 

with low-energy consumption are necessary. 

Energy-efficient electro-motors  Difficulty to navigate in a wind field. 

Limited payload Passive sensors for onboard cloud detection 

and for monitoring missions, as well as 

limited onboard computation power. 

 

As summarized in Table 1, the operation of HAPS faces challenges that arise either 

due to how HAPS are deployed or due to the physical build of the platform. The long-

endurance operations suggest that manpower be reduced, or the operation costs could be 

too high to sustain. The light-weight build of the platform makes it susceptible to critical 

weather conditions, such as turbulences, or thunderstorm; however, for the sake of energy 

efficiency, the weak motors and the large wingspan (designed also to accommodate the 
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solar panel) limit the dynamics or the platform, either in terms of airspeed or 

maneuverability, e.g. limited turn rate, thereby making it difficult to fly around critical 

weather zones swiftly. Critical weather must also be avoided laterally in advance, to avoid 

frequent emergency landing in case of confinement within critical weather zones, since 

the takeoff and landing take hours. Besides, the avoidance must be performed principally 

laterally, since the vertical profile is regulated, as shown in Figure 6. Furthermore, 

mission-related tasks are time-dependent, i.e. either the tasks must be executed at within 

specific time slots as requested, or the airspace to execute the tasks is accessible only at 

specific time slots, due to the time-varying weather conditions. It is therefore essential to 

plan the operation of HAPS, not only with positional navigation, but also with a proper 

estimation of the time of arrival (ETA: Estimated Time of Arrival).  

 

1.2 Hazardous Weather for HAPS 

While HAPS operate at rather calm altitudes of ~ 18 km in the lower stratosphere6, they 

are still subject to a multitude of hazardous weather conditions which are ought to be 

either predicted or detected and avoided during operations. Below is a non-exhaustive list 

of weather-related hazards a HAPS must avoid in order to prevent impairment. 

 Cumulonimbus clouds 

Cumulonimbus (Cb) clouds are structures to be avoided by all means, as they account for 

turbulences, lighting, heavy precipitation and hail [Airbus, 2007]. Due to the 

aggressiveness of the deep convective structures, typically, they are to be cleared by 

20 NM (~ 37 km) laterally and 5000 ft (~ 1.5 km) vertically. Although most part of 

cumulonimbus clouds are found in the troposphere, the top, or rather the anvil can 

overshoot and reach the lower stratosphere, as evidence from satellite images shows 

[Bedka et al., 2010].  

 Turbulences 

Turbulences occur when volumes of air moving at different speeds meet. Although rare 

in the lower stratosphere, turbulences are not excluded, and are mostly caused by wind 

shear [Leena et al., 2012]. While turbulences are rarely dangerous for bigger and more 

robust airplanes, they could be threatening for HAPS due to the light-weight structure, 

and complicate the navigation of HAPS, i.e. the ability of the HAPS to follow a planned 

path might be impaired. 

 Precipitation/Hail 

Precipitation, especially in form of hail is damaging for the solar panel mounted on the 

wings of the HAPS. According to [Airbus, 2007], hail is most likely (> 80%) to be 

encountered inside a cumulonimbus cloud above Flight Level (FL) 200 (~ 6km), and 

therefore could also be found in the lower stratosphere. 

 Wind gusts/Strong wind 

Although wind in the lower stratosphere is calmer than in the troposphere and also than 

the higher stratosphere, wind of magnitude up to 5 m/s is usual, and can at some times of 

the year be more than 10 m/s [Brasefield, 1949]. Mild wind can be exploited as extra 

                                                 
6  The lower stratosphere is separated from its lower layer, the troposphere, by 

tropopause, which marks a cease to the temperature gradient with respect to height. The 

stratosphere starts at about 20 km at the equator and can start as early as about 10 km near 

the North pole [Andrews et al., 1987].  
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thrust, when it is a tail wind; however, given the low airspeed of the HAPS, airspace of 

strong wind should be avoided, so that the aircraft remains under control. 

1.3 Weather Data 

In general, aviation weather data stems from two sources: 

1)  third-party meteorological nowcast and forecast data provided by services on the 

ground that can be used for route planning, 

2)  observed nowcast data during the flight provided either by on-board sensors or 

other pilots.  

1.3.1.1 Third-Party Meteorological Data 

Flight meteorology, in short, consists of wrapping meteorological data into weather 

forecast data made relevant and available for flight operations. The task is usually carried 

out by an aviation weather service and overseen by the federal airspace authority, e.g. the 

Federal Supervisory Authority for Air Navigation Services in Germany (BAF, 

Bundesaufsichtsamt für Flugsicherung, BAF). The German Meteorological Office 

(DWD, Deutscher Wetterdienst) is in Germany the only certified aviation weather 

service.  The following of this subsection intends to provide an overview of the aviation 

data in Germany. Although not identical, other countries adopt a similar system, for it is 

necessary to conform with the international standards set by International Civil Aviation 

Organization (ICAO).   

 

The aviation weather data provided by DWD are in general divided into three 

categories, namely weather warning, weather nowcast from current observation data, and 

weather forecast, some of which are briefly described in the list (non-exhaustive) in Table 

2 [Deutscher Wetterdienst, 2015; Deutscher Wetterdienst, 2018].  

 

Advisory weather information from Table 2 is wide-area information, meaning it 

cannot be used to compute detailed flight plan, but only for dictating if an operation can 

or cannot take place. Apart from aviation-specific advisory weather information, other 

numerical global weather data derived from sophisticated atmospheric fluid-dynamics 

and thermodynamics models are also available. Complex mathematical tools to solve 

partial differential equations, fuzzy logic etc. are used to extrapolate or improve the 

atmospheric model. The accuracy and resolution of numerical global weather data has 

benefited a lot from the computing power of modern CPUs. Table 3 is a short list of the 

most commonly used numerical global weather data. These data are four-dimensional, 

i.e. three-dimensional spatial and time discretization. Some of them are of much higher 

resolution, for example, the COSMO-DE with a ~ 2.8 km resolution, or its successor, 

CODMO-D2, with a ~ 2.2 km resolution, are provided by DWD as advisory weather data 

for air balloons, or ultra-lightweight aircrafts. Such numerical weather data is in general 

practical for the tedious planning of weather sensitive platforms, and therefore is suitable 

to be used for HAPS as well in its mission planning.  
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Table 2. Weather data products included in the aviation weather service 

provided by DWD 

Warnings  Description 

SIGMET The SIGMET (SIGnificant METeorological phenomena) 

warns flights of hazardous weather conditions such as severe 

turbulences, heavy hail, or aggressive thunderstorm zones.  

The planning or takeoff and landing can be laborious. DWD 

provides the SIGMET data by broadcasting findings from 

regional stations. Data from SIGMET is valid for four hours. 

Warnings for  

GAFOR areas 

Warnings of dangerous weather zones in the corresponding 

GAFOR (see GAFOR in the “Forecast” list) areas. 

GAMET Updated four times a day with each data having a validity of 

six hours, GAMET (General Aviation METeorological 

information) complements the GAFOR warnings for low-

altitude flights or near the mountains. 

AIRMET AIRMET (AIRman’s METeorological information) is not 

updated regularly but only broadcasts weather alerts for low-

altitude flights which are missing in GAMET. The validity 

lasts until the next update of GAMET data. 

Forecast  Description 

TAF Coded similarly to METAR (see below in the list of 

“Nowcast”), TAF (Terminal Aerodrome Forecast) provides 

weather forecast at the airport areas. Updated every three 

hours, each set of forecast has a validity of 9 hours, or 18 

hours for international flights.  

GAFOR GAFOR (General Aviation FORecast) is an area weather 

forecast used for Visual Flight Rules (VFR), and is updated 

every three hours and each dataset is valid for the next six 

hours. Germany is divided into 68 GAFOR-areas. 

3-day forecast Once a day, a 3-day forecast is provided for each regional in 

Germany (North, South and Middle), and is used mainly to 

predict conditions for VFR and aviation sports. 

Nowcast/ 

Observation  

Description 

METAR METAR (METeorological Aerodrome Routine weather 

report) is a coded standard weather report on visibility, 

weather and clouds, derived from observations obtained from 

weather stations placed at airports. Each weather dataset is 

valid for two hours and is updated every half an hour at each 

airport. 

SAT IR (WAFS)/  

Sat Europa HRV, 

RGB, IR/ 

SAT-Bild GOES-E, 

SAT-Bild Himawari, 

etc. 

Satellite imagery using various satellites (WAFS, Europa, 

GOES-E, Himawari etc.) equipped with either InfraRed (IR) 

sensors, true-color sensors (Red-Green-Blue, RGB), or  High-

Resolution Visible (HRV) image sensors can provide 

observation images of the weather conditions up to every 

quarter of an hour with high-resolution up to 3 km.  

Analysis map Numerous ground-based weather stations across the country 

provide isobaric maps every three or six hours. 
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Table 3. Numerical global weather data 

Model Description 

GFS Based in the USA, GFS (Global Forecast System) is operated by 

the National Center for Environmental Prediction (NCEP) and 

managed by the National Oceanic and Atmospheric 

Administration (NOAA). The planning or takeoff and landing can 

be laborious. GFS is based on the atmospheric, oceanic and Earth 

model. Some data are made available to public 7 ; they are of 

different update rates and of different spatial-temporal resolutions. 

For shorter-term forecast, a spatial resolution of 28 km is available 

and for longer term (14 days) forecast, a resolution of 70 km is 

available. 

ECMWF ECMWF (European Center for Medium-Range Weather Forecast) 

is a numerical weather forecast and remote sensing research 

facility and service provider created by a joint-force of 34 nations. 

ECMWF provides forecast for different time periods [ECMWF, 

2018]: 

medium-range: updated twice daily with high-resolution forecast 

data for up to 10 days  

extended-range: updated twice weekly with forecast data that 

tracks above all the weekly weather changes for the next 46 days 

long-range: updated monthly with forecast data that summarizes 

predictable trends over long periods for the next 7 months, such 

as El Niño Southern Oscillation8 [Stockdale et al., 2017] 

COSMO-DE/ 

COSMO-D2 

[Baldauf et al., 

2011] 

COSMO-DE (COnsortium for Small-scale MOdeling) a weather 

forecast model of the DWD covering only Germany, Austria, 

Switzerland and parts of the other neighboring countries. The 

geographical limitation is so that the forecast can support high-

resolution model, which is beneficial for the forecast of 

cumulonimbus clouds for example, which are often only of a few 

kilometers in dimension, and therefore do not appear on a weather 

forecast with spatial insufficient spatial resolution. With the 

421×461 horizontal grid cells over a total coverage of 1160×1280 

km2 , COSMO-DE provides a weather forecast map with a 

horizontal resolution of ~2.8 km; it also provides 50 altitude 

levels. Since the computation complexity increases with 

increasing resolution, COSMO-DE provides only short-range 

weather forecast of 27 hours.  

COSMO-DE was replaced by COSMO-D2 in May 2018. 

COSMO-D2 has a larger coverage area of 1440×1590 km2, with 

an even higher horizontal resolution of ~2.2 km and a total of 65 

altitude levels [DWD, 2018]. 

 

The numerous sources of weather data provide valuable insights to the dangerous 

zones, which in the case of HAPS, must be considered during the flight, and also already 

                                                 
7 GFS weather download. https://www.ncdc.noaa.gov/data-access/model-data/model-

datasets/global-forcast-system-gfs (last visited 10 March 2019) 
8 El Niño Southern Oscillation (ENSO) is the periodic variation in winds and surface 

temperatures of the equatorial Pacific Ocean. 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
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in the planning phase prior to execution (see Section 1.1). To abide by the IFR, HAPS 

operate only in the “safe-zone”, i.e. the airspace complement of the no-fly zones predicted 

by the aviation advisory weather data. There, high-resolution weather data must be used, 

since HAPS is a sensitive platform. In this work, COSMO-DE data is primarily exploited; 

thanks to its high resolution to predict the behavior of HAPS in the time-varying 

environment, the COSMO-DE data is also able to capture cumulonimbus clouds, which 

are indeed a threat to HAPS. Furthermore, the high-resolution wind data from COSMO-

DE can be used to predict the movement of the HAPS induced by the surrounding airflow, 

so that the absolute position of the HAPS (i.e. position relative to the ground) can be more 

precisely predicted (see Section 3). 

 

1.3.1.2 In-Flight Weather Data 

The global data is used for penetrating/navigating in the airspace [Airbus, 2007], like the 

landmarks and road conditions used by the car navigation system. However, weather 

conditions can be missed and therefore many aircrafts carry onboard weather sensors.  

 

Table 4. On-board weather sensors 

Sensor type Description 

Radar Onboard weather radars can detect structures with heavy 

precipitation (e.g. rainfall, wet hail, wet turbulence, ice crystals, etc.), 

while they have difficulties in general to detect dry hail and dry snow 

since the due to small reflections [Airbus, 2007]. Dryer structures 

such as clouds, fog, wind, clear air turbulence, wind shear, 

sandstorms and lighting cannot be detected by radars. Weather radars 

are active sensors, i.e. energy consumption is higher (usually in the 

order of magnitude of a few hundred Watts [Honeywell, 2016], but 

is reduced to ~ 40 W with miniature weather radar [Garmin, 2018]. 

Furthermore, they are bulky and weigh in general more; even the 

most light-weight radars weigh at least a few kilograms. Given the 

relatively high energy consumption and bulkiness of this class of 

sensor, the use of a weather radar for ultra-lightweight UAS is rare. 

RGB/  

EO sensors 

Electro-Optical (EO) or RGB sensors are passive sensors that 

provide visible images in true color. Using a segmentation method, 

outlines of clouds can be differentiated from the background [Funk 

and Stütz, 2017]. Two-dimensional cloud coverage map (i.e. 

percentage of area of each grid cell of the map covered by clouds) or 

a cloud map (i.e. map marked by cloud polygons) can be drawn to 

guide the UAV around the clouds in order to conform with VFR, or 

to identify “clear-sky” for more efficient optimal communication.  

Using Structure from Motion (SfM) techniques, a monocular camera 

can also be used to determine the distance of the cloud to the 

platform, thereby enabling three-dimensional cloud maps. This class 

of sensors is usually lightweight and has low energy consumption. 

IR  sensors Much like the EO sensors, thermal InfraRed (IR) sensors are also 

passive sensors. Multiple works have proven that ground-based 

thermal IR sensors can effectively detect clouds [Nugent et al., 2009; 

Redman et al., 2018].  
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Be it active or passive, onboard weather sensors provide additional information on the 

weather in the proximity of the aircraft, and therefore are beneficial for weather avoidance 

purposes. Also known as “sense-and-avoid”, this is comparable to the car driver’s visual 

sensor to spot the danger missed by the navigation system and is useful for reactive 

avoidance. In Table 4, the features of the most commonly used on-board weather sensors 

are summarized.  

 

1.4 Airspace Regulations  

Air traffic management is mature and widely practiced in Class A airspace, that is 

delimited by an altitude of 18,000 feet above mean sea level and stops at FL600 

(~ 60,000 fts) [Hunter, 2015]. But as technology pushes its limits, with promises of more 

commercial operations of HALEs  above FL600, it is clear that technological and 

regulatory measures have to be considered to enable navigation, tracking and 

communications of this flight level, although it is still not sure yet “how” [Hunter, 2015]. 

Nevertheless, airspace above FL600 is currently relatively traffic-free, since airliners fly 

below, some airborne vehicles can still operate through or at this altitude, for example the 

North American X-15, F-15s, F-22s, Lockheed U-2s, Google Project Loon, space rockets, 

Virgin Galactic’s Spaceship 1, XCOR’s Lync, SpaceX, Armadillo [Hunter, 2015].  

 

Currently, according to the Federal Aviation Administration (FAA), the airspace above 

FL600 is classified as Class E airspace, in which no Air Traffic Control (ATC) clearance 

or radio communication is required for VFR flight. However, as mentioned in the latest 

operational concept on Air Traffic Management (ATM) for UAS jointly conceived in 

November 2018 by the European Organisation for the Safety of the Air Navigation 

(EUROCONTROL) and the European Aviation Safety Agency (EASA) 

[EUROCONTROL and EASA, 2018], High-level Flight Rules (HFR) should apply for 

unmanned flights operating in the stratosphere, i.e. above FL600, although HFR is not 

yet developed.  

 

According to the guidelines in [EUROCONTROL and EASA, 2018], High-level 

Flight Rules (HFR) must be compatible with Instrumental Flight Rules (IFR), with some 

additional requirements that could also apply. Although airspace above FL600 does not 

fall into the category of “controlled airspace”, as according to the guidelines, the imposed 

compatibility with IFR implies that either the UAS be able to sense and avoid, or the 

airspace be systematically organized to prevent collisions. And in Europe, since the 

number of UAS operating at this altitude is relatively substantial, the airspace must be 

“managed”, meaning any UAS that intend to operate at this flight level must provide a 

flight plan that includes the platform type, contingency procedure, planned operation 

(navigation, route, level, etc.) and contact details.  

 

Most importantly, although rare since the missions are mostly long-endurance, any 

flight through the controlled airspace below FL600 must be communicated in advance, 

e.g. before landing, or a descent for collision avoidance. 
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1.5 Goal, Contributions and Outline of this Work 

Recent successful tests on HAPS, particularly of Zephyr and Rainbow Solar9, as well as 

upcoming tests from the competitor10 show that the Technology Readiness Level (TRL) 

of similar platforms increases steadily [Müller et al., 2018]. Moreover, with the setup of 

a serial production facility for Zephyr11, a vast deployment of the HAPS can be expected 

in near future. Continuous border surveillance, ground mapping applications using HAPS 

are expectedly the typical tasks, since the deployment is more flexible, as an alternative 

to Low Earth Orbit (LEO) satellites and aircraft that require frequent refueling. However, 

human operators are required on a 24/7 basis, since typical missions span over long 

periods and HAPS are intended to remain in the lower stratosphere continuously. From a 

safety as well as pragmatic point of view, increasing autonomy is essential in such 

continuous long-endurance operations to reduce manpower and human error.  

 

Phases involved in a typical space flight operations start from planning, processing, 

departure operations, flight operations, return and landing, refurbishment and turnaround 

[Hunter, 2015]. Since HAPS is a long-endurance platform that is intended to remain 

airborne, planning must also be performed during flight. This work focuses on increasing 

autonomy and efficiency in mission planning during flight operations, but before the 

execution of the mission-related tasks. The main goal is to optimize mission success rate, 

while reducing the risk of replanning, by considering the predicted time-varying 

environment, as well as the platform constraints at the planning phase. Part of the work 

also proposes a plan repair method to fly around unforeseen danger without aborting the 

computed plan completely.  

 

This work is organized as shown in Figure 8. We first lay out a mission scenario and 

state the problem descriptively as well as formally for a HAPS-like UAV (see Section “2. 

Problem Statement” in Figure 8). In this Section, also some widely-used planning 

methods will be presented and analysed according to its suitability for solving the HAPS 

pre-execution mission planning problem. Subsequently, in section “3. Fight Path 

Planning”, the most obvious problem will first be dealt with, namely the flight path 

planning problem, which is essentially for planning numerically a flight path for the 

HAPS from a start to a goal position in a time-varying environment, while estimating the 

time of arrival as well. A flight path planning method is known for being inconvenient to 

include elements of task planning, which is usually performed by classical planners. In 

section “4. Hierarchical Task Planning for HAPS”, a hierarchical task planning structure 

is proposed to consider the heterogeneous mission-related constraints and requirements 

as listed in Table 8 and Table 9). The plans determined by the hierarchical task planner 

are presented in form of a sequence of logical tasks to be executed at very roughly 

estimated times (due to the lack of consideration of numeric details), and will be “refined” 

by the flight path planner, forming what is often referred to a strategic-tactical 

modularized hybrid planner. The hierarchical task planner needs however a more efficient 

                                                 
9 Chinese solar drone “Rainbow” passed its maiden flight for over 15 hours at 20 km 

during the first test flight. http://www.xinhuanet.com//english/2017-

06/13/c_136363018.htm (last visited 22nd April 2019) 
10 Aurora 2018. Odysseus press release. https://www.aurora.aero/odysseus-high-

altitude-pseudo-satellite-haps/ (last visited 8th March 2019) 
11 Airbus 2018. Serial production facility for Zephyr HAPS. 

https://www.airbus.com/newsroom/press-releases/en/2018/07/Airbus-opens-first-serial-

production-facility-for-Zephyr-High-Altitude-Pseudo-Satellites.html  (last visited 08 

March 2019) 

http://www.xinhuanet.com/english/2017-06/13/c_136363018.htm
http://www.xinhuanet.com/english/2017-06/13/c_136363018.htm
https://www.aurora.aero/odysseus-high-altitude-pseudo-satellite-haps/
https://www.aurora.aero/odysseus-high-altitude-pseudo-satellite-haps/
https://www.airbus.com/newsroom/press-releases/en/2018/07/Airbus-opens-first-serial-production-facility-for-Zephyr-High-Altitude-Pseudo-Satellites.html
https://www.airbus.com/newsroom/press-releases/en/2018/07/Airbus-opens-first-serial-production-facility-for-Zephyr-High-Altitude-Pseudo-Satellites.html
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method to search for quality task plans, which will be described in section “5. Extension 

of the Mission Planner to Multiple HAPS”, since the combinations of tasks constituting 

the plans become innumerable. A strategy to reactively avoid sporadic unforeseen 

obstacles (in the planning) is determined by the mission planner as well, as a plan repair 

method to be executed on-board, in order to avoid frequent replanning. The computation 

of the strategy is described in section “6. Plan Repair via Reactive Avoidance”. In the last 

section “7. Implementation and Validation”, the implementation is described, followed 

by an analysis of the validation results and performance tests.  
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“La technique est utile, mais elle est aussi bien plus qu’un outil.  

Elle forme un système, où tout est interdépendant” 

- Thierry Gaudin in 2100 Récit du Prochain Siècle  

2 Mission Planning Problem for HAPS 

As demonstrated by the observation summarized in Section 1.1, HAPS is a lightweight, 

completely solar-powered, fixed-wing UAS that can stay airborne for weeks or even 

months. In order to be energy efficient, the platform is equipped with weak motors to 

cruise at relatively low speed in the lower stratosphere, where the airspace is relatively 

calm with mild wind and with relatively little congestion, since the airliners fly below. 

However, as listed in Section 1.2, although relatively rare, some critical weather may 

occur and must be avoided; the influence of the wind on the flight trajectory especially 

must also be taken into consideration, in order to predict the whereabouts of a HAPS at a 

given time in advance. Additionally, airspace regulations must also be considered to avoid 

collisions with other stratospheric aircrafts. To this end, a dynamic allocation of airspace 

is recommended [Cervo, 2014]. 

 

In this chapter, the in-operation pre-execution mission planning problem will be 

properly defined, first with the description of the mission scenario HAPS is confronted 

with, followed by a detailed analysis of the HAPS Mission Management System (MMS) 

(that wraps around the mission planner), in which the interactions of the mission planner 

with the external entities will be laid out. Subsequently, a formal description of the 

problem as well as the form of the solution are defined. Some related works that could be 

used for the mission planning for HAPS are described, including some more detailed 

description of the most prominent methods and analysis of why they should or should not 

be considered for solving the HAPS mission planning problem. 

2.1 Mission Scenario of a HAPS 

The studies in this work are based on realistic parameters of HAPS platforms in general, 

as described in [Müller et al., 2018]. On top of that, unless mentioned otherwise, a 

scenario is used throughout the work to study the mission planning problem for HAPS in 

a time-varying environment. The following paragraphs provide the details and thereby 

also draw up the scope of the work. 

 

 Platform Specifications 

Table 5 summarizes the specifications of the build and flight performance of the HAPS 

on which this work is based [Müller et al., 2018]. The specifications of Airbus 320 are 
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also provided side-by-side in the table to serve as an intuitive comparison [Airbus S.A.S., 

2005, Revised February 2019]. 

 

Table 5. Specifications of HAPS vs. Airbus 320 

Build Parameter values 

HAPS Airbus 320 

Weight  100 kg 73 × 103kg 

Wingspan  30 m 34 m 

Payload/ Passenger capacity 5-10 kg < 150 passengers 

Battery capacity/ Range 15 kWh  

Electro-motor maximum 

propulsive power/ Engine thrust 

range 

1700 W 111-120 kN 

Flight Performance HAPS Airbus 320 

Operating altitude 18 km 3-12 km 

Cruise airspeed at the operating 

altitude 

30 m/s Mach 0.82 (~ 281 m/s) 

Endurance  3 months 4800 - 5700 km 

 

Each HAPS is tracked by an antenna on the Ground Control Station (GCS) to ensure line-

of-sight communication. 

 

 Mission Payload 

In this work, we assume that the HAPS is equipped with an EO mission camera. The 

advantage of an EO-camera is multifold: 

 

1. It takes images in true color. 

2. High-resolution camera models also exist in light-weight format. 

 

Specifications of a mission camera are often given in form of the Field of View (FoV) 

of the sensor, and the pixel counts of the height ℎI and width 𝑤I  of the image [Sun et al., 

2016]. The specifications summarized in Table 6 are assumed for the EO mission camera 

mounted on the HAPS. These specifications are similar to MEDUSA designed by VITO 

under the ESA-PRODEX program for stratospheric solar powered UAVs [Delauré et al., 

2013]. The camera is equipped with two custom designed CMOS image sensors, and is 

light-weight (~ 2.6 kg), consumes little energy (<50 W), and resistant to low pressure 

(down to 60 mbar) and to a wide range of temperature (-70°C to 60°C). 

 

Table 6. Example parameters of a mission camera based on MEDUSA 

𝒉𝐈 𝐱 𝒘𝐈 (px) Ground 

sampling 

distance at 

18 km 

𝒉𝐈 𝐱 𝒘𝐈 at 𝒉 =
𝟏𝟖 𝐤𝐦 at 

Nadir position 

𝒇, 

focal 

length 

𝝁, 

pixel 

size 

𝑭𝒐𝑽𝐇 𝑭𝒐𝑽𝐯 

(10000 px) 

× 

(1200 px) 

30 cm 

 
3000 ×360 m 330 mm 5.5μm 9.5° 1.1° 
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The conversion between the FoV and the focal length of a monocular camera can be 

found in Appendix 1.  

 

The height and width of an image (ℎI and 𝑤I) on the ground taken by the mission 

camera vary according to the tilt angle of the pan-tilt unit, also known as the gimbal (see 

Figure 9). At an altitude of ℎ, the format of the image can be determined geometrically 

with these equations, if the tilt angle of the pan-tilt unit, 𝜃gimbal, is smaller than 
𝜋

2
: 

 

ℎI = ℎ ⋅ (tan (𝜃gimbal +
𝐹𝑜𝑉V
2
) − tan (𝜃gimbal −

𝐹𝑜𝑉V
2
)), 

 

2-3 

𝑤I = ℎ ⋅ (tan (𝜃gimbal +
𝐹𝑜𝑉H
2
) − tan (𝜃gimbal −

𝐹𝑜𝑉H
2
)). 

 

2-4 

 

 
Figure 9. View of a camera mounted on a pan-tilt unit 

Also assumed is the maximum horizontal tilt angle of the pan-tilt unit, which is 45°. 

At the maximum tilt angle, the horizontal dimension of the ground image can be up to 

6 km. Although the flight pattern for optimal image coverage of the ground is not the core 

of this work, given the above mission payload specification, it is safe to assume that the 

image recording of an LoI (see Figure 10) can be performed in a lawnmower sweep 

pattern with a distance between stripes to be 2×6 km.  

 Deployment of HAPS in Monitoring Missions 

HAPS are not yet in actual operation, although several tests were conducted. HAPS can 

be used either for communications relay, providing internet to rural areas or for ground 

activity monitoring and mapping [Airbus Defence and Space, 2017b]. However, 

communications relay, providing internet, or continuous monitoring/mapping of the same 

site require the platform to remain more of less static in the air. This can be better achieved 

with an “aerostatic” HAPS platform, or rather blimp, a semi-rigid large volume filled with 

helium [ESA, 2017]. The studies in this work are hence based on a ground activity 

monitoring mission of various locations within different time slots as required. 

Considered hereafter is only the mission flight, i.e. the effort does not study the launch 

and recovery of the platform.  

 

Since flight operations in the stratosphere must also conform with IFR 

[EUROCONTROL and EASA, 2018], the airspace must be organized dynamically, so 

that the HAPS can carry out the missions without the risk of collisions, and also without 

occupying airspaces unnecessarily, which may hinder the sharing of the airspace with 

other stratospheric platforms, of which the number is expected to grow. It is 

recommended in [EUROCONTROL and EASA, 2018] that the Advanced Flexible Use 
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of Airspace (AFUA) concept [Cervo, 2014] be the guideline for the airspace organization 

of UAS, i.e. areas with defined lateral and vertical borders are allocated for the time the 

areas are needed for carrying out the related missions.  

 

2.1.3.1 Mission Scenario for HAPS 

Figure 10 shows a realistic continuous surveillance and mapping mission scenario, which 

will be used throughout this work for the mission planning studies, unless mentioned 

otherwise. The Locations of Interest (LoI) represented by green polygons mark the ground 

areas to be monitored in the lateral dimensions. According to the requirements imposed 

by the clients, some are to be monitored any time of the day, some only within certain 

timeslots of the day. The Mission Areas (MA) in blue encompass LOIs with the same 

requirements of the same client. LoI of the same client all bear the same set of 

requirements, and if these are fulfilled, a reward will be received by the HAPS team. The 

MA denote the allocated airspace for HAPS to carry out the monitoring/ mapping tasks 

at the operating altitude (~ 18 km). The LoI of a MA must be in the vicinity of one another 

and must be visited one after another as they define altogether a “mission” unit. For 

example, if the Deutsche Bahn request for the monitoring of the rail maintenance at two 

areas far apart, e.g. in Munich and in Bayreuth, the LoI cannot be grouped together into 

one MA. The Waiting Areas (WA) represented in yellow are airspace in which the HAPS 

can loiter freely while not in mission execution, e.g. at night (see Figure 6 for the typical 

vertical profile of the HAPS entering the loiter mode at sunset). A HAPS is allowed to 

move between MAs only through the designated corridors (C) or WA, implying also that 

MA are not to be used as “corridors”. The reason being that in an MA, the HAPS should 

focus on fulfilling the task requirements without being bothered by collision avoidance 

with other HAPS, should multiple HAPS be involved in the mission.  

 

 

 

Figure 10. Mission Scenario for HAPS to be deployed for  

ground activity monitoring 
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The deployment of HAPS can be at a more massive scale, as also suggested by the 

serial production of Zephyr by Airbus12, in order to increase coverage of the operation 

areas. In a scenario where multiple HAPS are involved, the “network” of MAs and LOIs 

can be expanded to the mission scenario shown in Figure 11.  

 

 
 

Figure 11. Typical scenario for monitoring missions with multiple HAPS 

 

The dimensions of the mission elements depicted in Figure 10 and Figure 11 in form 

of their longest diagonal in kilometers are given in Table 7. Each mission element is 

available only within certain time windows, as required by the mission or as according to 

airspace availability. Furthermore, each LoI has a minimum revisit time. Therefore, time 

of arrival at the mission elements is closely relevant to the success of a mission plan. In 

the studies, it is assumed that the HAPS is equipped with an EO mission camera (see 

Section 2.1.2); therefore, the clouds between the operating altitude and ground can 

aggravate the mission success rate. Furthermore, for safety purposes, the HAPS is not 

allowed to operate in areas with high risk, i.e. substantial obstacle occlusion, neither is 

the platform allowed to operate in areas where the wind magnitude is substantial for fear 

of losing control of the aircraft.  

 

In the rest of the work, a “mission” refers to the set of tasks to be carried out for all 

LoI of the same MA. “Mission Constraints (MC)” is used to denote conditions related to 

either operation safety or airspace regulations that must not be violated at all times, and 

“Mission Requirements (MR)” to denote the conditions to meet in order to succeed in a 

mission. The mission constraints and requirements described in the above paragraphs are 

summarized and listed in Table 8 and Table 9 respectively. 

                                                 
12  Airbus 2018. Serial production facility for Zephyr HAPS. 

https://www.airbus.com/newsroom/press-releases/en/2018/07/Airbus-opens-first-serial-

production-facility-for-Zephyr-High-Altitude-Pseudo-Satellites.html  (last visited 08 

March 2019) 

https://www.airbus.com/newsroom/press-releases/en/2018/07/Airbus-opens-first-serial-production-facility-for-Zephyr-High-Altitude-Pseudo-Satellites.html
https://www.airbus.com/newsroom/press-releases/en/2018/07/Airbus-opens-first-serial-production-facility-for-Zephyr-High-Altitude-Pseudo-Satellites.html
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Table 7. Dimensions of the mission elements: longest diagonals in kilometers 

MA/WA Longest 

diagonal 

[km] 

Longest diagonal [km] C Longest 

diagonal 

[km] 
LoI 1 LoI 2 LoI 3 

MA1 27.58 17.10   C1 60.78 

     MA2 69.49 19.83   C2 37.83 

MA3 103.11 20.07 44.27  C3 33.67 

MA4 25.32 15.56   C4 58.88 

MA5 52.90 13.25   C5 34.22 

MA6 46.51 21.61   C6 17.64 

MA7 84.03 21.42 25.88  C7 70.41 

MA8 36.62 10.84   C8 40.27 

MA9 133.30 34.36 21.24 38.13 C9 66.19 

MA10 123.35 39.96 44.74  C10 72.10 

MA11 74.98 31.62 24.53  C11 20.52 

MA12 73.49 18.28 26.38  C12 73.35 

WA1 47.90    C13 39.34 

WA2 34.33    C14 88.46 

WA3 46.41    C15 63.04 

WA4 47.96    C16 70.70 

     C17 71.98 

     C18 71.38 

     C19 61.77 

     C20 42.75 

     C21 46.67 

 

Table 8. Mission Constraints (MC) for safety and airspace regulations 

Identifier  

MC1 The HAPS is allowed to carry out its tasks in a MA or to loiter in a WA, 

if the obstacle occlusion in the area is less than 30%. The HAPS is 

allowed to cross a corridor only if no obstacle is present there. 

MC2 The HAPS is allowed to fly in mission elements where wind magnitude 
|𝑣𝑤| is less than 5 m/s. 

MC3 No more than one HAPS can coexist in a MA. 

MC4 A MA cannot be used as a corridor (i.e. if a HAPS flies into the MA, it 

must try to carry out the mission). 

MC5 There must be an existing corridor that connects to the previous mission 

element. 

MC6 LOIs cannot be repeatedly monitored at each MA visit. 

MC7 Weather critical zones and other airborne vehicle must be avoided 

(collision avoidance). 
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Table 9. Mission Requirements (MR) for successful monitoring 

Identifier  

MR1 All the LoIs of the MA are visually recorded and the images are sent to 

the GCS. 

MR2 Ground image coverage of each LoI of the MA is higher than the 

minimum coverage threshold. 

MR3 Images captured of each LoI within each MA are taken within the 

corresponding monitoring time windows. 

MR4 MA has not been (successfully) visited that day more times than allowed 

by its maximum revisit frequency. 

MR5 Time-lapse between two consecutive visits to the same MA is higher than 

its allowed minimum inter-visit time. 

 

It shall be noted that images of the LoI of the same MA are traded for rewards if all 

the MR in Table 9 are met (meeting all MR implies a successful mission). Should that be 

the case, the HAPS team will be rewarded according to Table 10. The rewards in this 

work are expressed in a financial form; without loss of generality, they can also be 

expressed in metrics that represent importance or urgency.  

 

Table 10. Rewards to be given for each MA (× 𝟏𝟎𝟑) 

Mission area Coverage 

(%) 

Reward (€) Mission 

area 

Coverage 

(%) 

Reward (€) 

MA1 80 4 MA7 70 15 

MA2 80 50 MA8 80 3 

MA3 60 100 MA9 60 13 

MA4 80 20 MA10 60 18 

MA5 80 3 MA11 70 20 

MA6 70 5 MA12 70 10 

 

2.2 System Analysis of the HAPS Mission Planning 

A real-world system involves many actors and stakeholders, while the engineering of it 

(Systems Engineering) brings them together to achieve the underlying objectives [Beihoff 

et al., 2014]. This work focuses solely on the HAPS mission planning during mission 

flight and prior to execution (i.e. pre-execution mission planning), which is intended to 

plan for successful missions for the scenario described in Section 2.1.3. The mission 

planner is also a system unit incubated in the bigger HAPS Mission Management System 

(MMS). The following subsections provide an overview of the MMS that wraps around 

the mission planner for a better understanding of the role of the mission planner, its stakes 

and the expectation about the performance of the planner.  

 Mission Management System (MMS) 

HAPS operate either in a controlled airspace [Everaerts and Lewyckyj, 2011] during the 

climb phase after takeoff and the descent before landing, or in a managed 

[EUROCONTROL and EASA, 2018; Cervo, 2014] during operation. The upcoming 

operation details (flight routes, navigation, level etc.)  must be preplanned and 

communicated. 
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Due to the physical properties of a HAPS, as described in Table 5, their operation and 

planning is more challenging (see Table 1). To be taken into account in the mission 

planning are: 

 
1. mission requirements, e.g. tasks, execution time and location (defined by a lateral 

area), 

2. the dynamic allocation of airspace for operation, 

3. weather condition and the avoidance of dynamic critical weather zones, and 

4. fleet information and flight dynamics, e.g. number of aircrafts available, speed, 

turn rate etc. of the aircraft in the time-varying wind field. 

 

Note that this work focuses on developing a mission planner for HAPS. Given the 

limited payload of the platform (5-10 kg), it is essential to limit the on-board equipment 

to only safety-critical real-time applications, of which the functions are not interrupted 

even during communication link loss. Modules of the MMS such as flight control and 

reactive guidance must be on-board, while long-term operational mission planning that 

works at fix intervals to plan or re-plan the missions prior to the execution in the next 

hours can be performed in the Ground Control Station (GCS). With this architecture, the 

ground-based mission planner will not be limited hardware-wise, as computation power 

is critical to process the weather data [Müller et al., 2018; Köhler et al., 2017b] and plan 

accordingly. 

 

 Top-Level Role Description of the HAPS MMS 

Fully autonomous UAS is beyond reachable. ICAO stated in 2011 that “Remotely-Piloted 

Aircraft (RPA) […] will be integrated into the international civil aviation system in the 

foreseeable future”, thanks to the presence of the remote pilots(s) that enables the 

interaction with the existing ATM system; however, the future of fully autonomous 

aircraft operations was not mentioned, which implies a longer wait period for the 

realization. The lack of clarity in the certification process of a fully autonomous UAS is 

also confirmed by Clothier et al. in [Clothier et al., 2013]. Early 2019, the first fully 

autonomous drone for surveillance application was approved by the French Directorate-

General for Civil Aviation (DGAC, Direction Générale de l’Aviation Civile) [Rees, 

2019]. Although not piloted by a human, the drone must still be supervised by a remote 

operator, for example a security guard without a pilot license.  

 

Although the future operation of HAPS is not yet outlined in detail and could alter 

according to innovations, at least one human operator is almost always in the MMS (i.e. 

human-in-the-loop system), as suggested by the regulatory documents and report 

mentioned above. Furthermore, take Zephyr from Airbus Defence and Space (ADS) for 

example, the platform is currently remotely piloted and operated; nevertheless, the goal 

is to enable a single pilot to fly multiple Zephyr platforms simultaneously [Airbus 

Defence and Space, 2017a].  

 

The MMS conceived for HAPS obeys hence the rule of having one (or more) human 

operator(s). Moreover, a modern autonomous, context-sensitive task management and 

decision support tool [Mosier et al., 2017] requires information management to increase 

the level of transparency and thereby also the level of trust without overloading the human 

operators, as well as and adaptive automation for adaptive aiding. The MMS designed for 

HAPS intends to comply with this standard, of which the design elements will be detailed 

in the following.  
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Used here is the diagram-based language developed by Schulte et al. [Schulte et al., 

2016; Schulte and Donath, 2018] to describe a system with Human-Autonomy Teaming 

(HAT) in order to facilitate the comprehension at the top-level of a human-in-the-loop 

system, by capturing the work objectives (WObjs) of each work process (WProc) in an 

environment (Env). According to the axioms of systems engineering proposed by Felder 

and Collopy [Miller, 2018], a system must engage in a goal seeking behavior. Each 

WProc, according to [Schulte and Donath, 2018], produces work process outputs 

(WPOuts) that can be a subset of the Env of their own WProc or of another WProc. Note 

also that the WObjs of a WProc should be a subset of the WPOuts, as indicated also by 

one of the axioms proposed by Felder and Collopy in [Miller, 2018]. Figure 12 illustrates 

how the HAPS MMS, which is a system with HAT can be represented using notions 

defined in [Schulte et al., 2016].  

 

 
 

Figure 12. Work Processes (WProcs) of a HAPS MMS 

 

The HAPS MMS consists of several work processes. The clients (WProc:Client) 

define the missions to be accomplished as well as the accompanying criteria (e.g. 

minimum coverage threshold, time windows, etc. that can be taken from Table 9) and 

reward. These will later be processed by a coordinator (WProc: HAPS COORD), e.g. the 

HAPS business analytical team, so that the payload, availability of fleets, etc. can be 

determined. The requirements are then properly translated into conditions that can be 

understood by the HAPS operating team (WProc: HAPS SYS). During planning and 

real-time operation, the HAPS team needs to be assisted by weather maps processed by 

WProc: Weather that summarize the current and forecasted weather situation in the 

operating airspace. As indicated in Table 9, the objective is to monitor ground activities 

and will be rewarded if the image coverage of the ground fulfills the minimum requested 

coverage. Therefore, part of the WPOuts of WProc: HAPS Sys must be images acquired 

by the mission payload, i.e. the on-board electro-optical camera.  Other WPOuts also 

include flight information and mission plan, and status of the HAPS that must be 

communicated with the Air Traffic Control (ATC) (WProc: ATC). 

 

As indicated in [Schulte et al., 2016] in the guidelines for the initial design of a work 

system, after identifying the WProcs, each WProc can be opened up and subsequently, 

the worker and tools can be further specified, as well as the relations between workers, 

tools or between worker(s) and tool(s). Worker describes the role of a system component 

that can interpret the WObjs and translate them into tasks to be executed by the tools. 
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Subsequently, the relationships between worker-worker, worker-tool must be specified: 

hierarchical or heterarchical. A hierarchical relationship is directed from the delegate to 

the subordinate, and the heterarchical relationship inclines to a team work nature.  

 

Figure 13a illustrates the WSys of the WProc: HAPS SYS in the HAPS MMS being 

developed in this work. Worker in the WSys: HAPS SYS is the Operator(s) stationed in 

the GCS, while the Mission Planner in the GCS as well as the onboard Aircraft/Control 

(A/C) that includes the flight control system, the reactive guidance, the onboard weather 

and mission sensors, and the communication modules. The gray duplicates of the A/C 

imply that multiple aircraft can exist in the system. The mission planner in the WSys: 
HAPS SYS refers indeed to the pre-execution mission planner, which is the core of this 

work. Since it is not the focus of this work to study the necessary number of operator(s) 

needed, the singular form “operator” is used to indicate the HAPS human operating team. 

Taken into account by the Mission Planner are weather information, HAPS dynamics 

constraints, HAPS payload and energy management, as well as mission-related 

constraints to ensure feasibility and to minimize replanning occurrence frequency. The 

main function of the Mission Planner is to determine feasible flight plans prior to 

execution. A secondary function of the Mission Planner is to compute a reactive 

avoidance strategy to be applied by the onboard reactive guidance during flight in order 

to reactively dodge critical situations that are not considered in the pre-execution planning 

and adhere to the reference plan as soon as possible. This class of reactive avoidance is 

considered a “plan repair”, since no replanning is involved. However, it is not always 

possible to further pursue the reference plan. In such cases, the reactive guidance module 

identifies a safe zone and guides the HAPS to it, while the Mission Planner replan, i.e. 

compute a new plan. Although the Mission Planner advises the Operator on mission-

related actions and decisions, the Operator exerts a supervisory function on the Mission 

Planner, by having the last word in any decision made.  

 

 

 
 

a. WSys of WProc: HAPS SYS 
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b. An alternative of the WSys of WProc: HAPS SYS 

 

Figure 13. WSys of WProc: HAPS SYS 

 

A second, more advance, alternative shown in Figure 13b is also possible for the WSys. 

In this WSys, parallel to the supervisory role of the Operator on the Mission Planner, both 

also collaborate, allowing hence closer interaction, negotiation and interference at 

different levels. This implicates the integration of mixed-initiative planning functions into 

the Mission Planner, which is out of the scope of this work, but can be studied for future 

works.  

 

The above study deals with the roles of various actors in a system or a system of 

systems. According to Felder and Collopy in [Miller, 2018], the process at the heart of 

every system exists as a function of time, which is also the case for HAPS, given its 

operation in a time-varying environment. WProc: HAPS SYS can be further analysed 

with a functional block diagram and timelines.  

 

 Functional Block Diagram of the MMS 

After analysing the various stakeholders in the system, a functional block diagram of 

the MMS consisting of three major components is laid out in Figure 14 to indicate 

explicitly the in- and output of each module [Müller et al., 2018]. Several modules are 

particularly relevant to the core of this work, and therefore, are summarized below. 

 

1. The mission planner in the GCS plans for long-term missions prior to execution 

(“pre-execution”) by taking into account the airspace structure to recognize its 

operation areas as well as no-go areas. Flight dynamics, and mission requirements 

are considered too in the computation of a mission plan. A plan-repair strategy to 

reactively avoid unforeseen danger is also determined by the mission planner. 

This module is the core of this work.  

2. The flight control system is integrated onboard, given its time-critical function to 

guide the vehicle to follow a given plan and in return, provide position and attitude 

information of the HAPS to other modules. 
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3. The on-board weather sensor(s) detect clouds in the vicinity of the platform 

during the flight. If the clouds pose danger to the HAPS, the reactive guidance 

module will apply the plan-repair strategy or abort the current reference plan.  

4. The reactive guidance unit monitors and reactively steer the vehicle to safety in 

urgency, either by reactively avoiding the danger as according to the plan-repair 

strategy, or by steering the HAPS to a calm area farther away so that the HAPS 

can wait for a new plan (i.e. “replanning”).  

 

 

Figure 14. HAPS Mission Management System (MMS) 

 

 Temporal Analysis of Work Process WProc: HAPS SYS 

Conventional system modelling method uses an event-based methodology to describe the 

behavior of the system, e.g. the Unified Modeling Language (UML) sequence diagram. 

An event-based approach can describe the sequence of state changes very well, but not 

the duration of an imposed or automated action. In other words, the modelling language 

is incomplete: the temporal effect is missing. In automation, the consideration of temporal 

effects, or rather effects that are a time-dependent function is essential [Fox and Long, 

2003; 2006]. Effects of a system can be caused by an event from the environment, or from 

an innate automated process that evolves with time.  

 

A temporal sequence diagram is used to describe the possible happenings in WProc: 
HAPS SYS. Inspired from the UML sequence diagram [Rumbaugh et al., 1999], the 

temporal sequence diagram used here is also a two-dimensional diagram, with a vertical 

line dedicated to each actor involved and the discrete communication entities between 

actors are represented by the horizontal lines. It is worth noting that the temporal element 

in the UML sequence diagram is not clear. Signals are assumed to be discrete and 

instantaneous; it is not clear how a durative continuous or periodic signal can be 

represented on the diagram. We therefore add a few more objects to the diagram which 

are deemed essential to describe a temporal system. 

 

2.2.4.1 Extended Notations of the Temporal Sequence Diagram 

Similar to the UML sequence diagram, the messages exchanged among different actors 

are referred to as “signal” in the temporal sequence diagram. A quantified timeline (see 
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Figure 15) is included on the left of the sequence diagram to indicate the time instant an 

event happens or the start or end of a durative happening. As shown in Figure 15a and 

Figure 15b, the timeline can be stretched or compressed accordingly. And quite 

intuitively, the former is to accommodate more information, while the latter is to omit 

time windows that are lack of happenings. 

 

 
a. Stretched timeline 

 
b. Compressed timeline 

 

 
c. Instantaneous asynchronous signal 

 
d. Instantaneous synchronous signal 

 
e. Durative continuous signal 

 
f. Durative periodic signal 
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g. Multiple durative continuous signals 

 

 
h. Simultaneously emitted signals 

 
i. Signals received only by certain actors 

 

Figure 15. Temporal elements in the sequence diagram 

 

In the simplest case, a signal is sent instantaneously at a time instant 𝑠𝑖𝑔(𝑡0). To 

represent that, line representing the signal is aligned with the quantified timeline and at 

the root of the line, a black dot represents the source of the signal. Like in the UML 

sequence diagram described in [Rumbaugh et al., 1999], some signals are only one-way, 

and are referred to as asynchronous signals, while others are synchronous, requiring a 

response from the receiving actor. A synchronous signal is represented with closed arrow 

heads, with the label initiated either by “request”, or “response”, that must follow 

sometime in the future, as shown in Figure 15d. 

 

However, in a real system, not all signals are instantaneous. Some are durative, 

meaning the emission of the signal lasts for a certain duration, with the content of the 

signal being usually time-dependent, or not. Figure 15e shows the representation of a 

durative continuous signal. The bar attached to the timeline of the source indicates how 

long the signal emission lasts. A similar bar is also attached to the receiving actor to show 

how long the signal will be received by this actor. Additionally, a small rectangle is 

labeled before the receiving arrow as a hint for a “duratively” received signal. The 

advantage of having separate representation of the emission duration and the receiving 

duration is to be able to represent cases in which the receiving durations may differ from 
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actor to actor. Some durative signals are not emitted continuously but periodically. Lines 

are added to the bar attached to the timeline to indicate the interval between emissions. 

Before the receiving arrow, instead of a rectangle, two short parallel lines are drawn to 

indicate the durative reception of a periodic signal. In many modern digitalized systems, 

signals are discrete and even a continuous signal emission is repeated at a certain 

frequency. If a durative discrete signal is discrete periodic or continuous depends on the 

interval between two consecutive emissions and the time of response of the system. If the 

interval between emissions is negligible compared to the time of response of the system, 

the durative discrete signal is considered continuous. 

 

Figure 15g shows the graphical representation of multiple durative signals emitted by 

the same source but at different time instants. The black dots at the root of sources indicate 

the sources of the signals. Similarly, if multiple signals are emitted at the same time 

instant by the same source, instead of drawing the roots of the signals right below the first 

signal represented, the roots are slightly shifted to the front as shown in Figure 15b and 

is linked by a vertical line to the first signal. Such representation may take up too much 

space on the diagram; therefore, if necessary, the timeline can be stretched. Of course, if 

all signals have the same properties, i.e. same duration, same receiving actors etc., a single 

line may represent all signals, provided all signals are labeled on the line.  

 

When multiple actors are involved, and some receive a signal while others do not, the 

signal can cross the vertical lines of the non-receiving actors, but no arrow will be drawn, 

as illustrated in Figure 15i, in which 𝑠𝑖𝑔(𝑡0)  is only received by “receive 1” and 

“receive 3”. The arrow head at the edge of the horizontal line clearly indicates 

“reception”.  

 

2.2.4.2 Temporal Sequence Diagram for WProc: HAPS SYS 

Using the standard defined by UML sequence diagram, together with the notations 

defined in the Section 2.2.4.1, the WProc: HAPS SYS can be represented as in Figure 

16 and Figure 17. All actors external to WProc: HAPS SYS are grouped as “External”. 

“External (GCS)” indicates external actors on the ground like weather station but leaving 

out the operator for clarity in the description of the human-machine interactions; 

“External (onboard)” refers to the onboard weather detection modules for example.  

𝑠𝑖𝑔(𝑡) is the signal containing the state parameters of the HAPS, i.e. position in WGS84, 

attitude, airspeed etc. The state parameters are communicated to all actors represented in 

the figures. The knowledge of the state of the HAPS is important for decision making, 

planning as well as for mission execution. 
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Figure 16. HAPS MMS temporal sequence diagram - part 1 

 

The HAPS system receives periodically from the external entity, which in practice is 

a weather operator sitting in the GCS, the weather map 𝑤(𝑡). The weather map is updated 

at a fixed interval, e.g. hourly (as is usually the case with COSMO-EU [Baldauf et al., 

2011], GFS etc.). The weather map shows the isolated critical weather zones, marked as 

“NoGo-Areas”, which are derived from processed weather information [Köhler et al., 

2017a]. Note that the weather map for HAPS must be specially customized, i.e. lower 

upper limits on the wind speed, thunderstorm likelihood, Reynolds number for turbulence 

detection etc., since HAPS is typically sensitive to weather conditions [Müller et al., 

2018]. Wide area weather information cannot be the sole source of information for the 

operation of HAPS.  

 

The functionalities of HAPS with its typical daily activities are first discussed, starting 

from nighttime (marked by the gray shadow). At night, the HAPS loiter within a waiting 

area to save energy, since the platform is completely solar-powered. It is worth noting 

that this could be different in the future with more advance battery technology. However, 

to the best of our knowledge, HAPS is rather inactive after sunset, as seen in Figure 6. 

Slightly before dawn, the latest weather information is communicated and the operator 

requests plan suggestions from the mission planner (request: plans), which is given 

a specific planning time within which, it must be able to compute relatively fast at least a 

plan for the day for HAPS. Depending on the time allocated for offline planning, the 

longer it is, the more likely the mission planner can improve the plans found, which are 

to be suggested to the operator. For our study, we set this duration for pre-execution 

mission planning time to 15 minutes.  

 

Task plans (sequences consisting of time-stamped higher-level tasks) will be displayed 

and “explained” to the operator (response: task plans). These task plans are ranked 

with very roughly computed fitness and reward. The evaluation of plans will be explained 

later in Section 4. The operator can decide to go with the ranking or alter it. The task plans 

will be “refined” by the mission planner in the order they are ranked, i.e. more details will 

be considered by the mission planner while determining the travel time and reward of the 



33 

 

 

HAPS executing the ordered tasks. The “refined” plans are returned to the operator again 

and he selects subsequently the “best” plan and communicate to the onboard reactive 

avoidance agent and HAPS Flight Control System (FCS). This plan will further be 

referred to as the “reference plan”. 

 

In the event of unforeseen dangerous circumstances, which can happen sporadically, 

the onboard reactive avoidance agent realizes that by following the reference plan, the 

HAPS may be steered into dangerous zones, or that the electric motors of HAPS could be 

burdened too much, due to its difficulty to cope with the reference plan. The reactive 

avoidance agent will send a warning to the mission planner as well as to the operator that 

a replanning is necessary. Meanwhile, if proceeding with the reference plan is no longer 

an option, the reactive avoidance agent will start to steer the HAPS to a safe zone.  

 

After evaluating the situation, the reactive avoidance agent will inform the GCS from 

which zone or start point the next long-term plan should be determined by including that 

piece of information in the request: plans. As with every long-term mission planning 

process, it is triggered by a request for plan suggestions sent from the operator to the 

mission planner. Subsequently, from the plan suggestions, the operator selects the best 

plan, aided by the decision-making assistant. The new reference plan will be 

communicated to the reactive avoidance agent. However, the agent will continue steering 

the HAPS to the new start point that was communicated to the GCS and that was also 

considered in the determination of the new reference plan. When the HAPS has reached 

the new start point, the reactive avoidance agent forwards the new reference plan to the 

HAPS FCS to be executed. 

 

In other cases where pursuing the reference plan is still an option because the danger 

that is not considered in the reference plan will only take place in far future, the HAPS 

will not interfere to steer the HAPS out of the reference plan, but rather just request a new 

plan by including the waypoint beyond which the reference plan is no longer safe to 

execute (see Figure 17). The new plan selected will then be merged with the original 

reference plan and communicated to the HAPS. 

 

 
 

Figure 17. HAPS MMS temporal sequence diagram - part 2 
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In the events described above, a replanning is required, i.e. the reference plan will be 

aborted and replaced by a new plan. This however could be inefficient and unnecessary, 

especially when the unforeseen danger can be easily avoided, for example when only one 

or two newly detected NoGo-areas lie on the reference plan trajectory. In this case, a plan 

repair is advisable. As depicted in Figure 18, few newly detected NoGo-areas are detected 

by the onboard weather sensors, instead of aborting the reference plan, the reactive 

avoidance agent guides the HAPS to avoid the hazardous areas, while steering the HAPS 

to follow the reference plan trajectory whenever possible using a strategy pre-determined 

by the mission planner. The reference plan will be checked by the mission planner, since 

the ETA of the waypoints are different after the reactive avoidance is activated. If the 

remaining plan is executable, the ETA of the plan will be updated, as shown in Figure 18. 

Otherwise, a re-planning will be triggered.  

 

 
 

Figure 18. HAPS MMS temporal sequence diagram - part 3 

 

2.3 Formal Mission Planning Problem Statement 

The general HAPS mission planning problem PHAPS tackled in this work can be formally 

represented by the tuple of set- and non-set-elements: 

 

< H, X, T, 𝑋0, 𝑇0, A, 𝐶𝐴, 𝑍1, … , 𝑍𝐼 , 𝐶𝑀, r, 𝐻π >, where 

 

• 𝐻 is the set of HAPS enumerated with integers. 

• 𝑋 is the continuous workspace, i.e. 𝑝ℎ position of HAPS ℎ ∈ 𝐻, 𝑞ℎ attitude. 

• 𝑋0 is the set of initial states 𝑥0
ℎ for all |𝐻| HAPS. 

• 𝑇 is the continuous time domain [𝑡min; 𝑡max], with 𝑡0
ℎ being the initial time of the 

plan horizon for HAPS ℎ. 

• 𝑇0 is the set of initial times 𝑡0
ℎ for all |𝐻| HAPS. 

• 𝐶𝑋  is the set of constraints on 𝑋  within 𝑇 , e.g. the time-stamped polyhedron 

delimiting the NoGo-Areas, the operation area. 

• 𝐴 is the set of primitive actions, i.e. actions that can be executed directly by the 

FCS. 

• 𝐶𝐴 is the set of preconditions of action 𝑎 ∈ 𝐴. 

• 𝑍𝑖 is the set of measurements of the physical environment from source 𝑖, either a 

third-party or an onboard sensor. 
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• 𝐶𝑀 is the set of mission-related requirements (see Table 9), expressed by means 

of elements of 𝑋, 𝑇, and 𝐴. 

• 𝑟: 𝐴 × 𝐶𝑀 → ℝ is the set of reward mapping function if the mission requirements 

𝑐𝑀 ∈ 𝐶𝑀 are fulfilled. 

• 𝐻𝜋 is the set of remaining plans to be executed at 𝑡min for all HAPS in 𝐻. 

 

 Solution 

The solution to PHAPS is the set of |𝐻| plans, where  |𝐻|  is the cardinality of the set of 

HAPS 𝐻. A plan πh for HAPS ℎ is a sequence of time-stamped actions (< 𝑎0
ℎ, 𝑡0

ℎ >,<

𝑎1
ℎ, 𝑡1

ℎ >,… ,< 𝑎
𝑛ℎ
ℎ , 𝑡

𝑛ℎ
ℎ >), while a partial plan  πℎ(𝑖, 𝑗) = (< 𝑎𝑖

ℎ, 𝑡𝑖
ℎ >,… ,< 𝑎𝑗

ℎ, 𝑡𝑗
ℎ >) 

is a subsequence of 𝜋ℎ from time instant 𝑡𝑖 to 𝑡𝑗 and if the end time instant is omitted, 

i.e.  πℎ(𝑖), it simply represents the partial plan from time instant 𝑡𝑖, i.e. (< 𝑎𝑖
ℎ, 𝑡𝑖

ℎ >,… ,<

𝑎
𝑛ℎ
ℎ , 𝑡

𝑛ℎ
ℎ >). 

 

 Abstraction of the Planning Problem 

Note that the formal definition of the planning problem can be inconvenient, especially 

when it comes to expressing MC and MR defined in Table 8 and Table 9. Furthermore, it 

is less intuitive for a human operator to recognize a position represented by a real number 

vector than a location like “MA1” or “LOI1” of “MA3”. It is hence practical to represent 

the PHAPS  and solve it at a higher-level abstraction. P̃HAPS denotes the HAPS planning 

problem at a high-level abstraction, the set-elements of which are subsets of the set-

elements of PHAPS. Moreover, each element of the set-elements and each non-set-element 

of P̃HAPS can be expressed (although the representation is more laborious) using the non-

set-elements of PHAPS or using the elements of the set-elements of PHAPS. For example, 

for a P̃HAPS abstracted at the MA-level, the state of HAPS is simply represented by MA*, 

i.e. MA/WA is the smallest physical unit. 

 

The abstraction level for reasoning will be given in each of the following sections. 

 

2.4 Related Works 

Solving a mission planning problem involves multiple aspects, ranging from semantics 

representation, task planning and scheduling, motion planning, constraints handling, etc. 

Many works focus on a selection of aspects and neglect others, making the proposed 

solutions only partially applicable. In this work, it is strived to provide an overall solution 

framework to the realistic planning problem described in Section 2.1. Before detailing the 

underlying solution in the next sections, some prominent related works (but non-

exhaustive) are summarized and analysed to provide an overview of the available state-

of-the-art methods.  

 

There is hardly a universal theorem for planning, although many try to formalize the 

methods and organize the various approaches with different branches, much like the 

branches in physics (mechanics, electromagnetism, optics, etc.). The most commonly 

used classification of planning methods is “classical planning” versus “motion planning”. 

The former focuses on intuitive planning in a blocks-world that reasons at higher 

abstraction level, like “move Box-A to Warehouse-C”, while the latter focuses on 

planning a path or motion numerically in a grid-world or in some more realistic 

application, also in a three-dimensional physical world. Such classification is of course 

inadequate. More complete classification of planning methods applied in Artificial 
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Intelligence (AI) can be found in prominent textbooks [Russell and Norvig, 2003] and 

[Ghallab et al., 2004]. However, as one notices immediately, both textbooks have a 

different approach of viewing “planning”, although the topics covered are quite similar. 

The classification used in this section for planning approaches is based on experiences 

gathered from solving the HAPS mission planning problem and could deviate from the 

textbook or other classifications. It provides another crystallized perception and serves 

mainly to comprehend the choices made to select and adapt the planning approaches for 

HAPS. 

 

Figure 19 draws an overview of the different paradigms of planning/scheduling 

approaches, as well as the coupled optimization methods. The former is merely a concept 

consisting of the organization of the problem knowledge, the representation of solution 

and the unit of the core elements (i.e. decision variables/state parameters) taken for 

reasoning, while the latter is a method to search for the optimal solution in the conceived 

planning world and works more as a back-end engine. Theoretically, the optimization 

methods can be substituted by one or another, provided the modelling of the planning 

world is clearly separated from the search engine. This ideology has led to the so-called 

“domain-independent planners”, the particularities of which will be discussed more in-

depth in Chapter 3.  

 

Planning can be grouped into two main categories, namely model-based or data-based 

[Blanning, 1981]. Model-based planning approaches contain a structured model of the 

executive system, and based on the model, a plan is computed for or to aid decision 

making. A model-based planning approach often also uses either an appropriate front-end 

modelling language in which the planning problem is represented to be understood by the 

back-end decision engine, or an API in which the problem variables can be instantiated. 

A data-based planning approach has recently gained ground thanks to the emerging 

affordable fast processors and data storage. Data-based planning is used for model-free 

planning (for example using reinforcement learning in [Sutton and Barto, 2017], deep 

extensions in [Mnih et al., 2013], etc.), or when the model is incomplete, for example, 

planning with incomplete knowledge of a highly non-linear transition function and highly 

non-linear reward function can be solved using Monte Carlo search and deep learning 

from Tensorflow in [Keller and Helmert, 2013] and [Wu et al., 2017] respectively. The 

focus of this work is on model-based planning; thus, data-based planning will not be 

further elaborated in the following. 

 

 Model-Based Planning Methods 

Some planning/scheduling paradigms as well as the search/optimization for model-based 

planning are presented and classified to show the strengths of the different methods, with 

no pretense that the classification is complete.  

 

In the following, brief descriptions on the optimization and search methods shown in 

Figure 19 are first provided. It is worth noting that the classification of many modern 

search/optimization algorithms is vague, as a standalone classical algorithm hardly 

suffices, and therefore a combination of methods becomes inevitable.  

 

Subsequently, the world of planning/scheduling paradigms will be presented to 

illustrate the numerous different ways of modeling a planning problem in order to gain 

some insights on why a paradigm is more suitable than the others. Note that planning and 

scheduling are also hardly distinguishable nowadays. Planning was conventionally seen 

a computation of “how to achieve a goal or a set of goals”, while scheduling was 
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considered a resource allocation over time to check if all constraints are met [Ghallab et 

al., 2004]. With more advanced methods, often resource allocation and planning can be 

done within the same framework/tool; thus, drawing a line between both becomes almost 

meaningless, e.g. timeline-based planners also have scheduling capability [Fratini and 

Cesta, 2012]. The following subsections, as well as the rest of the work, consider that 

scheduling is also part of planning. 

 

Lastly, some planning tools/frameworks are briefly described, with an emphasis on the 

search method, the planning paradigm, as well as the typical application(s). 

 

2.4.1.1 Optimization Methods 

Almost always, the back-end decision engine contains an optimization method that 

searches for the optimal solution, or at least attempts to approach optimality. The most 

commonly used search methods are based on a search in a graph made up of nodes 

representing the discrete states. The most straightforward is a forward search, in which 

the search begins at the initial node and starts to expand its explored set of nodes 

progressively toward the goal13, while optimizing the objective of the problem, e.g. 

shortest distance, shortest time, maximum reward, minimum cost, etc. Listed in Figure 

19 are several prominent search methods that are based either on heuristics to guide the 

exploration of nodes toward the goal node, or a random search principle to explore the 

graph as much as possible. The following describes the methods very briefly.  

1. Dijkstra’s algorithm: This is an uninformed search algorithm classically used to 

find the shortest path from the start to the goal node, by exploring the neighboring 

unvisited states progressively. 

2. A*: This is the most basic heuristic-guided search extended from Dijkstra’s 

algorithm with the introduction of a heuristic, which is an approximated 

estimation of the cost/reward of the remaining path to goal. The value function, 

i.e. the sum of the cost of the explored path and the heuristic of the remaining 
14path, guides the search faster toward the goal [Hart et al., 1968]. It guarantees 

reproducibility (since it is not random) and also optimality, if an admissible 

heuristic is in used. 

3. WA* (Weighted A*): The WA* extends A* by introducing a weight 𝜖 > 1 on the 

heuristic in the value function [Rüdiger and Drechsler, 2009; Pohl, 1970]. The 

weight induces more greediness via forcing a bias toward the goal in the search, 

accelerating hence the search at the expenses of optimality. WA* is said to be 𝜖-

suboptimal. 

4. Dynamic A*: Another variant of A* for quick local re-planning to react to changes 

in the environment [Likhachev et al., 2005; Stentz, 1995; Ferguson and Stentz, 

2005]. The algorithm is suboptimal and has so far been tested only for grid world 

path planning. 

                                                 
13 A “goal” can be understood as a goal position in motion planning (as employed in 

Chapter 3 or more generally, a state that fulfills all the conditions defining an end state 

(also known as “goal conditions”). 
14 A “path” does not always indicate a physical path from a point to another in the 

three-dimensional world. In AI planning, a path can also refer to a plan trace, which is a  

state outcome from start to goal after the execution of the plan. 



38 

 

 

5. hill climbing: Hill climbing and its variants for example Enforced Hill Climbing 

(EHC) are developed for greedy search guided by a heuristic to the local optima 

[Russell and Norvig, 2003]. 

6. RRT (Rapidly exploring Random Tree):  RRT [LaValle, 1998] and its variants 

that are based on the principle of random expansion of the tree from the start node. 

While the reproducibility of the search is questionable, due to the randomness in 

the search space exploration, the expansion of the search is fast. Moreover, with 

the minimalist algorithm, RRT can be tailored very easily for many motion 

planning problems. More of RRT will be described in Section 3. 

7. planning graph: Search methods 2-5 are heuristic-guided. Domain specific 

heuristics can sometimes be derived easily; for example, a metric distance to goal 

can be assumed as the heuristic for the planning of a shortest-path problem in a 

grid world without the presence of a vector field. However, in many more complex 

planning problems, heterogenous state parameters are present, i.e. state 

parameters that have different physical units, different abstraction levels (meta-

state versus position parameter), or different importance (thereby one state is 

preferred to the other in the cost function). Planning graph is a neoclassical 

planning method (as claimed by [Ghallab et al., 2004]) debuted by GraphPlan in 

[Blum and Furst, 1997], and has ever since been the standard search technique 

used in domain-independent AI planners to determine the relaxed reachability 

heuristic of a state to the goal state [Bryce and Kambhampati, 2007]. Unlike a 

usual progression search graph, a planning graph structures prepositions (states) 

and actions into alternating layers within polynomial time. In many use cases, the 

heuristic is approximated by counting the number of steps, or rather the number 

of necessary layers to reach an approximated state from the initial state. The 

approximated state is in fact a union of sets of propositions (states) that includes 

the exact state desired to be reached.  

 

Some search methods can be performed in a reverse mode, by searching using the 

same approach to explore nodes from the goal to the initial state. RRT and the planning 

graph are sometimes being implemented this way, if the graph is symmetric. This is being 

exploited to reduce the search complexity by introducing a forward-backward search. The 

nodes expanded from the initial state and from the goal state respectively will meet, and 

the partial plans will be juxtaposed to form a plan to the planning problem in the case of 

RRT, or to determine the heuristics in a planning graph.  

 

Another interesting approach is by using an incremental search, which consists of first 

finding a plan or plans that will be improved incrementally. “Incremental” was used to 

describe the techniques adopted by LPG [Gerevini et al., 2003]: an initial (partial) plan is 

first found, and transformed into a valid plan or optimized to obtain a better plan by 

improving the found plan locally each time. The “incremental” technique has also been 

employed in other planners. 

 

Constraint Satisfaction Problems (CSP) techniques can be very powerful in handling 

constraints of a planning problem. The planning problem can be compiled into a CSP 

(with a graph made up of nodes of constraints, instead of states), and by applying CSP 

tools like forward-checking, backtracking etc., the domain can be reduced, and redundant 

constraints can be excluded. Very often, mixed-integer programming and planning graphs 

use CSP techniques to handle constraints [Ghallab et al., 2004]. 
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Optimization can also be performed globally and iteratively without forming a graph. 

The solution to a Markov Decision Problem (MDP) or its variants for instance, is often 

the optimal solution of the Bellman equation and can be found using dynamic 

programming such as value iteration, policy iteration, etc. [Bertsekas and Tsitsiklis, 

1996]. Evolutionary Algorithms (EA) and the variants of EA can be perceived as an 

iterative method to solve a planning problem too [Jong et al., 2017]. The EA search 

randomly in the state space and at each iteration, the neighbors of the fittest solutions will 

be searched for better solutions. Such iterative methods are generally used when the 

number of decision variables are known (but modern works could differ), or rather the 

upper limit of the number of combinations to the combinatorial problem is known, 

whereas in the case of a graph-based planning, the knowledge on the size of the 

combinatorial problem is unknown, e.g. the number of actions needed to travel from 

warehouse A to warehouse C while having transported box K to warehouse B is unknown. 

If the upper limit of the plan duration (or rather plan horizon) is known in advance, the 

EA can also be adopted, like the Genetic Algorithm (GA) adopted for the high-abstraction 

task planning for multiple HAPS described in Chapter 5. The advantage of the EA is 

multifold:  

 

1. Its randomness in the search space exploration can help to accelerate the 

optimization, especially in a planning problem where it is difficult to draw a 

heuristic to guide the exploration of the most promising nodes. 

2. Its principle of generating new population using the fittest individuals of the 

previous generation can help to retain some promising traits of the previously 

found plans. 

3. Constraint-handling techniques can be integrated into the algorithm to deal 

with more complex problems that require the optimization of objectives, while 

conforming with the constraints. 

4. The implementation of the EA implies already an incremental search, i.e. plans 

are available at each iteration and are incrementally improved or repaired. This 

offers the possibility of using the EA in an anytime planner, a planner that can 

provide a plan at any time instant, with the quality of the plan being better if 

more planning time is allocated. 

 

Another less common way but elegant is by solving analytically an optimization 

problem. Least-squares and level-set methods are commonly used. The former is easy but 

is limited, since linearity is required, or a linearization is necessary. The latter is 

commonly used for Autonomous Underwater Vehicles (AUV) [Lolla et al., 2012; Lolla 

et al., 2015], which consists of propagating from the start to the goal or vice versa. The 

level sets of constant arrival times derived from the Hamilton-Jacobi differential equation 

formulated to represent the optimization problem. The method is however challenging to 

be applied on a planning problem in which many heterogenous variables are involved. 

 

2.4.1.2 Planning/Scheduling Paradigms   

Model-based planning/scheduling revolves around a set of rules defined to govern the 

evolution and the reaction of the system. Using this set of rules, or rather “model”, a plan 

can be drawn to bring the system from its initial state to its goal state or to guide the 

system to execute a task.   

While the term “classical planning” is a classification of planning methods 

preconceived with respect to the time the methods were developed, the term is avoided 

here. The intent is to group the planning and scheduling methods according to their core 
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reasoning elements that define the main characteristics of the planning problem in 

question, which are: 

 

1. sampling-based in the physical world,  

2. task- or action-based, and 

3. timeline-based.  

 

Sampling-based planning of the physical world is the most intuitive class of planning, 

which consists of solving numerically a motion/path planning problem every mobile 

agent faces by discretizing the continuous space. This class of planning problem is also 

often referred to as “motion planning”. The typical characteristic of it lies within the 

reasoning in the 3-dimensional physical world (but can sometimes be reduced to fewer 

dimensions), while meta-representation of the world is often ignored. Typically, the 

configuration space of the physical world can be modelled deterministically or 

probabilistically. For a deterministic modelling, either 1) the physical world is sampled 

via a numeric discretization into geometric cells or 2) into potential field that facilitates 

the use of partial differential equations to describe the motions, or 3) the control-space is 

sampled into a numerable set of control parameters so that the constraints imposed by the 

motion actuators can be taken into account too. The probabilistic modelling of the 

physical world is performed with Probabilistic RoadMaps (PRM), that consists of 

selecting collision-free nodes probabilistically to form a graph in the configuration space, 

of which the edges (i.e. the paths to connect nodes) are computed using local planners 

[Kavraki et al., 1996].  

 

The sampling of the configuration space is however inadequate for many planning 

problem instances involving meta-representation, for instance the well-known Dock-

Worker-Robot (DWR) logistic planning problem [Ghallab et al., 2004], in which many 

states bear a meta-representation, which can be formalized using prepositions. The 

planning revolves either around the tasks/actions, in order to determine what to do, or 

around the resources of the system, in order to determine who does what and when. An 

action-based planner reasons in the state space and determine the actions needed to 

accomplish a goal or many goals. Deterministically, the model can be formalized using 

Planning Domain Definition Language (PDDL) [McDermott, 2000], a planning problem 

modelling language that captures explicitly the causal effects of actions. Some other 

variants like Multi-agent PDDL (MPDDL) was developed to also support the 

formalization of an action-based planning problem involving multiple agents, while 

PPDDL [Younes and Littman, 2004] was developed to model a probabilistic planning 

problem. Likewise, Markov Decision Problem (MDP) is also for the modelling of a 

probabilistic action-based planning problem. More about MDP will be explained in 

Chapter 6.  

 

Since some latest development in the modelling tools for action-based planning 

problems like PDDL+ [Fox and Long, 2006], temporal planning problems can also be 

modelled, i.e. the plan must decide what to do, but also when to carry out the actions. 

With the parameterization allowed since PDDL 2.1 [Fox and Long, 2003] and 

subsequently also in PDDL+, it is only possible to formalize multiple-agent temporal 

planning problems in PDDL+, making thus the line between planning and scheduling 

more ambiguous than ever. PDDL+ is used in Chapter 3 to plan for the feasible flight 

path for HAPS in a time-varying environment (i.e. time-dependent weather conditions 

and dynamic airspace allocation). The language is chosen since the semantics can fully 

represent the control-based motion planning problem of the HAPS; furthermore, with the 
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integrated heuristics in many PDDL+ planners, the planning efficiency is competitive 

with other alternative motion planners. The domain-independent nature of the PDDL+ 

planners is also promising for future easy adaptions of the flight path planning problem, 

i.e. no further alteration on the planner is required for each adaption of the problem model. 

 

However, the modelling language of a scheduler, like the Action Notation Modeling 

Language (ANML), captures much better the roles of each actor in the system and is more 

natural in encoding the known duration of an action, making it still a preferred choice for 

many scheduling problems. Furthermore, timeline-based planning tools have quite 

matured in space applications [Fratini and Cesta, 2012]. It is worth nothing that ANML 

models a problem in what is referred to as the plan space, in which each node is a partial 

plan that encodes domain knowledge on action routine. This space representation, 

although rather implicit, captures first and foremost partial plans that can be determined 

using domain-specific knowledge, i.e. the actions/tasks to perform a meta-task, or to 

achieve a (sub)goal. A Hierarchical Task Network (HTN) in which a high-level task is 

decomposed into lower-level tasks and subsequently into primitive executable tasks, can 

in some cases also be nested in ANML, which is a paradigm used in the FAPE planning 

and acting framework [Dvorak et al., 2014], although HTN is usually employed for a 

task-based planning problem. A temporal HTN paradigm is used to plan for the high-

level tasks for HAPS (see Chapter 4), in order to encode the routine of HAPS operation. 

However, since a generic framework or HTN planner does not exist to cope with the 

HAPS task planning problem, the modelling using ANML is first left out in this work, 

since the process of developing an ANML-compatible domain-independent planner for 

such a complex problem is extremely laborious. It is also worth noting that HTN paradigm 

is often used with domain-dependent planners, due to a lack of formal definition of the 

paradigm (unlike action-based paradigm like PDDL). 

 

An elegant way of modelling the planning problem is by simply formulating the 

dynamics of the system with a set of equations (e.g. Hamilton-Jacobi equations, ordinary 

differential equations, etc.) with variables from the continuous real-number set. This is 

often used in optimal control problems. Solving this class of problems include first the 

study of the existence of an optimal solution given the conditions, followed by applying 

a solution method from dynamic programming [Gerdts, 2012].  

 

A CSP is rarely used to model an entire planning problem for plan computation, but a 

planning problem can be compiled into a CSP, enabling hence the use the CSP-tools for 

constraint handling [Ghallab et al., 2004].  

 

2.4.1.3 A Quick View of Planning Tools/Frameworks for Complex Real-World 

Systems 

The above tools or methodologies stem from solid theoretical works and have prevailed 

in solving many planning problems, for example PDDL planners were used to plan for 

batch chemical plants [Della Penna et al., 2010] and urban traffic [Vallati et al., 2016], 

MDP-based variants for collision avoidance for unmanned vehicles [Temizer et al., 2010; 

Ragi and Chong, 2013] to name a few. These planning problems present however only a 

part of a larger-scope mission planning problem, of which  

1. the goals are multiple and involve heterogeneous representations, e.g. numeric or 

meta-state; 

2. the multiple objectives that reward/penalize actions of different abstraction levels, 

e.g. primitive actions or meta-actions; 



42 

 

 

3. the information on the environment is available at different precisions with respect 

to the spatial-temporal resolutions. 

 

The following paragraphs recapitulate briefly a few frameworks that assemble multiple 

planning tools cited above in Section 2.4.1.1 and 2.4.1.2 to solve more thoroughly 

complex hybrid mission planning problems. 

 

FAPE 

The Flexible Action and Planning Environment (FAPE) is one of the most all-rounded 

generic planning framework for robotics [Ingrand and Ghallab, 2013], which incorporates 

multiple modules to plan and to act (also known generally as “Planning and Acting”). 

ANML is employed to formulate the temporal problem, while a plan-space based 

planning approach is adopted via the use of a HTN-based planner in order to enable plan 

repair during acting. While the planner instantiates the actions only partially, the acting 

module refines the actions into closed-loop functions by fully instantiating them, with 

more detailed time managements, local reaction actions, consideration of non-

determinism, etc. In case of failure, the plan repair removes the failed action/task from 

the task network, as well as all effects of it; subsequently, another action/task will be 

planned to compensate for the deleted effects.  

 

Interfacing of Task+Motion Planning 

[Srivastava et al., 2014] identified the need of a combined task+motion planning even for 

very simple robotics planning problems. To this end, a generic interface was developed 

to aid communication between a symbolic task planner and a numeric motion planner. 

Task and motion planning are performed iteratively, i.e. if the motion of an instantiation 

from the task planning cannot be planned, due to an obstacle lying in the way for example, 

a “fail” feedback is communicated via the interface to the task planner; subsequently 

another task instantiation will be provided.  

 

This combined task+motion planning approach is very similar to the planning 

framework developed here for HAPS: However, in order to avoid the iterations in case of 

failures in motion planning, an appropriate motion planner is carefully chosen and 

adapted to suit the flight path planning for HAPS in a time-varying environment in order 

to minimize the failure rate. Meanwhile, the task planner does not only provide one task 

plan as a planning instantiation for the motion planner, but multiple task plans, enabling 

hence 

 

1. an immediate switch to another task plan in case of a failure in motion planning, 

without re-invoking the task planner 

2. a simultaneous motion planning of many task plans with a multi-threading 

implementation.  

ROSPlan 

Following the same principle, ROSPlan was created as a framework to integrate generic 

task planners (and more specifically PDDL 2.1 planners) into the Robot Operating System 

(ROS) [Cashmore et al., 2015]. ROS is a widely used framework containing tools and 

modules for robotics, which include communication between sensors and actuators, 

motion planners, visualization and many sensor data processing libraries. ROSPlan takes 
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in a model of the executor, interprets the sensor data collected from the ROS modules, 

and generates problem instances in PDDL 2.1 that can be understood by compatible task 

planners.  

 

While this work intends to pursue the development of a more thorough planning 

framework, the “generic” feature of the framework is however left for future works, since 

the effort is different from the planning thoroughly for a specific use case. Furthermore, 

the plan repair is only dealt with partially: the effort of the mission planner on the GCS 

(see Figure 14) is described, but the on-board plan repair functions remain out of the 

scope.  
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Figure 19. Overview of planning and scheduling methods 
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“Ce qui est et n’est pas par soi est par un autre.” 

- Claude Paulot in Science et Création 

3 Path Planning in Vector Field 

As described in Section 2.1, a HAPS is sensitive to its time-varying environment; 

additionally, the mission requirements and mission constraints listed in Table 8 and 

Table 9 are time-dependent. Hence, in order to know if the mission requirements can 

be fulfilled, or if the compliance with the mission constraints is achieved, the planner 

must be able to predict the time-dependent position 𝑝(𝑡)  to a satisfactory level 

(subject to the knowledge of the time-varying environment at the time planning is 

performed), and take this prediction into account in computation of a plan, which can 

be performed by a path planner.   

  

This chapter discusses the approach employed to plan feasible flight paths for 

fixed-wing aircrafts in a time-varying wind field using an action-based automated 

AI-planner. Also taken into account are the dynamic weather zones, as well as the 

airspace structure. The choice of exploiting an automated AI PDDL+ planner is 

explained in this section. The planner is model-based and domain-independent, i.e. 

the planning domain (system) and the problem instance (state parameters and goal 

conditions) are first formulated rigorously in a modelling language with clear axioms 

on the causal of effects, and subsequently being processed by the planner, also called 

a solver, that is capable of understanding the formulated problem and find a or 

multiple solution(s) with the search engine integrated within the solver. A domain-

independent planner is not developed for a specific system or problem, but for any 

that can be formulated in the language it understands. Using this approach, the 

planning method does not need to be adapted accordingly even if the domain or the 

problem is altered. Nevertheless, it is worth noting that a domain-independent planner 

can only understand the modelling language designed for formulating problems of 

the same kind of planning world, while very few modelling languages can be 

compatible for different planning approaches depicted transversely in Figure 19. 

 

In this section, the isolated path planning problem for HAPS is first discussed, 

followed by a brief overview of some commonly used path planning techniques, and 

a description of the Problem Domain Definition Language (PDDL) and the 

compatible planner solvers. The latter are habitually used for higher-level planning. 

Subsequently, it is shown in this section that the formulation of the HAPS path 

planning problem in PDDL (namely PDDL+, a variant of PDDL [Fox and Long, 
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2006]) is possible. The plannability using a domain-independent planner is also 

demonstrated. Lastly, the performance and the limits of the approach are tested and 

presented; results obtained using a domain-independent planner is not inferior to a 

commonly used motion planning that is capable of solving the HAPS path planning 

problem, and in some case even outperforms. Finally, a wraparound framework to 

overcome some of the limits of the domain-independent planner. 

 

3.1 Path Planning Problem for HAPS 

Flight path planning from a start to a goal state must consider three important factors 

[Filippis and Guglieri, 2012]:  

 

1. mission-related requirements (e.g. goal conditions), 

2. environment (e.g. other participants15, obstacles, boundaries of the operation 

area, vector field),  

3. dynamics constraints of the vehicle (e.g. the range of velocity, acceleration). 

 

These, in the case of flight path planning for HAPS, are the weather conditions 

(i.e. weather critical zones, wind field etc.), aircraft kinematics, and mission 

requirements (i.e. goal position, optimal reward, mission tasks etc.) respectively. 

 

Path planning is often classified as motion planning in which a state space is 

defined in the three-dimensional geometric world, along with state validity (i.e. 

collision checking, existence of path etc.). If differential constraints must be 

considered16, control-based planning is necessary, in which a control space must also 

be defined [Sucan et al., 2012]. Often enough, the state space of many highly 

optimized motion planning methods is not time-dependent; therefore the methods are 

limited to rather static environments [Li et al., 2018; Mandalika et al., 2018], which 

are very convenient for laboratory testing, but could be restrictive in real-world 

applications. Meanwhile, many advanced domain-dependent planners built for 

applications with a more dynamic environment also only consider the dynamics of 

land-based robots or vehicles, that can easily decelerate, halt and wait for the dynamic 

obstacles to pass [Pecora et al., 2018; Zhou et al., 2018].  

 

HAPS has very atypical properties, as summarized in Table 5, leading to numerous 

challenges faced in the flight path planning. Due to the temporal factors of the 

environment and mission requirements, i.e. dynamic obstacles, time-varying wind 

field, temporarily available operating areas, and the time-dependent goal conditions; 

thus, the time-dimension must be added to the state space. The following list provides 

the key difficulties while planning for feasible flight path for HAPS: 

 

                                                 
15 An active participant can be another agent/vehicle used to help to fulfill the MR, 

but at the same time must be avoided, leading to the need of a multi-agent planning 

method. A passive participant is not involved in the missions and must be avoided; 

therefore it plays the role of a mere obstacle. 
16  A vehicle subject to differential constraint(s) is also referred to as a 

nonholonomic vehicle. HAPS is one of the nonholonomic aircrafts [Roussos et al., 

2009]. Many works done to study the path planning of nonholonomic ground robots 

can be found in [Laumond, 1998] However, these works may not be applied directly 

on HAPS, since the airborne platform is also subject to a vector field (i.e. wind).  
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1. As a fixed-wing aircraft, HAPS cannot stop in mid-air. 

2. HAPS has limited maneuverability (i.e. low turn rate, low climb rate). 

3. HAPS operates in a time-varying vector field that can affect its movement, 

since the airspeed of the vehicle is at the same order of magnitude as the air 

flow velocity around. 

4. Due to the rather slow motion of HAPS, hazardous weather zones cannot be 

considered static obstacles. 

5. Operating in a dynamically managed airspace, the area within which HAPS 

is allowed to fly is spatially and temporally limited. 

6. The spatial-temporal search space is large, since HAPS operates in a wide 

area to fulfill various mission-related tasks that span long durations. 

7. The HAPS team intends to collect as much rewards as possible during the 

operation; therefore, the goal is to search for the feasible shortest path in terms 

of travel time, or rather fastest path, instead of the shortest path in terms of 

distance travelled.  

 

 
Figure 20. The fastest paths are marked in red. In a wind field, the fastest 

paths are not necessarily the shortest paths, which are the direct paths the 

goals. 

The above difficulties are also similar to Autonomous Underwater Vehicles 

(AUV) [Lolla et al., 2012; Lolla et al., 2015; Wolek, 2015] or glider planes 

[Chakrabarty and Langelaan, 2010; 2013], of which the path planning problems have 

been studied to consider the water currents for AUV and to exploit the atmospheric 

energy glider planes. Sophisticated numeric planning capability is necessary to 

surmount the difficulties of such class of path planning problem and better aid the 

decision making. Figure 20 depicts a simple example to show the need of advanced 

numeric computation facilities, and that human abstract perception could be 

deceiving. In the figure, a HAPS flies at a true airspeed of 28 m/s starting at the origin 

marked by a yellow circle to different goal positions marked by the blue diamonds. 
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In this example, the wind field is divided into six different regions with regions A, B, 

D, E, F having a wind velocity of 3 m/s in the North and in the East direction, while 

region C with 3 m/s in the North direction and 0 m/s in the East direction. Three paths 

are proposed for each start-goal pair, with the second path (linear and direct path) 

being the shortest in terms of distance travelled. The paths marked in red, which are 

not necessary with the shortest distance travelled, are however the fastest paths. This 

is due to the non-negligible effects of wind on the HAPS dynamics. 

 

Since the differential constraints must be considered in order to obtain flight paths 

that are dynamically feasible, a control-based path planning is necessary. The next 

subsection describes how the HAPS path planning problem can be formulated as a 

control-based path planning problem and cites a few example solving methods.  

 

3.2 Control-Based Motion Planning for HAPS 

Most flight path planning problems for fixed-wing aircraft rely on a geometric 

planning method, for example [Krozel and Andrisani II, 1990; Pehlivanoglu, 2012; 

Hammouri and Matalgah, 2008] use Voronoi diagram or a regular grid to partition 

the mission environment and plan. Instead of connecting waypoints linearly, some 

use Dubins paths to consider the dynamics of the fixed-wing airplane, but leave the 

effect of wind to the flight controller, as wind is deemed “disturbance” to correct 

[Owen et al., 2013]. Very often, as pointed out in [Beard R. W. and McLain, 2012], 

a classical flight path planning process using a geometric motion planner undergoes 

three steps (see Figure 21a): 

 

1. point-to-point path planning to determine waypoints, which define the flight 

path that avoid obstacles in the airspace, while assuming that the obstacles are 

static; 

2. path parameterization to determine, based on the dynamics of the aircraft, the 

course to follow while transiting from one waypoint to the next, and while 

considering the movement of the obstacles, in which case a reallocation of 

waypoint could take place if the obstacle avoidance fails; 

3. path guidance to ensure that during execution, the planned path is followed 

despite disturbances (e.g. from wind). If the planned path cannot be followed, 

a replanning or plan repair is hence necessary.  
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a) Classical flight planning b) Flight planning with minimal 

posterior control 

 

Figure 21. Flow of different flight path planning schemes 

 

This planning structure is however inappropriate in the case of HAPS, especially 

when the dynamics of the aircraft are considered only after the waypoint planning, 

and can lead to a frequent waypoint reallocation, since the speed of the dynamic 

obstacles is at the same order of magnitude as HAPS. Furthermore, although highly 

efficient in terms of short planning time, the risk of iterative replanning cannot be 

ignored, since the airspeed of the vehicle is at the same order of magnitude as the 

wind speed. The iterative replanning can be inconvenient when multiple HAPS are 

involved to cooperatively fulfill the mission-related tasks. More importantly, the 

optimality of the plan determined by the waypoint planner can be affected by the 

reallocation of waypoints and by the wind, since the waypoint planner determines the 

shortest path with respect to the distance travelled, which may not be the fastest path 

(see Figure 20). 

 

A more straightforward path planning approach consists of taking into account the 

obstacles, vehicle dynamics as well as the vector field in the planning phase and 

requires during execution only minimal control effort as shown in Figure 21b. Such 

a path planning problem was already considered in Donald et al. [Donald et al., 1993] 

and LaValle and Kuffner [LaValle and Kuffner, 2001], and is referred to as 

kinodynamic planning problem in which the state space is also subject to kinematic 

constraints such as obstacles and boundaries to avoid, and is subject to dynamics 

constraints on the time-derivatives of the vehicle’s physical configuration. 

Conforming with the definition of a state in a kinodynamic planning problem as 

according to [Donald et al., 1993], each state 𝑥 of the state space 𝑋 is defined by 𝑥 =
(𝑝, 𝑞, 𝑝̇, 𝑞̇), where 𝑝, 𝑞 are the position and attitude vectors describing the geometrical 

configurations of the HAPS. If 𝑈 denotes the control space, the state transition will 

be governed by  

 

Waypoint planner 

(obstacles)

Path parameterization 

(kinematics)

Path guidance 

(wind)

Waypoints

Control inputs

Corrected control 

inputs

reallocation of waypoint replanning

(fail)
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𝑥̇ = 𝑓(𝑥, 𝑢), 𝑢 ∈  𝑈, 3-1 

  

where 𝑓 denotes the process of the movement model of the HAPS, while 𝑢 denotes 

the vector of control parameters. In the case of HAPS, as a fixed-wing aircraft with 

rather weak electro-motors, the aircraft is subject to quite tight operational bounds 

[Müller et al., 2018], limiting hence the equivalent airspeed that can be commanded, 

especially in wind field. It is recommended to fly at an equivalent airspeed at 9 m/s, 

at which the angle of attack is optimal, i.e. the drag is minimal. The equivalent 

airspeed should also be constant, as any correction command to the speed can result 

either in a saturation in the engine power or an alteration of flight altitude, as 

simulation results in [Müller et al., 2018] show. At constant airspeed (optimal 

airspeed), the roll angle depends on the turn rate, and therefore does not constitute a 

control parameter. The effect of the vector field, or rather the wind field in HAPS 

path planning problem, can be included in 𝑓. The consideration of wind especially is 

essential, since wind can affect the ground speed of the aerial vehicle rather 

substantially or can be harvested as “free” energy to shorten travel time. 

 

 Formal Point-to-Point Flight Path Planning Problem Statement 

The point-to-point flight path planning problem  P̃HAPS
FP

 for HAPS is a subset of the 

problem defined in Section 2.3, and can be represented by a similar tuple 

 

< 𝐻,𝑋, 𝑇, 𝑋0, 𝑇0, 𝐶𝑋 , 𝐴̃
FP, 𝐶̃𝐴

FP, 𝑍1, … , 𝑍𝐼 , 𝐶𝑀, 𝑟 >,  
 

with all elements being identical to the definition in Section 2.3, except for 𝐴̃FP, and 

𝐶̃𝐴
FP being the subsets of 𝐴 and 𝐶𝐴, i.e. 𝐴̃FP is the set of discretized yaw rate and climb 

rate control parameters, and 𝐶̃𝐴
FP are only the constraints applicable to 𝐴̃FP. 

 

Principally tackled in the section is the point-to-point flight path planning for a 

single HAPS. The extension to multiple HAPS will be dealt with in Section 5. 

  

 Suitable Path Search/ Planning Methods 

Such class of planning problem is NP-hard17 and relies usually on approximation 

algorithms, sampling-based motion planner being one, to balance optimality and 

performance [Allen and Pavone, 2015; Webb and van den Berg, 2013]. An approach 

to solve the kinodynamic planning problem is to use the Rapidly exploring Random 

Trees (RRT) that was first reported in [LaValle, 1998] for holonomic and later 

extended for nonholonomic planning problems [Kuffner and LaValle, 2000] and in 

[LaValle and Kuffner, 2001] for a kinodynamic problem. The RRT-based method for 

kinodynamic planning problems is quite straightforward: a new vertex that represents 

a state in proximity of the searched tree is chosen randomly and the nearest vertex of 

the tree to the chosen vertex must be determined. The control parameter 𝑢  that 

connects the two vertices, given the movement model 𝑓 in Equation 3-1, will then be 

determined. If the new vertex is reachable and does not violate any constraint (i.e. 

obstacles that are considered global constraints), the new vertex will be added to the 

                                                 
17  NP-hard (NP: Non-deterministic Polynomial time) is a classification used 

commonly in theoretical computational complexity to describe a problem of which a 

given solution can be verified within polynomial time, but the solution cannot be 

determined within polynomial time, and may even be undecidable.  
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tree. The configuration space can be explored rapidly by doing so. Although the RRT-

based approach in [LaValle and Kuffner, 2001] does not consider a vector field, it 

can be easily adapted to also consider a time-varying wind in the movement model 

𝑓, and the dynamic obstacles. However, the faster bidirectional variant consisting of 

exploring from the initial state and from the goal state, and eventually connecting 

both trees, can unfortunately not be exploited for our problem, due to the time-

varying environment and constraints (i.e. time-varying wind field and moving 

obstacles).  

 

A flight path planner for a motor-less glider in [Chakrabarty and Langelaan, 2013] 

uses a kinematic tree approach to take wind as well as the flight dynamics into 

account. A similar approach, but known by the name Kinematic A* in [Filippis and 

Guglieri, 2012], is used to plan flight paths for a fixed-wing aircraft in a time-varying 

wind field while respecting the kinematic constraints of the platform. In order to be 

more efficient with computational memory, the search for a path is performed by 

expanding a search tree while considering only the reachable nodes after Δ𝑡 for each 

set of the action primitives from the control space, as shown in Figure 22, instead of 

laying all out like in a classical A*. Given an initial state 𝑥(𝑡0), the search algorithm 

expands the kinematic tree by appending reachable nodes over each discrete time step 

found using the following: 

 

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) + 𝑓(𝑥(𝑡), 𝑢(𝑡))⏟        
𝑥̇(𝑡)

. 3-2 

 

In the case of HAPS flight path planning, 𝑥 is the state vector of (𝜆, 𝜑, 𝑧ℎ, 𝜒, 𝛾)
T, 

where the elements denote the WGS84 coordinates longitude, latitude, altitude, as 

well as yaw, and pitch angles respectively. 𝑢 is be a control vector of feasible control 

parameters (𝜒̇(𝑡), 𝛾(𝑡))  from the discretized control space for yaw rate 𝐴𝜒̇ =

{−|𝜒̇max|, −|𝜒̇max| + Δ𝜒̇,… , |𝜒̇max| − Δ𝜒̇, |𝜒̇max|} and for climb angles  𝐴𝛾 =

{−|𝛾max|, −|𝛾max| + Δ𝛾,… , |𝛾max| − Δ𝛾, |𝛾max| }, the union of which constitute 𝐴̃FP, 

and  

 

𝑥(𝑡 + Δ𝑡) =

(

  
 

𝜆̇(𝑡)Δ𝑡 + 𝜆(𝑡)

 𝜑̇(𝑡)Δ𝑡 + 𝜑(𝑡)

𝑧ℎ̇(𝑡)Δ𝑡 + 𝑧ℎ(𝑡)

𝜒̇(𝑡)Δ𝑡 + 𝜒(𝑡)

𝛾̇(𝑡)Δ𝑡 + 𝛾(𝑡) )

  
 

 

3-3 

  

with  𝜆̇, 𝜑̇  and  𝑧ℎ̇  being found by the following equations of movement with a 

spherical Earth assumption [Müller et al., 2018]: 

 

𝜆̇(𝑡) =
𝑣w,E(𝑡) + 𝑣TAS

∗ cos 𝛾(𝑡) sin(𝜒(𝑡 − 1) + 𝜒̇(𝑡)Δ𝑡)

(𝑅𝐸 + 𝑧ℎ(𝑡)) cos𝜑(𝑡)
, 

3-4 

  

𝜑̇(t) =
𝑣w,N(t) + 𝑣TAS

∗ cos 𝛾(𝑡) cos(𝜒(𝑡 − 1) + 𝜒̇(𝑡)Δ𝑡)

𝑅𝐸  +  zℎ(𝑡)
, 

 

3-5 

𝑧ℎ̇(t) = 𝑣w,U(t) + 𝑣TAS
∗ sin 𝛾(𝑡), 3-6 
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where 𝑅𝐸 is the Earth radius, (𝑣w,E, 𝑣w,N, 𝑣w,U)
T
 is the wind velocity vector in East, 

North and Up directions respectively, and 𝑣TAS
∗  is the optimal True Air Speed (TAS) 

at the altitude the HAPS flies.  

 

[De and Guglieri, 2012] also demonstrated that ideally, dynamic obstacles can be 

taken into account using the approach, in which variable search steps are also 

introduced, so that the search timestep can be denser around critical regions, e.g. 

around an obstacle, and looser in calm regions. However, the validation time-step 

(marked by the small dots in Figure 22) must be set sufficiently small so that no 

obstacle is missed, but at the small not too small, so that the plan validation does not 

become unnecessarily computationally expensive. In practice, 1-2 seconds is 

sufficient for HAPS for its low airspeed. 

 

 
 

Figure 22. Reachable nodes marked by the hollow circles in the kinematic 

tree; the gray-filled circle represents an obstacle 

 Geometric Constraints of the State Space Configuration 

The airspace structure as shown in Figure 11 and the various weather data described 

in [Köhler et al., 2017a] impose conditions to be fulfilled for safety purposes, e.g. 

“remain in the operation area” or “avoid weather obstacles”. Numerically, these 

conditions can be represented by time-varying geometric constraints to fulfill. The 

operation areas (MAs and LOIs) are given as convex polygons  for the operation 

flight level; the weather critical NoGo-areas, as according to [Köhler et al., 2017a], 

are given as polytopes with identical upper and lower bases. A weather critical NoGo-

area is 

 

1. either represented by a single polytope for all flight levels, in the case 

of aggressive weather hazards, such as cumulonimbus clouds,  

2. or represented by a different polytope as each flight level, e.g. strong-

wind area, turbulence area etc. 

 

Therefore, for the flight level at which the HAPS operates, the polytopes can be 

projected onto the plane of the flight altitude, reducing thereby the weather avoidance 
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problem to two-dimensional. These polygons can be convex or non-convex. In the 

latter case, a convex polygon encompassing the vertices of the non-convex polygon 

can be computed using convex-hull algorithms. [Edelsbrunner et al., 1983] 

introduced the concept of 𝛼-hull, which is the intersection of all closed discs of radius 

1/𝛼 containing the given set of points. If 𝛼 is set to 0, a convex hull is obtained, 

which is also the least tight encompassment of the set of points. However, convex 

hulls are convenient for computation, and thus have been used widely in pattern 

recognition [Yang and Cohen, 1999; Corney et al., 2002] and also in path planning 

[Meeran and Share, 1997; Gaschler et al., 2013]. Furthermore, the “lack of tightness” 

in the encompassment of weather critical zones is a reasonable safety margin to allow 

the error in the forecast and the error in the data extrapolation, since the weather data 

is timely discretized (e.g. quarter-hourly, hourly, three-hourly etc.). Therefore, in the 

flight path planning for HAPS, only convex-obstacles are considered. 

 

A convex-hull encompassing a non-convex polygon can be found for example by 

identifying the nearest neighboring point or by determining the extreme points of the 

latter. The methods can be found in some classical literature on geometry 

computation [Graham, 1972; Anderson, 1978; Jarvis, 1973], with a complexity of 

smaller than 𝑂(𝑛), where 𝑛 is the number of vertices of the non-convex polygon 

[Anderson, 1978]. These algorithms can be found in standard functions/libraries of 

Matlab®, for example convhull(), and of C++, for example Computational Geometry 

Algorithms Library (CGAL) [CGAL, 2012].  

 

3.2.3.1 Checking for Interior Point  

If 𝑉 represents a weather critical area and takes the form of a convex polygon found 

by one of the above-mentioned standard libraries, it is required to check that the 

HAPS stays outside the polygon at all times. Let 𝑝 = (𝜆𝑝, 𝜑𝑝)  be the two-

dimensional position vector of the HAPS, and 𝑉 a set of ordered vertices of a convex 

polygon, 𝑝 must remain an exterior point of 𝑉. On the contrary, if 𝑉 represents an 

operation area, e.g. a MA, it is required that the HAPS stays within the polygon, or 

rather 𝑝 is an interior point of 𝑉. 

 

A point-in-polygon test [Skala, 2015] using linear inequalities can check if 𝑝 lies 

in a convex polygon. For each edge 𝑣𝑖𝑣𝑖+1̅̅ ̅̅ ̅18  of the polygon, where 𝑣𝑖 , 𝑣𝑖+1̅̅ ̅̅ ̅ ∈ 𝑉 , if 
𝑝  lies on the same side of the edge 𝑣𝑖𝑣𝑖+1̅̅ ̅̅ ̅ as an arbitrary interior point of the polygon, 

then 𝑝  in included in the polygon. Algorithm 3-1 recapitulates concisely the point-

in-polygon test for a convex-polygonal area suitable for the focused application in 

this work. The first step (see Line 2 of Algorithm 3-1) determines the coefficients of 

each non-vertical edge 𝑣𝑖𝑣𝑖+1̅̅ ̅̅ ̅   of 𝑉 using the following equations:  

 

𝑎𝑖 = −(𝜑𝑖+1̅̅ ̅̅ ̅ − 𝜑𝑖), 
      𝑏𝑖 = 𝜆𝑖+1̅̅ ̅̅ ̅ − 𝜆𝑖,                   
  𝑐𝑖 = 𝑏𝑖𝜑𝑖 + 𝑎𝑖𝜆𝑖. 

 

3-7 

 

                                                 
18 In programming, circular indexing  𝑖 ̅uses modulus formulas while incrementing 

or decrementing the index so that it remains within the size of the array (set in this 

case). 
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The derivation of the coefficients in Equation 3-7 is recapitulated in Appendix 2. 

Since a line segment of two non-identical vertices is interior of the convex polygon, 

we can determine a strict interior point 𝑝int = (𝜆int, 𝜑int) by taking the mid-point of 

a line segment defined by two non-neighboring vertices (see Line 3 of Algorithm 3-

1). To ease the representation of sides, it is fixed that 𝑝int fulfills the inequality for 

all edges 𝑖: 
 

𝑎𝑖𝜆int + 𝑏𝑖𝜑int < 𝑐𝑖. 3-8 

 

If this is not the case, the signs of the coefficients must be inverted (see Line 4-6 

of Algorithm 3-1). Finally, to check if the HAPS at 𝑝 = (𝜆, 𝜑) is interior of the 

polygon or not, a conjunction is used (see Line 8-12 of Algorithm 3-1), to ensure that 

Equation 3-8 is fulfilled for all edges. 

 

Algorithm 3-1  Determine the inclusion of a point in a 

convex polygon 

Require  a point 𝑝 = (𝜆, 𝜑) and an ordered set of 

vertices of a convex polygon, 𝑉 

1: for each edge 𝑣𝑖𝑣𝑖+1̅̅ ̅̅ ̅ , where 𝑣𝑖, 𝑣𝑖+1̅̅ ̅̅ ̅ ∈ 𝑉 do 

2:     determine the coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 such that 

3:     determine a strict interior point 𝑝int = (𝜆int, 𝜑int)  
4:     if 𝑎𝑖𝜆int + 𝑏𝑖𝜙int > 𝑐𝑖  
5:         𝑎𝑖 ≔ −𝑎𝑖, 𝑏𝑖 ≔ −𝑏𝑖, 𝑐𝑖 ≔ −𝑐𝑖 
6:     end if  

7: end for 

8: if ⋀ (𝑎𝑖𝜆 + 𝑏𝑖𝜙 ≤ 𝑐𝑖)𝒊  then 

9:     𝑝 is in the convex polygon described by 𝑉 

10: else 

11:     𝑝 is NOT in the convex polygon 𝑉 

12: end if 

 

Note that Equation 3-7 is only valid for non-vertical edges, i.e. 𝜆𝑖 ≠ 𝜆𝑖+1̅̅ ̅̅ ̅. If it is a 

vertical edge, Line 4 and Line 8 of Algorithm 3-1 can be simply replaced by an 

inequality of 𝜆 < 𝑎 ⋅ 𝜆int, where 𝑎 is either +1 or -1, depending on which side of the 

vertical edge the interior point lies.   

 

Weather forecast data is timely discretized, with hourly intervals typically. If the 

obstacle is dynamic, and the data has to be extrapolated for continuous planning. For 

example the Cumulonimbus clouds [Köhler et al., 2017a] move along the wind. The 

movement over time can be extrapolated linearly as in [Kiam et al., 2016; Kiam et 

al., 2018]. An interpolation over time is not conceivable, since feature points of the 

weather critical zones are not always recognizable since the form and size could vary 

tremendously over long time intervals (i.e. at least an hour). If (𝑣𝑤,E, 𝑣𝑤,N, 𝑣𝑤,U)
T 

denotes the wind speed vector, the coefficients of the edges can be updated as 

processes with [Kiam et al., 2018]: 

 

𝑎(𝑡 + Δ𝑡) = 𝑎(𝑡),  

3-9 
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𝑏(𝑡 + Δ𝑡) = 𝑏(𝑡), 

𝑐(𝑡 + Δ𝑡) = 𝑐(𝑡) + 𝑏(𝑡)𝑣𝑤,N(𝑡) ⋅ Δ𝑡 + 𝑎(𝑡)𝑣𝑤,E(𝑡) ⋅ Δ𝑡. 
 

Proof: 

At time instant 𝑡, an edge (line) defined by vertices 𝑣𝑖  and 𝑣𝑖+1 of 𝑉 can be 

described by the following linear equation: 

𝑎(𝑡)𝜆 + 𝑏(𝑡)𝜑 = 𝑐(𝑡),   3-10 

 

where, with the parameters expanded using Equation 3-8, 

 

𝑎(𝑡) = −(𝜑𝑣𝑖+1(𝑡) − 𝜑𝑣𝑖(𝑡)), 

𝑏(𝑡) = (𝜆𝑣𝑖+1(𝑡) − 𝜆𝑣𝑖(𝑡)), 

𝑐(𝑡) = (𝜆𝑣𝑖+1(𝑡) − 𝜆𝑣𝑖(𝑡)) 𝜑𝑣𝑖(𝑡) − (𝜑𝑣𝑖+1(𝑡) − 𝜑𝑣𝑖(𝑡)) 𝜆𝑣𝑖+1(𝑡). 
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At time instant 𝑡 + Δ𝑡, 
 

        𝑎(𝑡 + Δ𝑡) = −((𝜑𝑣𝑖+1(𝑡) + 𝑣𝑤,𝑁(𝑡) ⋅ Δ𝑡) − (𝜑𝑣𝑖(𝑡) + 𝑣𝑤,N(𝑡) ⋅ Δ𝑡))  

                            = 𝑎(𝑡)),     

        𝑏(𝑡 + Δ𝑡) = ((𝜆𝑣𝑖+1(𝑡) + 𝑣𝑤,E(𝑡) ⋅ Δ𝑡) − (𝜆𝑣𝑖(𝑡) + 𝑣𝑤,E(𝑡) ⋅ Δ𝑡)) 

                            = 𝑏(𝑡), 

        𝑐(𝑡 + Δ𝑡) = (𝜆𝑣𝑖+1(𝑡) − 𝜆𝑣𝑖(𝑡)) (𝜑𝑣𝑖(𝑡) + 𝑣𝑤,N(𝑡) ⋅ Δ𝑡) 

                                − (𝜑𝑣𝑖+1(𝑡) − 𝜑𝑣𝑖(𝑡)) (𝜆𝑖(𝑡) + 𝑣𝑤,E(𝑡) ⋅ Δ𝑡) 

                           = 𝑐(𝑡) + 𝑏(𝑡)𝑣𝑤,N(𝑡) ⋅ Δ𝑡 + 𝑎(𝑡)𝑣𝑤,E(𝑡) ⋅ Δ𝑡. 
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Note however that the above movement model does not consider the varying 

shapes of the clouds, which are too complicated to model. Therefore, a safety margin 

has to be added to the obstacle polygons to allow for errors in the movement 

prediction. 

 

 Existing Planner: OMPL 

Motion planning is coined to refer to the computation of discrete motions in the 

physical space, ranging from moving an arm to moving a vehicle. The physical space 

or the motions of the agent can be constrained. The Open Motion Planning Library 

(OMPL) is an open source library implemented in C++, collecting generic 

implementations of sampling-based motion planning methods [Sucan et al., 2012]19. 

OMPL also provides an Application Programming Interface (API) for the definition 

of the problem, which will then be processed by the planner solver, separating hence 

the problem modelling and the planning as two independent entities.  

                                                 
19 OMPL is also integrated as part of the Robot Operating System (ROS). 
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The generic motion planners available in OMPL can be grouped into two 

categories: namely geometric and control-based planners. The former relies on 

discretizing the physical space into a grid world and assumes that any planned path 

can be interpolated and turned into a dynamically feasible trajectory, while the latter 

propagates the state with the vehicle dynamics and thereby enables the generation of 

feasible motions. Since the expansion of the search tree in a kinodynamic planning 

problem is subject to differential constraints that take into account the vehicle 

dynamics, a control-based planner is necessary [Sucan et al., 2012], for which, in 

addition to the state space, a control space must also be defined, which in the case of 

HAPS flight path planning is  𝐴̃FP 

 

As summarized in Figure 24, the usual sampling-based planner such as Open 

Motion Planning Library (OMPL) [Sucan et al., 2012], deals with a kinodynamic 

motion planning problem, and also that of HAPS, by using an API to setup the state 

space via the definition of 

• a propagation function to define how the state space propagates over time 

using the first and second derivatives (e.g. integration step, search step, 

movement model, etc.),  

• a collision checking function, 

• the start and goal states, 

• the control space and its sampling, if a control-based planner is in use, 

• the boundaries of the configuration space (i.e. operation areas). 

The dynamic obstacles are avoided using a collision checker. However, the 

operation areas can by default only be defined by imposing a minimum and maximum 

bound on the state space, thereby restricting the geometry to only regular shapes. A 

state validation function using Algorithm 3-1 is necessary if the operation area has 

an arbitrary convex-polygonal shape.  

 

3.3 Domain-Independent Planners and the Standardized Problem Domain 

Definition Language (PDDL) 

One of the main progresses made in AI planning in the past two decades is focused 

on domain-independent planners, i.e. planners that are able to solve a planning 

problem without knowing what it is about. In other words, the planners are not 

custom-made for a problem. In general, such planners understand the problem via a 

modelling language, and translate the problem into a search space the planners are 

apt to reason [Haslum et al., 2019]. A modelling language for a domain-independent 

AI planner can be seen as the front-end interface, separating hence the planning 

problem from the back-end search engine. Such an architecture is advantageous 

because:  

 

1. a planning problem, once modelled, can be solved by different planners that 

understand the same modelling language; 

2. an alteration in the problem model does not incite the need to adapt the solver; 

3. the planner can be used off-the-shelf by experts of the system to be solved, 

who are not necessarily apt in planning algorithms; 

4. the planners are less prone to errors, since the planners are tested extensively; 
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5. the planning approach has enormous potential to be explainable, given the 

rigorousness of the modelling language to express the logical causality 

dependencies [Fox et al., 2017]. 

 

Problem Domain Definition Language (PDDL), originated from the International 

Planning Competition (IPC) in 1998, is a, if not the most widely used, problem 

modelling language, with its main strength focusing on capturing state transformation 

via the application of an action. Therefore, PDDL compatible planners are also 

known as action-based automated AI planners; a plan determined using PDDL is a 

sequence of actions [Ghallab et al., 2004]. Quoting from the organizing committee 

of the competition, PDDL was an input language for all participating planners, 

designed to specify the physics of the planning problems as neutral as possible 

without favoring any planning system by providing advice [McDermott, 2000]. 

While competitors encountered insurmountable difficulties to express a hierarchical 

planning problem with PDDL, the language worked well with classical planning 

problems. 

 

Soon, the use of PDDL went beyond the IPCs, and has been reported to scale up 

to huge discrete planning tasks [Silvia Richter, 2010], given the advantages listed 

above. Although not yet a mature technique, the last advantage on the list above on 

“explainability” is promising; much work in the AI community is gearing towards 

increasing explainability, even for complex planning problem. A PDDL validator for 

example can validate a plan and displays the effects of the plan. If the plan fails, the 

cause can be identified, and advice is provided to fix the plan. Appendix 4 illustrates 

an example use of VAL [Howey et al., 2004], a PDDL validator, to highlight the 

benefits of explainability in Mixed-Initiative Planning (MIP). VAL, however, does not 

support transcendental functions; therefore, it is not applicable for HAPS. The 

example in Appendix 4 is based on simpler linear motions of an unmanned ground 

vehicle. 

 

 Background of PDDL Planners 

Although mainly known as the modelling language for classical planning problems 

(i.e. deterministic, discrete and non-temporal [Haslum et al., 2019]), since its birth, 

many extensions have to be made to enable the capturing of more real-world 

problems involving infinite discrete space (numeric planning), time-stamped actions 

(temporal planning), continuous processes over time, exogenous events, just to name 

a few. Figure 23 gives a general overview of the extensions to PDDL since the first 

version was published at the IPC in 1998. Each extension can be summarized as 

follows: 

 

1. Classical planning 

All states are Boolean, i.e. the number of reachable states of the system is 

finite. The effect of an action is either “adding” a true Boolean state to the list 

or “delete” from the list if it is a negation.  

2. Numeric planning 

As the name suggests, state variables can take value of any real number. Such 

variables are referred to as “fluents”. Although still discretized, the possible 

states of each fluent can be infinite, spanning the real number space. Instead 

of “add” or “delete” as the effect(s) of an action, a fluent is “updated” and 
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always takes a numeric value. Together with this extension, arithmetic as well 

as comparison operators were introduced to express the effects on the fluents. 

More advanced mathematical expressions are however not excluded. 

3. Temporal planning 

Inspired from “scheduling”, another class of planning widely addressed by 

the AI community consisting of a decision for “when to do what”. The 

determined plan is hence a sequence of time-stamped actions, indicating when 

the action should be executed.  

4. Hybrid planning 

Previously, a new effect is always caused by an intended action to be 

executed. The forward search engine in the motion planner expands the tree 

by propagating the initial states with the control parameters, i.e. integration 

over time down to the configuration space, which can be formulated as 

autonomous processes in PDDL+ with the process first-derivative to update 

to the first derivation using the selected control parameter. In many real-world 

automated systems, an effect can best be described as a flow that is repeated 

without incitement. “Processes” were introduced in the extension of PDDL  

[Fox and Long, 2006]. “Events” were also introduced with the release of 

PDDL+. 

 

By abuse of language, we simply refer to an automated AI-planner with a PDDL 

interface as a “PDDL planner”, although PDDL itself is only a modelling language.  

 

 
 

Figure 23. PDDL has come a long way from classical planning to hybrid 

planning combining numeric and temporal state variables 

 

AI and robotics have, to a certain extent, evolved in a parallel manner, with each 

community having their own benchmarking methods or competitions, like the IPC 

for AI-planning and RoboCup for robotics [Lima et al., 2018]. Several works on 

planning for robotics using PDDL have been reported in [Bernardini et al., 2014] for 

autonomous drones and [Crosby et al., 2017] for industrial robots. Having witnessed 

the promising work of PDDL planners in robotics, ROSPlan was created in 2015 

[Cashmore et al., 2015] as a tool to bridge a PDDL-planner with the Robot Operating 

System (ROS) framework. In [Lima et al., 2018], ROSPlan was successfully tested 
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using the PDDL planner Mercury20 [Katz and Hoffmann, 2014] to solve problems 

from the RoboCup competitions, and has also been repeatedly reported to be useful 

to integrate a PDDL2.1 planner as a task planner within ROS [Antony et al., 2018; 

Lima et al., 2018]. 

 

However, all the mentioned works have only proven the potential of PDDL-

compatible planners for solving high-level prepositional planning, while neglecting 

the handling of more complex numeric problems, such as motion planning in a 

dynamic and continuous space. Even the attempt to find a path for a robot in a 

dynamic environment in [Estivill-Castro and Ferrer-Mestres, 2013] considers a grid 

world represented by logical prepositions (i.e. “at pos0”, “at pos1”, etc.), instead of a 

continuous space, and is thereby impossible to consider the physics of the 

environment and of the robot itself. Motion planners from the robotics community 

are still favored as solvers, even though with the release of PDDL 2.1 [Fox and Long, 

2003] and subsequently of PDDL+ [Fox and Long, 2006], numeric effects an 

autonomous process can be represented compactly. In the following subsections, 

PDDL planners are explored to solve the HAPS path planning problem, which 

requires usually a control-based motion planner [Sucan et al., 2012]. It is interesting 

to also realize that some fusion of task-based planning, scheduling and classical 

motion planning can be done within the same framework using a PDDL-planner, 

gearing planning hence towards a tightly-coupled fashion. The scalability, however, 

suffers, as discussed at the end of this section. 

3.3.1.1 Basic Planning Techniques 

Instead of state-space graph, many PDDL planners are based on planning graphs, 

introduced first formally in [Blum and Furst, 1997], in which the preconditions and 

effects are linked by actions. Using planning graphs, it is also possible to represent 

approximate reachability by relaxing some features of an action in the heuristic that 

guides the search [Bryce and Kambhampati, 2007]. Furthermore, most PDDL 

planners have level-based heuristics which assume that the cost is the number of 

levels the search has to traverse to achieve its goal state. For a PDDL planner that 

uses level-based heuristics, if unit cost actions are considered (i.e. each action bears 

the same cost, which is the case for the majority of PDDL planners), the search for a 

plan is often based on the shortest plan length, namely the fewest number of actions 

or the shortest time in temporal planning.   

 

Theoretically, many major PDDL planners support parameterized domain 

problems, and hence also parameterized actions (and predicates). Parameterization in 

a PDDL model is when an action or predicate can be applicable to many objects. 

However, the first step after parsing the problem domain, most PDDL planners 

perform what is called “grounding”, in which the symbolic parameters of the actions 

are removed, i.e. each combination of action (or predicate) and its object is seen as 

an action (or a predicate). If the employed PDDL planner uses grounded actions to 

establish its search graph, the fewer the grounded actions are, the more efficient the 

search is. Therefore, instead of having a very generalized action that is applied to 

many objects with the exceptions expressed using constraints nested in the 

                                                 
20 Mercury is a temporal planner that supports PDDL2.1. 
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preconditions, it would be wiser to have multiple specialized actions that are 

applicable to different classes of objects.  

 

Considering the above commonly used planning techniques, a HAPS flight path 

planning problem model is established. 

  

 Modelling the HAPS Flight Path Planning Problem in PDDL+ 

PDDL+ is used to model mixed discrete-continuous problem domains, also known 

as hybrid planning problems. More specifically, PDDL+ is a more evolved version 

of the line of PDDL language variants, providing a convenient formalism for 

planning problems involving infinite discrete space (numeric planning), time-

stamped actions (temporal planning), continuous processes over time, exogenous 

events etc. [Fox and Long, 2006]. Appendix 3 illustrates a typical planning problem 

that can be formulated using PDDL+. For a more formal understanding of a hybrid 

planning problem, the general definition is recapitulated in the following [Fox and 

Long, 2006]; note that the symbols used are specific for this definition only and do 

not conform with the list of symbols used for the rest of this work. 

 

Definition 3-1 (Hybrid Planning problem) A planning problem 𝐻 is given by 

the tuple < 𝑋𝑝, 𝑋𝑛, 𝐴, 𝑃, 𝑋0, 𝐺, 𝐶 >, where: 

• 𝑋𝑝  and 𝑋𝑛 are the propositional and numeric state variables respectively, 

• 𝐴 is the set of instantaneous actions, 

• 𝑃 is the set of autonomous processes, 

• 𝑋0 is the initial state, 

• 𝐺 is the set of goal conditions, and 

• 𝐶 is the set of global constraints. 

 

Actions 𝑎 ∈ 𝐴 are pairs < 𝑝𝑟𝑒(𝑎), 𝑒𝑓𝑓(𝑎) >, where 𝑝𝑟𝑒(𝑎) is a set (conjunction) 

of propositional and numeric preconditions, and 𝑒𝑓𝑓(𝑎) is a set of effects boolean or 

numeric expressions indicating instantaneous changes of values in 𝑋𝑝  and 𝑋𝑛. An 

autonomous process 𝑝 ∈ 𝑃 has a continuous effect on variables 𝑋𝑛 over time. Like 

actions, they are a pair < 𝑝𝑟𝑒(𝑝), 𝑒𝑓𝑓(𝑝) >, where preconditions 𝑝𝑟𝑒(𝑝) are like 

those of actions, but effects 𝑒𝑓𝑓(𝑝) are Ordinary Differential Equations (ODE) 𝑥 ≔
exp(𝑒) , where 𝑥 ∈ 𝑋𝑛 and exp(𝑒)  can be a well-formed arithmetic expression 

featuring standard mathematical operators, variables 𝑥 ∈ 𝑋𝑛 , constants or 

transcendental functions. While being syntactically equivalent to action precondition, 

a process precondition expresses an invariant condition along the execution of the 

process itself. Their violation causes the process to stop, so switching in what the 

hybrid automaton literature calls, another mode of execution. Global constraints 𝑐 ∈
𝐶 are arbitrary quantified-free formula over variables in 𝑋𝑛 and 𝑋𝑝. They must be 

satisfied by any state throughout the plan timeline.  

 

More details on the semantics aspects of PDDL+ can be found in [Fox and Long, 

2006]. Compatible domain-independent PDDL+ planners such as UPMurphi [Della 

Penna et al., 2009], DiNo [Piotrowski et al., 2016], ENHSP [Scala et al., 2016] etc., 

are theoretically able to solve the modelled problems. Solutions to 𝐻  are plans, 

sequences of time-stamped actions 𝑎 ∈ 𝐴. More complex real-world problem have 

been successfully modelled using PDDL+ and solved by the compatible planners to 
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optimize the processes in a chemical plant or to control urban traffic [Vallati et al., 

2016; Della Penna et al., 2010]. 

 

Starting from the observation that in PDDL+, it is possible to separate the 

decisions of the actions to take from the dynamics of the system (by using actions 

and processes), whilst making sure that a set of global constraints remain satisfied 

along the resulting plan, in this subsection, it will be demonstrated how PDDL+ can 

be used to model the HAPS flight path planning problem described in Section 3.1 

and 3.2, which is commonly classified as a kinodynamic motion planning problem.   

 

Figure 24 first illustrates the analogy observed between the formulation of a 

general kinodynamic motion planning problem in PDDL+ and the problem modelling 

using the API of OMPL, a typical motion planning library. The sampling of the 

control space can be mapped to actions in PDDL+, i.e. if a second-derivative is 

a control parameter, the planner can choose to increase or decrease the parameter by 

the sampling step delta-second-derivative, as the actions 

increase_second_derivative_p1 and decrease_second_derivative_p1 

shown in Figure 24 for the state variable configuration_p1. This, in a motion 

planner, corresponds to selecting an action in the control space made up of parameters 

of the second derivative 𝑝̈, but subject to ‖𝑝̈‖ < 𝑎. This condition is also formulated 

as preconditions in the actions increase_second_derivative_p1 and 

decrease_second_derivative_p1 in PDDL+. The kinematic constraints (e.g. 

obstacles or bounds of the configuration space) can be encoded as conditions to 

fulfill. If these constraints are geometrically convex polygons, Algorithm 3-1 is used 

to check if the HAPS is an interior point or not. The check using inequalities can be 

compactly formulated as conditions of an action, a process or an event using the 

exists operator, as shown in Figure 24. If the constraints are global, i.e. they must 

be fulfilled at all time instants, like obstacles to avoid for safety purposes, an encoding 

using a global constraint with the prefix :constraint is possible. Although the 

exists operator is not a compulsory requirement of the PDDL+ language, it is 

sometimes supported by PDDL planners and is, but uses a disjunction instead. By 

using the exists operator, the convex polygon can have an arbitrary number of 

edges. Likewise, the global constraint is not part of the standard PDDL+ language, 

but is supported by many planners, as it is more compact and natural [Haslum et al., 

2019], compared to encoding the constraints as preconditions to meet for every 

action, process and event.  
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Figure 24. Analogy between the problem definition for a classical sampling-

based motion planner and the formulation in PDDL+ 

 

Both structures admit in general that a planning problem definition can be divided 

into two parts: a symbolic/ functional definition of the system and an instantiation of 

system parameters. While in OMPL, the division is not clear, for example, the default 

state space boundaries are within the system instantiation, the division in PDDL is 

strict. The system is defined in the domain file, while the parameter instantiation is 

in the problem file.  

 

As can be observed from the formulations, PDDL+, like all PDDL languages, uses 

a declarative formalism inherited from the LISP programming language. The syntax 

rules are not as rigorous and strict as in other programming languages like C, C++, 

Java, etc.; different planners accept different naming, which unfortunately limits in 

practice the use of multiple planners to solve for the same planning problem without 

much adaptation.  A few invariants are however worth noticing to better understand 

the modelling language [Haslum et al., 2019]. Keywords that are not a logic operator 

and are not domain or define are always preceded by a colon (:). A parameter is 

always preceded by a question mark (?) and is separated from its type name 

proceeded by a hyphen (-). These symbols are therefore reserved and are not to be 

used as the beginning of names. Similar to LISP, the operator or action in every 

expression precedes the variables (i.e. “fluents” for infinite variables and “predicates” 

for binary variables).  

 

Using the analogy observed between the definition of a motion planning problem 

and its modelling using PDDL+, Table 11 shows the modelling for the HAPS flight 

path planning in PDDL+. Each row in white shows the motion planning model, while 

the following gray row shows the representation in PDDL+.  
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Table 11. Modelling the HAPS kinodynamic planning problem with PDDL+ 
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Initialization of the zero-order state space 

 

𝒙 =

(

 
 
 

𝝀
𝝋
𝒛
𝒗
𝝌
𝜸)

 
 
 

, with 𝝀, 𝝋, 𝒛 being the longitude, latitude and altitude, 𝒗 being the 

optimal speed of the HAPS, 𝝌 and  𝜸 being the yaw and the climb angle.   
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Represented by fluents in the domain definition and are initialized in the 

problem definition 

 

(:functions 
  (lambda ?haps -haps)   
  (phi ?haps -haps) 
  (z ?haps -haps) 
  (speed ?haps -haps) 
  (chi ?haps -haps) 
  (gamma ?haps -haps) 
) 
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Control space 

 

𝑢 = (𝜒̇, γ)T, the control vector, with  𝜒̇ being the yaw rate and 𝜒 being the 

climb angle, selected from 

 

𝐴𝜒̇ = {−|𝜒̇max|, −|𝜒̇max| + Δ𝜒̇, … , |𝜒̇max| − Δ𝜒̇, |𝜒̇max|} and 

𝐴𝛾 = {−|𝛾max|, −|𝛾max| + Δ𝛾,… , |𝛾max| − Δ𝛾, |𝛾max| }, 

 

where Δ𝜒̇  and Δγ  denote the discretization step of the control space and 

| ∗max | the maximum magnitude.  

 

P
D

D
L

+
 Control parameters are chosen by the following actions 

 
The parameter ?haps -haps is to identify which HAPS the action is applied 

to. 

 

(:action increase_turn_rate 
  :parameters (?haps -haps) 
  :precondition  
    ((< (chi_rate ?haps)  
        (- (max_chi_rate ?haps) (delta_chi_rate ?haps))) 
  :effect  
    (and (increase (chi_rate ?haps)  
                   (delta_chi_rate ?haps))) 
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(:action decrease_turn_rate 
  :parameters (?haps -haps) 
  :precondition  
    ((> (chi_rate ?haps)  
        (+ (min_chi_rate ?haps) (delta_chi_rate ?haps))) 
  :effect  
    (and (decrease (chi_rate ?haps)  
                   (delta_chi_rate ?haps))) 
 
(:action increase_climb_angle 
  :parameters (?haps -haps) 
  :precondition  
    ((< (gamma ?haps)  
        (- (max_gamma ?haps) (delta_gamma ?haps))) 
:effect (and (increase (gamma ?haps)  
                       (delta_gamma ?haps))) 
 

(:action decrease_climb_angle 
  :parameters (?haps -haps) 
  :precondition  
    ((> (gamma ?haps)  
        (+ (min_gamma ?haps) (delta_gamma ?haps))) 
  :effect (and (decrease (gamma ?haps)  
                         (delta_gamma ?haps))) 
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Convex polygonal obstacles  

 

As explained in Section 3.2.3.1, an interior point 𝑝 = (𝜆, 𝜑) of a convex 

polygon lies on the same side of each edge 𝑖  of the polygon as an arbitrary 

interior point 𝑝int = (𝜆int, 𝜑int) , i.e. 𝑎𝑖𝜆 + 𝑏𝑖𝜑 ≤ 𝑐𝑖, if 𝑎𝑖𝜆int + 𝑏𝑖𝜑int < 𝑐𝑖, 
where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 are parameters of the edge 𝑖. Logically, a conjunction can be 

used to ensure that the inequality holds true for all edges:  

 

∧𝑖 (𝑎𝑖𝜆 + 𝑏𝑖φ ≤ 𝑐𝑖). 
 

The HAPS must not be an interior point of an obstacle, i.e. there must be at 

least an edge 𝑖, where  

 

𝑎𝑖𝜆 + 𝑏𝑖𝜑 > 𝑐𝑖. 
 

The latter can be tested using the following disjunction: 

 

⋁𝑖 (𝑎𝑖𝜆 + 𝑏𝑖φ > 𝑐𝑖). 
 

P
D

D
L

+
 The condition that at least one edge must exist, of which the HAPS does not 

lie on the same side as an interior point, can be encoded using the exists 

quantificator to test the disjunction. The disjunction is nested in a global 

constraint. 
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(:constraint convex_Cb_like_obstacle 
  :parameters (?obs -obstacle ?haps -haps) 
  :condition  
    (exists (?edge -edge ) 

          (> (c ?edge ?obs)  
             (+ (* (a ?edge ?obs) (lambda ?haps)) 
                (* (b ?edge ?obs) (phi ?haps)))))) 
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Linear movement of the convex polygonal obstacle 

 

As described in Section 3.2.3.1, the parameters of the edges can be updated 

with 

 

  𝑎(𝑡 + Δ𝑡) = 𝑎(𝑡),   

  𝑏(𝑡 + Δ𝑡) = 𝑏(𝑡), 

  𝑐(𝑡 + Δ𝑡) = 𝑐(𝑡) + 𝑏(𝑡)𝑣𝑤,N(𝑡) ⋅ Δ𝑡 + 𝑎(𝑡)𝑣𝑤,E(𝑡) ⋅ Δ𝑡.  

P
D
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The update of the 𝑐 edge parameter can be performed using an integration 

over time nested in an automated process. 

 

(:process update_dynamic_obstacle_edge_parameter 
  :parameters (?edge -edge ?obs -obstacle) 
  :precondition () 
  :effect  
    ((increase (c ?edge ?obs)  
               (+ (* (* (b ?edge ?obs) (wind_v ?obs)) #t) 

                (* (* (a ?edge ?obs) (wind_u ?obs))  
                   #t)))) 
 

Note that (a ?edge) and (b ?edge) are invariant. 
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Remain in a convex polygonal operation area 

 

HAPS must be an interior point of the operation area. Therefore, the 

conjunction  
∧𝑖 (𝑎𝑖𝜆 + 𝑏𝑖φ ≤ 𝑐𝑖)  must hold true, which, by De Morgan’s laws, the 

negation of the disjunction ⋁𝑖 (𝑎𝑖𝜆 + 𝑏𝑖φ > 𝑐𝑖). 
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The encoding is similar to a convex polygonal obstacle and can be expressed 

using the negation of a disjunction expressed with the exists operator. 

 

(:constraint in_operation_area 
  :parameters (?ops -operation_area ?haps -haps) 

:condition  
  (not (exists (?edge -edge ) 
       (> (c ?edge ?ops)  
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          (+ (* (a ?edge ?ops) (lambda ?haps)) 
             (* (b ?edge ?ops) (phi ?haps))))))) 
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Determine the optimal airspeed 

 

HAPS, as a fixed-wing aircraft, flies at the given optimal Equivalent AirSpeed 

(EAS) of ~9 m/s [Müller et al., 2018], which can then be scaled using the 

following equation to obtain the TAS at different altitude levels: 

 

𝑣TAS
∗ = 𝑣EAS

∗ ⋅ √𝜌0/𝜌(𝑧), 
 

where 𝜌(𝑧) and 𝜌0 are respectively the ambient and seal level air densities 

given by the International Standard Atmosphere.  
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If the optimal TAS must be determined at each time instant, due to varying 

pressure (because of the varying altitude), an event can be used. 

 
(:event determine_optimal_airspeed 
  :parameters (?haps -haps ?z_level -z_level) 

:precondition (and (<= (z ?haps)  
                       (z_max ?altitude_level)) 
                      (> (z ?haps) (z_min ?z_level))) 
:effect  
  (and (assign (speed ?haps)  
               (* (speed_eas ?haps)  
                  (^ (/ (rho_0) (rho ?z_level)) 0.5)))) 
 

The precondition is to check at which altitude level the HAPS is currently. 
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Keep track of time 

 

In temporal planning, it is also essential to keep track of the system time, 

which in a discrete world is simply performed by incrementing the time 

variable 𝑡𝑖𝑚𝑒 (𝑛 + 1) = 𝑡𝑖𝑚𝑒(𝑛) + Δ𝑡. 
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The automatic update of the system current time can be encoded as a process.  

 
(:process update_current_time 
  :parameters () 
  :effect(increase time #t)) 
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Determination of the wind vector  

 

The four-dimensional wind field provided can be viewed in the physical space 

as a polytope shown in Figure 25. Some polytopes have identical rectangular 

upper and lower base, while others are convex polygonal.  
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Figure 25. Visualization in 3D of the polytope of a windfield cell 
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Like the optimal TAS, the wind vector acting on the HAPS can be assigned 

at each time instant with values taken from the weather forecast data. An event 

can be used to determine in which four-dimensional wind grid cell the HAPS 

is situated, and thereby also the wind vector. 

 
(:event determine_u_wind 
  :parameters (?haps –haps ?wind_grid -wind_grid    

             ?z_level -z_level  
             ?time_interval -time_interval) 
:precondition (and 
  (< (z ?haps) (z_level_max_bound ?z_level)) 
  (>= (z ?haps) (z_level_min_bound ?z_level)) 
  (< time (end_time_interval ?time_interval))  
  (>= time (start_time_interval ?time_interval)) 
  (not (exists (?edge -edge ) 
       (> (c ?edge ?wind_grid)  
          (+ (* (a ?edge ?wind_grid) (lambda ?haps)) 
          (* (b ?edge ?wind_grid) (phi ?haps)))))) 

  :effect (and  
    (assign (north_wind ?haps)  

     (north_wind ?wind_grid ?z_level ?time_interval)) 
  (assign (east_wind ?haps)  
     (east_wind ?wind_grid ?z_level ?time_interval)))) 
 

The exists operator is used for the case where the wind grid in the three-

dimensional space has cells of convex polygonal bases. If the bases are 

rectangular, simple inequalities are sufficient to determine the wind grid in 

which the HAPS is situated: 

 
 (>= (lambda ?haps) (lambda_min ?wind_grid)) 
 (< (lambda ?haps) (lambda_max ?wind_grid)) 
 (>= (phi ? haps) (phi_min ?wind_grid)) 
 (< (phi ? haps) (phi_max ?wind_grid))) 
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 Equations of motion  

 

Update of heading 

𝜒(𝑡 + 1) = 𝜒(𝑡) + 𝜒̇(𝑡 + 1)Δ𝑡, where 
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𝜒̇(𝑡 + 1) = 𝜒̇(𝑡) + Δ𝜒̇  

 

Update of longitude 

𝜆(𝑡 + 1) = 𝜆(𝑡) + 𝜆̇(𝑡 + 1)Δ𝑡, where 

𝜆̇(𝑡) =
𝑣w,E(𝑡)+𝑣TAS

∗ cos𝛾(𝑡) sin(𝜒(𝑡))

(𝑅+𝑧ℎ(𝑡)) cos𝜑(𝑡)
  

  

Update of latitude 

𝜑(𝑡 + 1) = 𝜑(𝑡) + 𝜑̇(t + 1)Δ𝑡, where 

𝜑̇(t) =
𝑣w,N(t)+𝑣TAS

∗ cos𝛾(𝑡) cos(𝜒(𝑡))

𝑅 + zℎ(𝑡)
  

 

Update of altitude 

𝑧(𝑡 + 1) = 𝑧(𝑡) + 𝑧̇(t + 1), where 

𝑧ℎ̇(t) = 𝑣w,U(t) + 𝑣TAS
∗ sin 𝛾(𝑡)  
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 The position and attitude of the HAPS can be updated using automated 

processes. #t is the integration time step.  

 
(:process update_heading 
  :parameters (?haps -haps) 

:precondition () 
:effect (and (increase (chi ?haps) (chi_rate ?haps)))) 

 
(:process update_longitude 

:parameters (?haps -haps) 
:precondition () 
:effect  
  ((increase (lambda ?haps)  
             (* #t (/ (+ (* (speed ?haps)  
                            (* (cos (gamma ?haps))  
                               (sin (chi ?haps)))) 
                         (east_wind ?haps)) 
                       (* (+ R (altitude ?haps)  
                          (cos (phi ?haps))))))))) 
 

(:process update_latitude 
  :parameters (?haps -haps) 

:precondition () 
:effect  
  ((increase (phi ?haps)  
             (* #t (/ (+ (* (speed ?haps) 
                            (* (cos (gamma ?haps))  
                               (cos (chi ?haps)))) 
                          (north_wind ?haps)) 
                       (+ R (z ?haps))))))) 

 
(:process increase_altitude 
  :parameters (?haps -haps) 

:precondition () 
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:effect  
  ((increase (z ?haps)  
             (* #t (+ (* (speed ?haps)  
                         (sin (pitch ?haps)))  
                      (up_wind ?haps)))) 

 

 HAPS Flight Path Planning Problem Using an Automated AI Planner 

While quite a number of domain-independent planners have been developed for some 

fragment of the PDDL+ semantics [Gerevini et al., 2003; Della Penna et al., 2010; 

Coles et al., 2012; Cashmore et al., 2016], only until recently domains with non-linear 

dynamics have been supported more effectively [Piotrowski et al., 2016; Scala et al., 

2016], i.e. 𝑓 in Equation 3-2 is non-linear, due to Equations 3-3 to 3-6. In particular, 

Expressive Numeric Heuristic Search Planner (ENHSP) [Scala et al., 2016] offers 

support to trigonometric functions and global constraints, which are of critical 

importance to our application, as can be observed from the automated processes used 

to update the HAPS configuration in Table 11. 

 
ENHSP21 is a heuristic search forward state planner expanding the tree rooted at 

the initial state [Ghallab et al., 2004; Geffner and Bonet, 2013]. Like many automated 

planners, ENHSP uses heuristic (an approximated cost) to accelerate the search for a 

plan. However, completeness and optimality are not guaranteed. The heuristic 

component of ENHSP is a general algorithm that computes automatically and 

efficiently a relaxation of a given planning problem 𝐻 (Definition 3-1) for each state 

in the search tree. The relaxed problem is often represented by 𝐻+, in which the 

reachable values of the numeric variables are approximated and bounded. Such 

relaxation technique is also known as interval-based relaxation and is used by many 

numeric planners [Hoffmann, 2003; Scala et al., 2016], since it reduces the 

complexity of the automated planning [Aldinger et al., 2015]. 𝐻+ is then readily 

solved by whatever methods deemed suitable to produce a heuristic estimate of the 

sequence of transitions required to reach goal states.  

 

ENHSP heuristic component, the Additive Interval-Based Relaxation (AIBR) 

heuristic, has been shown experimentally to provide effective guidance, thus limiting 

the size of the search tree considered over a very diverse set of domains [Scala et al., 

2016]. ENHSP includes many search methods, namely the weighted A*, greedy 

weighted A* (i.e. with a quadruple times weighting on the heuristic), greedy best-

first search, depth-first search, uniform cost search, enhanced hill climbing. 

 

Also configurable in ENHSP is the integration time step #t and can be set different 

for the search (search time step #ts) and for the plan validation (validation time step 

#tv), in which the state is properly determined and the constraints (e.g. collision with 

an obstacle) are checked. By setting a bigger #ts, the complexity of the search is 

reduced. By setting a reasonably small #tv, the computed plan deviates less from the 

execution, since the flight controller usually works at a smaller integration time step; 

furthermore, small obstacles will not be missed. 

 

                                                 
21 ENHSP is available on https://gitlab.com/enricos83/ENHSP-Public.  

https://gitlab.com/enricos83/ENHSP-Public
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As shown in Figure 24, the HAPS system dynamic is encoded formally in the 

domain file, while the variables of the system are instantiated in the problem file. 

Although PDDL is a modelling language for domain-independent planners, the 

currently available automated planners unfortunately cannot cope with large 

problem. The modelling of the problem must be carried out in a way so compact that 

only necessary actions and variables are involved. For example, during the operation, 

the HAPS maintains its flight altitude; it is therefore more efficient to leave out the 

climb angle and set the altitude to a constant. The handbook by Haslum et al. [Haslum 

et al., 2019] provides more details about the encoding of PDDL and how it affects 

the planning efficiency, together with reports on the usability of PDDL, as well as 

the difficulties one might face.  

 

  

  
  

Figure 26. Path planning in the presence of wind and moving obstacles 

Figure 26 shows a planned path from a start to a goal position in the presence of 

wind, while avoiding two moving obstacles. The wind vectors were randomly 

generated for the four grid cells, with (𝑣𝑤,E, 𝑣𝑤,N) being (4.9388,−0.44205) at the 

upper-left cell, (−3.119, 2.3049) at the upper-right cell, (2.5775,−2.2143) at the 

lower-left cell, and (−3.3729,−2.6587)  at the lower-right cell. The convex-

polygonal obstacles are dynamic and move linearly along the wind. Their position 

can be updated using Equation 3-9. In the figure, the obstacles shown in red are the 

current positions, while in light gray are the initial positions. The #ts and #tv were 

set to 100 s and 1 s respectively. The plan to fly from the start (marked with a yellow 

circle) to the goal (marked with a yellow diamond) was obtained within 3 s. 
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Since the performance of the planner also depends on the planer configuration, 

systematic tests on the performance of ENHSP were carried out. The next subsection 

reports the systematic performance tests and analyses the obtained results, 

specifically on how a “fine tuning” in the implementation can improve the planning 

efficiency. Additionally, a benchmarking against the RRT-based motion planner 

from OMPL will also be reported. Section 7.2.1 will be dedicated to proving the 

correctness of the problem model by demonstrating the executability of the computed 

flight plans.  

3.3.3.1 Systematic Performance Tests and Benchmarking 

Hooker suggested in [Hooker, 1995] that comparing performance (i.e. planning time) 

between planners is not the sole means to measure the efficiency of the heuristics 

used in the planners, as such comparison could be biased, since the planner that is 

compared against may not be tuned or engineered properly for the problem in 

question. On the other hand, in many cases, systematic tests are more constructive to 

help to understand how the heuristic performs, and why it fails with one problem but 

excels with another. With the knowledge on the behavior of the heuristic, it can be 

exploited and engineered properly to help improve planning performance.  

 

Although heuristic is not the main focus here, the idea from Hooker briefly 

mentioned above is adopted in this work. Given that ENHSP is used off-the-shelf, it 

is necessary helpful to understand the behavior of the planner, hence allowing better 

engineering in the problem modelling. To evaluate the robustness of ENHSP in 

handling the problem, systematic tests were performed by generating a variety of 

instances, differing in each set only one test parameter setting. The parameters used 

to test the performance of the planner are the dimension of the operation area, wind 

magnitude, number of obstacles, obstacle occlusion ratio, distance from the goal, and 

initial bearing with respect to the goal. The latter is the angle difference 𝑏 between 

the initial course heading of the HAPS and the heading of the initial start-goal vector, 

as shown in Figure 27. 

 

The tests were performed assuming a constant altitude at 18 km, an optimal EAS 

of 𝑣EAS
∗  = 9.68 m/s, and as Earth radius 𝑅𝐸 = 6371.28 km. 

 

 
 

Figure 27. Initial bearing 
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Performance Tests in Wide Operation Areas 

In this set of test configurations, no obstacle is present. The aim is to test the planning 

efficiency of ENHSP with different search time step #ts for different distances to 

goal and different initial bearings to goal 𝑏. The start-goal distances selected are 

reasonable for the use case shown in Figure 10.  

 

Table 12. Parameter configuration for performance tests  

in wide operation areas  

#ts #tv 𝒃 𝒅𝐒𝐆 TO 

{30, 100, 150} s 1 s {20, 100, 180} ° {30,50,80,110,140} km 5 s 

 

 

 
a. Wide area 

 

 
 

b. Narrow area 

 

Figure 28. Wide and narrow operation areas used for the tests 

A test configuration is a combination of the parameter values taken from the 

corresponding parameter value sets in Table 12. Each bar of Figure 29 indicates a test 

configuration; for each configuration, 20 tests were run, each with randomly chosen 

configuration parameters that are not fixed yet, namely the dimension of the operation 

area and the wind vector. A wide operation area is a quadrilateral area like the mission 

areas shown in Figure 10. For the tests, a wide area takes the form of the quadrilateral 

area shown in Figure 28a, where the edge dimensions 𝑑edge∗ are selected randomly 

within the range [2 ⋅ 𝑑SG, 4 ⋅ 𝑑SG], with 𝑑SG being the start-goal distance. The wind 

magnitude is selected randomly at each test between 0-5 m/s, which is usual at 

altitudes of ~ 18 km).  
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a. #ts = 30 s 

 

b. #ts = 100 s 

 

c. #ts = 150 s 

Figure 29. Success rate to plan within 5s in a wide operation area for 

different distances from start to goal and different initial bearings 

{𝟐𝟎°, 𝟏𝟎𝟎°, 𝟏𝟖𝟎°}  

Empirical observations show that in the absence of obstacles, a plan is obtained 

within a few seconds, or the search could take an unreasonable (i.e. several minutes 

or up to several hours) or eventually an infinite amount of time. Furthermore, for 

practical reasons, obtaining a point-to-point flight path plan from a start to a goal 

position within seconds is necessary, since within the complete mission planning time 

(i.e. maximum 15 minutes) allocated for calculating a plan that spans the day, 

multiple point-to-point flight path planning is required (see Section 7.1). In the 

experiments, and also in the implementation (described in Section 7.1), the planning 

time out for finding a flight path plan from a start to a goal position is set to 5 seconds. 

The performance tests were conducted to evaluate the success rate in computing a 

plan within the imposed planning time out.  

 

Figure 29 shows the test results of the performance of the planner for a flight path 

planning from a start to a goal position in a wide operation area at a constant altitude, 

reducing thereby the problem to two dimensions. The search time step #ts selected 
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are 30, 100 and 150 seconds. As visible in Figure 29, a bigger search step improves 

tremendously the planning efficiency, especially when the distance to the goal is 

larger. The results confirm the expectation that the bigger the search time step is, the 

smaller the search space is, thereby the less complex the search is. However, if the 

distance to the goal is 50 km, a #ts of 100 s is preferred. 

Performance Tests in Narrow Operation Areas 

The planner however behaves differently in a narrow operation area, i.e. the smallest 

diagonal of the quadrilateral operation area is smaller than the start-goal distance. 

Figure 30 shows the success rate of finding a plan within 5 seconds with the same 

parameter variation as the previous set of tests. The operation areas are reduced in 

this set of tests to narrow corridor-like areas, as shown in Figure 28b, with 𝑑edge2 

being selected randomly from [1.1 ⋅ 𝑑SG, 1.3 ⋅ 𝑑SG] , while 𝑑edge2  being selected 

randomly from [0.3 ⋅ 𝑑SG, 0.8 ⋅ 𝑑SG] . The operation area must be rotated or 

repositioned so that the start and goal points are included.  

 

 
 

a. #ts = 100 s 
 

 

b. #ts = 150 s 

 

Figure 30. Success rate to plan in a corridor-like narrows space  

from start to goal within 5 s 

 

The planning performance deteriorates significantly with larger search step, and 

also with larger initial bearing to goal 𝑏, as seen in Figure 30. Acceptable planning 

performance is achieved only with a #ts set to 100 s for problems where the initial 

bearing to goal is less than 20°, and where the distance to goal is less than 50 km. A 

viable explanation is that a bigger search time step can lead to a frequent overstepping 

of the boundaries of the narrow operation area without a chance to turn around before. 

Having identified and proven the inadequacy of the planner for other problem 

settings, it is therefore essential to amend the planner for better planning performance, 

by developing a wrap-around framework to call the planner iteratively, as described 

in Section 3.3.3.2. 
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Performance Tests in the Presence of Obstacles 

Another interesting test result with respect to the performance in the presence of 

obstacles is shown in Figure 31. The tests were performed in a wide operation area 

by fixing the number of obstacles (i.e. two or five obstacles) in each set of tests, whilst 

varying the obstacle occlusion ratio in the search space 𝑜𝑐𝑐 = Σ𝑖𝐴𝑜𝑏𝑠𝑖/𝐴operation, 

where 𝐴𝑜𝑏𝑠𝑖 is the surface area of obstacle 𝑖, and 𝐴operation is the surface area of the 

wide operation area. Therefore, for the same occlusion ratio, the smaller the number 

of obstacles is, the larger the obstacles are. Similar to the tests conducted in obstacle-

free operation areas, empirical observations show that flight path plans in a wide 

operation area in the presence of obstacles are either obtained within a few tens of 

seconds up to a minute, or the planning time takes an unreasonable or eventually an 

infinite amount of time. The timeout for planning in the presence of obstacles in the 

tests is set to one minute; the success rate of finding a plan within the timeout is 

summarized in Figure 31. 

 

The planning success rate reduces with increasing obstacle occlusion. However, 

in the case of only two obstacles, the success rate decreases more than in the case of 

five obstacles, mainly due to the size of the obstacles. The AIBR heuristics of the 

planner guides the search toward the goal. However, if a large obstacle happens to be 

in the way, it is harder for the planner to go round it, since the heuristic determination 

using AIBR does not consider the global constraints [Scala et al., 2016]. 

 

 
 

a. 2 obstacles 

 

 
 

b. 5 obstacles 

Figure 31. Performance of the planner with respect to obstacles occlusion 

ratio in the case of two and five obstacles respectively 

Benchmarking with RRT from OMPL 

While it is not the aim of this subsection to prove that ENHSP is better than any 

existing motion planners to solve a task and kinodynamic planning problem, the 

benchmarking performed is intended to put forth the usability, by showing 

comparable or reasonable performance with respect to another standard motion 

planner suitable for solving this class of problem: the control-based RRT from OMPL 

[Sucan et al., 2012]. This planner is chosen for its standardized API that allows the 
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modelling of a system be independent from the planner, as explained in Section 3.2.4, 

and can therefore be used off-the-shelf like ENHSP. Other motion planners, with 

some or much tuning, may also be suitable candidates to solve the HAPS flight path 

planning problem. However, as pointed out by Hooker in [Hooker, 1995] in the 

context of heuristics testing, yet applicable for other forms of benchmarking tests, the 

implementation of a method/solver also affects the fairness of the benchmarking, 

since the tuning of the benchmarking planner will not be properly refined, resulting 

hence in probably much worse performance.  

 

Note that RRT in OMPL is implemented as an anytime planner, i.e. planning is 

performed until timeout and the plan found closest to the goal is provided. For the 

benchmarking tests, a planning attempt is considered successful only if the end 

position is within three search time steps to the goal, i.e.  

 

‖𝑝 − 𝑝goal‖ = 3 ⋅ 𝑡𝑠 ⋅ 𝑣TAS,   3-13 

 

where ‖ ⋅ ‖2 denotes the Euclidean norm. Similar goal condition is also set in the 

PDDL+ problem instance file. The timeout is set to 5 s for both planners for tests 

without obstacles and 3 minutes in the presence of obstacles. As a reminder, the 

timeout for ENHSP is just a timely cut-off point to build the statistics of the planning 

success rate, while the actual planning time could be shorter or longer than the 

timeout duration.  

 

The flight path planner is first tested without the presence of obstacle in three 

different settings, namely wide, fitting and narrow operation area. Wide and narrow 

operation areas bear the same configuration as described before (see Figure 28), while 

a fitting operation area consists of a quadrilateral area similar to the wide area in 

Figure 28a, but with 𝑑edge∗ = [1.1 ⋅ 𝑑SG, 1.3 ⋅ 𝑑SG]. For each type of operation area, 

the tests are grouped into three sets, as according to the start-goal distance, i.e. 0-50 

km (‘]0,50]’), 50-100 km (‘]50,100]’) and 100-150 km (‘]100,150]’). The wind field 

in the operation area bears a magnitude of less than 5 m/s.   

 

Again, for each test configuration, 20 settings were randomly generated, with the 

wind vector set randomly, and the exact start-goal distance chosen randomly within 

the given range. Four planner configurations are in used to test each setting: 

1. control-based RRT from OMPL with a search time step of 1 s, 

2. control-based RRT from OMPL with a search time step of 1 s, 

3. ENHSP with a search time step #ts  of 30 s and a validation time step #tv of 

1 s; 

4. ENHSP with a search time step #ts of 150 s and a validation time step #tv 

of 1 s.   

 

The planning performance varies with different search steps. The performance of 

the planners is evaluated using the success rate of obtaining a plan within timeout 

(i.e. 5 s without obstacle and 3 min in the presence of obstacles), as summarized in 

Table 13.  
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Table 13. Success rate of obtaining a plan within 5 s timeout for point-to-

point kinodynamic motion planning  

a. without obstacles 

Distance to goal 

[km] 

Wide area Fitting area 
[0,50] ]50,100] ]100,150] [0,50] ]50,100] ]100,150] 

RRT  

#ts = 30 s 

0.02 0.01 0.01 0.88 0.65 0.23 

RRT 

#ts = 150 s 

0.04 0.02 0.01 0.94 0.98 1 

ENHSP  

#ts = 30 s, 

#tv = 10 s 

0.73 0.15 0.02 0.78 0.25 0.11 

ENHSP  

#ts = 150 s,  

#tv = 10 s 

0.95 1 1 0.96 1 1 

Distance to goal 

[km] 

Narrow area  
[0,50] ]50,100] ]100,150] 

 

RRT  

#ts = 30 s 

0.92 0.89 0.85    

RRT  

#ts = 150 s 

0.98 0.89 0.88    

ENHSP 

#ts = 30 s, 

#tv = 10 s 

0.65 0.52 0.48    

ENHSP  
#ts = 150 s, 

#tv = 10 s 

0.28 0.17 0.06    

 

b. with obstacles 

Distance to goal [km] Wide area, Distance to goal ]100, 

150] 
𝑜𝑐𝑐 = [0,30] 𝑜𝑐𝑐 = ]30,50] 

RRT  

#ts = 150 s 

0.04 0.05 

ENHSP  

#ts = 150 s, #tv = 10 s 

0.87 0.58 

 

RRT performs comparably as ENHSP in the case of a fitting operation area, and 

even outperforms ENHSP in narrow operation areas. However, in a wide operation 

area, RRT suffers due to the lack of heuristic to guide the search towards the goal, 

resulting hence in the random search algorithm “getting lost” in the vast search space. 

ENHSP, on the other hand, does not require an additional definition of heuristic. 

Thanks to the integrated AIBR, a heuristic is generated for each set of problem, thus 

the search is guided towards the goal and a larger dimension of the operation area 

does not affect the search efficient much. Although there are reportedly many 

heuristics that could be defined for a more efficient biased search using [Urmson and 
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Simmons, 2003], they were tested mainly for grid-world path planning problems 

without the presence of a vector field.  

 

Subsequent tests were performed in the presence of obstacles in a wide operation 

area, with an obstacle occlusion of 0-30% (𝑜𝑐𝑐 = [0; 30] ) or 30-50% (𝑜𝑐𝑐 =
]30;  50]). Only wide operation areas are tested, since due to safety purposes, a HAPS 

is allowed to fly in a narrow area only at the absence of obstacles, as there might not 

be enough space to fly around the obstacles (see MC1 of Table 8). The success rate 

for ENHSP drops, but remains at a satisfactory level, as shown in Table 13, especially 

for 𝑜𝑐𝑐 = [0; 30], which is also the usual case in an operation, or the operation will 

be aborted due to high risk of collision.  

 

It is also worth noting that, for the same search time step, the length of the plans 

in terms of travel time obtained using RRT or ENHSP during the tests is comparable, 

i.e. the plan quality is almost as good with both planners, without having a clear 

winner. 

 

The benchmarking tests show that a kinodynamic flight path planning using 

ENHSP is not unreasonable, and even beneficial, especially in wide operation areas. 

In narrow corridor-like areas, however, regardless of the fact of RRT outperforms 

ENHSP, the usability of ENHSP in narrow areas must be improved. The next 

subsection shows an increase in planning efficiency using an implementation 

framework to call ENHSP in a “receding horizon” fashion. 

 

3.3.3.2 Fine Tuning for More Performance 

From the observed performance of the planner shown in Figure 29, the search step 

for planning within a MA or WA using ENHSP is set to 150 s if the start-goal distance 

is larger than 80 km and 100 s otherwise. An advantage of using ENHSP is that the 

search step and the validation step can be set separately. Therefore, even if the 

explored nodes are spaced quite far apart, the smaller obstacles between nodes will 

not be missed since the plan validation is performed with a smaller step.  

 

Owing to the test results depicted in Figure 30, in the case where the search is to 

be performed within a narrow search space (e.g. a corridor-like operation area), the 

search step is set to 100 s. However, if the initial bearing to goal 𝑏 is larger than 30°, 

the efficiency of ENHSP drops drastically, as shown in Figure 30. An iterative call 

to the planner can improve vastly the planning efficiency [Kiam et al., 2018]. The 

planner will be called iteratively to first reduce the bearing by imposing subgoals 

placed between the start and goal positions, so that the course heading of the HAPS 

approaches the heading of the HAPS-goal vector. Algorithm 3-2 describes how 

ENHSP is called iteratively. 

 

The main purpose of Algorithm 3-2 is to relax the goal condition, by imposing at 

each call to ENHSP, that the bearing 𝑏  be reduced, while approaching the goal. 

ENHSP at each call intends to plan a path from the HAPS initial position 𝑝init. Before 

each call to ENHSP, the bearing 𝑏init between the current course tangent and the 

vector between the initial and the goal position (see Line 5 and Line 20) is 

determined. If the magnitude of the bearing is larger than 20°, instead of setting the 

desired goal position as a goal condition for the planner, subgoals are imposed, which 
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consist of two conditions (Line 7-15 of Algorithm 3-2). The first one intends to 

approach the goal position. If the distance between the initial position and the goal 

position 𝑑IG is larger than 50 km, the subgoal must be place 50 km from the initial 

position 𝑝init (see Line 12); if 𝑑IG is smaller than 50 km, it is sufficient that 𝑑IG be 

reduced (see Line  10), resulting in the HAPS approaching the goal. The second 

subgoal condition is to reduce the bearing to goal by 20° at each call to the planner 

(see Line 15).  

 

The problem file is parsed with the conditions to achieve the subgoals and ENHSP 

is called recursively and stops when the magnitude of the bearing is smaller than 20° 

(see Line 6). If the goal is still not reached (see Line 22), ENHSP will be called to 

compute a plan to the goal. The goal position is considered reached if the condition 

described by Equation 3-13 is fulfilled.  

 

 

Algorithm 3-2  Iterative planning with relaxed subgoals 

Require  HAPS start position vector 𝑝start , goal position 

vector 𝑝goal 

1: % assign initial position vector 

2: 𝑝init = 𝑝start  
3: % determine distance to goal 

4: 𝑑 = ‖𝑝goal − 𝑝init‖2
  

5: determine bearing 𝑏init, the angle difference between initial 

course heading and the heading of the vector connecting the 

initial and the goal position 

6: while 𝑘 = ⌊
𝑏init

20°
⌋ > 1 do 

7: 

8: 

9: 

10: 

11: 

12: 

14: 

15: 

set subgoal conditions to: 

  if ‖𝑝init − 𝑝goal‖2
< 50 

1) ‖𝑝HAPS − 𝑝goal‖2
< ‖𝑝init − 𝑝goal‖2

 

  else 

1) ‖𝑝HAPS − 𝑝goal‖2
< ‖𝑝init − 𝑝goal‖2

− 50 km 

  end if 

2) |𝑏| < |𝑏init| − 20° 
16:     parse problem instance and call ENHSP 

17: % assign the last HAPS position as the initial position vector 

18:     𝑝init = 𝑝HAPS  
19:     𝑑 = ‖𝑝goal − 𝑝init‖2

  

20:     determine initial bearing 𝑏init = 𝑏 

21: end while 

22: if  ‖𝑝HAPS − 𝑝goal‖2
< 3 ⋅ 𝑡𝑠 ⋅ 𝑣TAS     

23: 

24: 

    set goal condition to  

    ‖𝑝HAPS − 𝑝goal‖2
< 3 ⋅ 𝑡𝑠 ⋅ 𝑣TAS 

25: end if 

 

The framework is hence implemented in a receding horizon fashion, not exactly 

the receding horizon approach in control theory, but similar to other receding horizon 
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path planning methods, such as the Lazy Receding Horizon A*  [Mandalika et al., 

2018] implemented for a static world, in which the exact planning is performed only 

for the next upcoming steps, while “looking ahead” beyond these steps so that the 

agent approaches the goal. The lookahead in the recursive call to ENHSP is assured 

by the subgoal conditions listed in Line 7-1, forcing the HAPS to approach the goal 

at each iteration, while the plans from the start position are being piecewise computed 

by the planner.  

 

 Task Planning Problem  

Since the mission requirements are time-dependent and the environment is time-

varying, a numeric flight path planning is necessary to estimate the travel time and to 

avoid dynamic obstacles in the mission planning for HAPS. However, the mission 

planning problem described in Section 2.1.3 and depicted in Figure 10 and Figure 11, 

cannot be solved using solely a Single-Source Shortest-Path (SSSP) planner, as many 

mission-related requirements (MR) and constraints (MC) are expressed at a higher 

abstraction level by considering a MA or a LoI as a unit (see Table 8 and Table 9), 

i.e. the abstraction level for the physical space is higher, or rather the resolution of 

the space discretization is lower. To represent these MR and MC at a numeric level 

is either semantically challenging or algorithmically complex for the search. Many 

similar works rely on a task planner (to schedule at a higher level), loosely-coupled 

with a motion planner (to compute a more an exact, or executable plan) [Lima et al., 

2018; Cashmore et al., 2015; Srivastava et al., 2014], in which PDDL planners are 

mostly used for task planning. One of the drawbacks of a loosely-coupled approach 

is the incoherence of the two planners, leading to probably frequent replannings in an 

environment with many constraints and dynamics. 

 

Nevertheless, the previous subsections demonstrated the capability of a PDDL-

based automated planner to solve a motion planning problem. It is hence reasonable 

to question if the task and motion planning problem can be solved in a tightly-coupled 

fashion by using a PDDL+ planner? 

 

3.3.4.1 Can PDDL+ be Used for Task+Motion Planning? 

PDDL is known for classical planning [McDermott, 2000; Fox and Long, 2003; 

2006; Ghallab et al., 2004]. In PDDL+, a typical action to perform a task can be 

formulated for example as in Figure 31, in which a robot ?r is commanded to perform 

a task ?t. The effect of the action is to validate the predicate that the task ?t is cleared 

(cleared ?t). With the precondition (not (cleared ?t)). With this explicit 

precondition, a task cannot be repeatedly cleared. It is worth noting that by using the 

parameterization of the PDDL+ semantics, the formulation allows any robot ?r to 

clear any task ?t, thereby enabling the concise encoding of planning problems with 

multiple tasks and multiple robots. 

 

In order to test the viability of a tightly-coupled task+motion planning using 

PDDL+ planners, a less complex mission scenario involving less mission constraints 

and requirements is used, as illustrated in  Figure 33, yet conform with some aspects 

of the setting of the targeted mission scenario depicted in Figure 10 and Figure 11. In 

this scenario, multiples HAPS operate in a quadrilateral wide area encompassing 

Points of Interest (PoI, marked as yellow triangles) to monitor. It is assumed that no 
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wind and no obstacle is present. The aim is to determine the shortest plan in terms of 

mission duration to cover all the PoI. Furthermore, as a simplification of mission 

constraints, the mission duration is assumed unlimited, i.e. the HAPS can take as long 

as they need to cover all the PoI. The formulation of the flight dynamics and search 

space are similar to Table 11. Additional action definition and inter-HAPS collision 

avoidance must however be included. The formulation of these are provided in Table 

14. 

 

 (:action clear-task 

    :parameter (?r -robot ?t -task) 

    :precondition (not (cleared ?t)) 

    :effect (and (cleared ?t))) 

 

Figure 32. Formulation in PDDL+ of an action  

to carry out a task non-repeatedly 

 

 
 

Figure 33. A typical airspace structure defined for repetitive monitoring 

tasks 

 

Table 14. Formulation in PDDL+ for multiple HAPS and multiple tasks 

Action to clear the monitoring task of a POI without repetition can be formulated 

similarly to Figure 31. 

 

(:action clear-poi 
  :parameters (?h -haps ?p -poi) 
 :precondition (and (can-monitor ?h) 
           (not (cleared ?p))) 
 :effect (and (cleared ?p)) 
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Constraint to avoid collision between two different HAPS is drawn by imposing a 

minimum distance 𝝐 between two non-identical HAPS: 

 

‖𝒑𝐇𝐀𝐏𝐒𝟏 − 𝒑𝐇𝐀𝐏𝐒𝟐‖𝟐 < 𝝐 

 

 

(:constraint collisions-haps 

  :parameter (?h1 -haps ?h2 -haps) 

  :precondition  

    (and (not (different ?h1 ?h2)) 

         (> (^ (+ (^ (- (longitude ?h1) (longitude ?r2)) 
2) 

                  (^ (- (latitude ?h1) (latitude ?h2)) 2) 
0.5) 

             epsilon)) 

 

The precondition tests if ?h1 and ?h2 are the same HAPS. The predicate of two 

different HAPS is encoded in the problem instance file for every pair of initiated 

non-identical HAPS. 

 

Goal condition imposes that all PoIs be covered. The following shows the goal 

condition to be formulated in the case where three PoI are involved. 

The goal condition(s) is encoded in the problem instance file. The following is an 

example goal condition to clear three PoI. 

 
(:goal 
 (and 
     (cleared p1) 
     (cleared p2) 
     (cleared p3))) 
 

 

Table 14 shows that the formulation of scheduling for multiple tasks and multiple 

HAPS in PDDL+ is possible, therefore a tightly coupled task+motion planning is also 

potentially feasible. However, when more than one HAPS or one PoI to clear is 

involved, ENHSP has relatively low success rate. The tests on the planning efficient 

of ENHSP for multi-HAPS, multi-PoI were conducted based on 20 randomly 

generated problem instances, i.e. randomly placed PoI and initial positions of the 

HAPS, as well as randomly generated (wide or narrow) operation areas. ENHSP was 

configured to use the AIBR heuristic [Scala et al., 2016], as in the previous tests. 

Empirically observed, if planning is successful, a plan is either found within a minute, 

except for a few outliers with a few minutes of planning time. Therefore, a timeout 

of 15 minutes was set for the tests. Figure 34 depicts the success rate to plan using 

ENHSP.  
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It is interesting to note that when two PoI are involved, the success rate with only 

one HAPS is much lower than with two. A viable explanation is that the heuristic 

guides the HAPS to different PoI, resulting in a never-ending plan search if the PoI 

are placed far apart. With three PoI, the success rate suffers even more. The test 

results proved that, although the encoding of the model is possible, and that AI-

planners can potentially be used to solve task and kinodynamic motion planning 

problem in a tightly-coupled manner, it is (almost) impossible to scale up, not even 

with the state-of-the-art PDDL+ planners, on more tasks (i.e. PoI to clear) or more 

agents (i.e. more HAPS), not even for this simple scenario.  

 

 
 

Figure 34. Success rate with respect to the number of POIs (number of 

tasks) 

 

[Gaschler, 2016] developed a set of predicates for symbolic-geometric mapping, 

the goal of which is to call an external function or procedure to perform some 

geometric planning nested within a symbolic planner like PDDL. Although it helps 

to curb some shortages in symbolic planners, e.g. geometric formulations, 

computation complexity, etc., its structure still remains loosely coupled and is quite 

rigid to be adapted for tightly-coupled task+motion planning. Furthermore, the 

geometric predicates are quite limited and not tested for temporal symbolic planners. 

It is hence advisable to proceed on coupling the numeric flight path planner with an 

additional task planner like in [Siddharth Srivastava et al., 2014] to solve the mission 

planning problems depicted in Figure 10 and Figure 11, which is the core the works 

described in the following chapters. 
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“Different problems require different tools and techniques.” 

- John Horgan cited Rolf Landauer in The End of Science 

4 Hierarchical Task Planning for HAPS 

Often, planning is not performed at one go, but in several modules in order to achieve 

better performance in terms of planning time or for better results, like [Schmitt and 

Schulte, 2016], in which a classical planner is used for performing combinatorial 

search, while a constraint-optimization solver is used for fast linear optimization. As 

pointed out at the end of the previous chapter, a tightly-coupled task+motion planning 

using PDDL+ compatible AI planner does unfortunately not scale for more complex 

problems involving multiple tasks or multiple HAPS, even though the PDDL+ 

supports the formulation of a task+motion planning problem. It is hence reasonable 

to proceed using a loosely-coupled hybrid22 approach to perform the task and the 

motion planning in separate modules. Planning for autonomous driving in urban 

traffic in [Srivastava et al., 2014] for example, also uses a classical two-tier approach, 

involving first the strategic planning level for optimal routing, followed by a tactical 

planning level that decides for how the car drives along the routes.  

 

In this section, the two-tier planning approach for HAPS is described: a task 

planning method developed for the strategic planning level, together with its coupling 

with the numeric flight path planner described in the previous chapter at the tactical 

level. The task planning for a single HAPS is considered here. The extension to 

multiple HAPS will be tackled in the next chapter.  

 

At the strategic level, the task planner reasons with meta-actions over the plan 

horizon within which the knowledge of the environment is (partially) known. Meta-

actions are expressed in form of predicates to describe an action of higher abstraction 

levels, and can be decomposed into lower-level numeric actions during the transition 

from strategic to tactical planning. Such a decomposition can be done even multiple 

times, as inspired from human cognition. Often, human beings tend to solve a 

complicated problem with a top-down manner. For example, to clean a skyscraper, 

one thinks of which floor to start with, subsequently the order of the rooms, followed 

by the cleaning tasks in each room. Doing so helps to reduce the abstraction space 

down the hierarchy, thereby reducing the complexity of the problem. Additionally, it 

                                                 
22 Note that “hybrid” here does no long bear the definition of a hybrid planner 

given in Section 3.3 for the context of domain-independent AI planning. 
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also eases the representation as well as the comprehension of constraints of the 

planning problem down the abstraction levels, i.e. a room is occupied at certain hours, 

there is no available power socket in a room, some tools are not allowed/ available in 

certain rooms or at certain storeys, the ability and availability of the cleaning staff 

etc. Finally, an exact timetable can be drawn to assign tasks to each worker.  

 

Also widely used for AI planning are the Hierarchical Task Network (HTN) 

planners, e.g. SHOP2 [Nau et al., 2003], which is among the firsts to formalize a 

HTN, Markov-HTN [Chen et al., 2009] for web services such as booking a flight or 

a hotel room, and many more [Benton et al., 2018; Georgievski and Aiello, 2014; 

Fdez-Olivares et al., 2006; Sirin et al., 2004]. These planners rely on the 

decomposition of higher-level tasks into lower-level tasks and eventually primitive 

tasks, forming hence a hierarchical task network. They were above all developed for 

solving planning problems of domains in which many routine and protocols apply, 

since these can be conveniently encoded in the HTN. In aeronautics, multiple strict 

regulations are involved; therefore, mission execution often must comply with 

standard protocols, which can be understood as domain-specific knowledge in 

planning. HTN planners are found to be convenient for such applications, since the 

encoded protocols in the HTN impose how a high-level abstract task can be carried 

out. [Benton et al., 2018] for example uses a HTN-based planner to assist a pilot in 

plan execution. The assistant plays the role of a checklist in the system to ensure that 

the pilot follows all underwritten protocols while being non-invasive. Apart from 

being able to encode into the network how a high-level abstract task can be carried 

out, the decomposition of a higher-level meta-action to a lower-level one also reduces 

the search space down the hierarchy, which in return renders the computation of a 

plans/ plans to perform an action less complex. The encoding regulations and the 

reduction of the search space constitute the biggest motivations for the use of a HTN 

planner in this work. 

 

4.1 Strategic and Tactical Planning for HAPS 

For the pre-execution planning for HAPS, in order to compensate the inadequacy of 

a numeric planner to plan for multiple-task (see Section 3.3.4.1), a framework 

consisting of a hierarchical task planner at the strategic planning level and a numeric 

flight path planner at the tactical planning level is proposed. The general solution 

framework is shown in Figure 35. At the strategic level, a HTN-based task planner is 

employed, in order to exploit the advantage of encoding the routine execution of a 

task and also to consider the mission constraints and requirements expressed at 

different abstraction levels.  

 

The HTN-based task planner is “temporal” (see [Castillo et al., 2006] for a more 

formal description of a temporal HTN  planner); it decomposes a monitoring task into 

lower-level tasks, while estimating the duration of each task. The encoding of the 

HTN, as well as the decomposition method will be described in Section 4.3. Although 

the task plans found are time-stamped, i.e. the duration of each task is stated, but 

these durations are estimated very imprecisely, since the platform dynamics is 

considered linear, and the wind is only considered probabilistically. Detailed 

description will be provided in Section 4.3.  
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Figure 35. General architecture of the HAPS planning framework 

 

Note that the HTN does not allow “dawdling”, i.e. the agent, or more specifically 

the HAPS, does not have a time gap between tasks of the task plan. Even “loitering 

at the WA” is considered a task and must be assigned to the HAPS.  

 

As shown in Figure 36, the difference in travel time as predicted by the strategic 

task planner and the tactical numeric planner tends to increase with the average wind 

magnitude of the operation area. The task planner at the strategic level assumes a 

linear movement model (i.e. linear motion with constant velocity) for the HAPS, 

which assumes that the derivative of the position of the HAPS with respect to time is 

constant, while the tactical numeric planner uses the kinematic model described in 

Equations 3-4 to 3-6, as described in detail in Chapter 3. Shown in Figure 36 is the 

average difference in travel time for a start-goal distance of 80 km predicted using 

with the movement model assumed at the strategic planning level (with a 𝑣TAS
∗  of 28 

m/s) and the kinematic model at the tactical level for 20 randomly generated wind 

vectors of the given wind magnitudes in the x-axis. The difference tends to increase 

with the wind magnitude and is due to the linear movement model of the HAPS 

assumed by the task planner, which also ignores the presence of wind. The overly 

simplified platform dynamics could result in: 

 

1. low quality plans, since the tasks might not be rewarded accordingly due to 

the time dependency of the mission requirements (see Table 9);  

2. non-executable plans, because some mission constraints from Table 8 can be 

violated, since the mission environment is time-variable. 
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Figure 36. The average difference between the linearly predicted travel time 

using a constant derivative of the position with respect to time, and the feasible 

path found using ENHSP that considers the forecasted wind grid, platform 

dynamics and obstacles in the airspace. 

The inadequacy of the task planner specifically in terms of guaranteeing feasibility 

is compensated by the integration of a numeric planner at the tactical level. As 

illustrated in Figure 35, the plans  𝜋̃𝑘, 𝑘 ∈ 𝐾 found by the task planner consist of 

primitive tasks of the HTN. Each plan however bears its objective value, with the 

help of which  𝜋̃𝑘  will be sorted. The sorted index of the plans is represented 

by  𝜋̃𝑠(𝑘). Subsequently, the plans 𝜋̃𝑠(𝑘) from the strategic level will be “refined” in 

the sorted order 𝑠(𝑘) by the numeric flight path planner described in Section 3. The 

plans 𝜋̃𝑠(𝑘) are “refined” with a better estimation of the task duration, since the flight 

dynamics and the time-varying environment (i.e. wind field, static and dynamic 

obstacle avoidance etc.) are taken into account in the numeric flight path planner. The 

refined objective value/rewards will be used to re-sort the plans, thus obtaining 𝜋𝑖. 
Either the best plan will be executed or the ordering the of the plans serves as a 

decision support in a human-in-the-loop mission planning system, as discussed in 

Section 2.2.4 and later again in Section 7.1.1.  

 

For the sake of clarity, a plan determined by the task planner is referred to as a 

task plan and is represented by 𝜋̃, while a plan computed by the numeric flight path 

planner is simply a plan and is represented symbolically by 𝜋 without the tilde. The 

re-sorting of plans by the tactical planning is a better judgement for plan quality, since 

the plan parameters considered are more refined, or rather of higher spatial resolution 

than in the strategic planning level. Note however that the first sorting of plans by the 

strategic planner is still necessary, especially when planning time is limited, so that 

seemingly good plans stand a better chance to be “refined” by the tactical planner. 

 

4.2 HTN for the HAPS Task Planner 

Most HTN planners only decide the sequence of tasks to execute. The formalism 

of a HTN provided in [Nau et al., 2003] leaves out the temporal component. Note 

however that the formalism of a HTN is different from the PDDL formalism seen in 
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Section 3. As mentioned in [Haslum et al., 2019], PDDL is not suitable for encoding 

a HTN, since the language lacks expressions for the hierarchical relations.  

 

The HTN planner in SIADEX [Fdez-Olivares et al., 2006] is the first to include 

the temporal element formally, and is also being referred to as the temporal HTN. 

SIADEX is a planning framework developed to plan dynamically for a forest fire 

fighting, in which case time and duration of actions are important, since fire spreads 

over time. The planner also allows concurrency (i.e. many tasks can be executed at 

the same time) and time-dependent goals. The handling of the temporal knowledge 

in the HTN planner used in SIADEX was documented in [Castillo et al., 2006].  

 

Some definitions of the temporal HTN used for HAPS task planning are provided 

next. A significant difference between the handling of the temporal HTN used in this 

work and that in SIADEX lies with the evaluation of the plans, which is important 

for HAPS, while being neglected in SIADEX. In the HAPS hierarchical task planner, 

many possible sequences of subtasks can be obtained by applying a function to 

decompose a non-primitive task23. It is hence important to evaluate which method is 

more promising.  

 

In the following, some formal definitions for the HAPS temporal HTN adapted 

from the classical HTN definition in [Nau et al., 2003; Höller et al., 2018] and from 

the temporal HTN in [Fdez-Olivares et al., 2006] are provided. The symbols used 

might not conform with the list of symbols, and are specific only to the definitions 

given below in order to understand the “formalism” of a temporal HTN. 

 

Definition 4-1 (Temporal Hierarchical Planning Problem) A temporal 

hierarchical planning problem with finite temporal horizon 𝑇 can be represented by 

a tuple 𝑃 = (𝑥0, 𝑠0, 𝑡0, 𝑂, 𝑂𝑝,𝑀, 𝑔, 𝑆𝛿𝑡) , where 𝑥0 , 𝑠0  and 𝑡0  are the initial states 

(continuous and discrete respectively) and initial time instant, 𝑂 is the set of task 

names. If 𝑜 ∈ 𝑂 , 𝑜  can be expressed as a sequence of primitive actions 

(𝑜𝑝1, … , 𝑜𝑝𝑛) ∈ 𝑂𝑝
𝑛. Note that 𝑂𝑝 ⊂ 𝑂. 𝑀is the set of decomposition methods, 𝑔 is a 

set of goal conditions and 𝑆𝛿𝑡 is the set of durations𝛿𝑡 (𝑜𝑝𝑛, 𝑜𝑝𝑛−1) of the primitive 

tasks 𝑜𝑝𝑛, which may depend on the corresponding previous task 𝑜𝑝𝑛−1. 

 

Definition 4-2 (Method) A method 𝑚 ∈ 𝑀 is represented by a 3-tuple < 𝑜(𝑡, 𝛿𝑡), 
subtask( 𝑜(𝑡, 𝛿𝑡)) , 𝑑 > , where 𝑜 ∈ 𝑂\𝑂𝑝  must be a non-primitive task and 

subtask( 𝑜(𝑡, 𝛿𝑡))  is the set of sequences of tasks obtained by applying the 

decomposition function 𝑑 to 𝑜 that starts at time 𝑡 and takes a duration of 𝛿𝑡. The 

decomposition function 𝑑 can be a combination of tasks, a permutation of tasks or a 

fix order of task. 

 

Definition 4-3 (Solution) A solution to the temporal hierarchical planning problem 

𝑃 over a plan horizon of duration 𝑇 is a task plan 𝜋̃ = 〈𝑜𝑝1(𝑡1, 𝛿𝑡1), … , 𝑜𝑝𝑛(𝑡𝑛, 𝛿𝑡𝑛)
〉, 

a sequence of primitive tasks 𝑜𝑝𝑘 that take a duration of 𝛿𝑡𝑘 , ordered with respect to 

the task execution time 𝑡𝑘 < 𝑇. The constraints are satisfied and for all 𝑘 ∈ {1,… , 𝑛}, 

                                                 
23 Only total-ordered tasks are considered in this work. 
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and the tasks must all terminate before the plan horizon ends, i.e. if 𝑡0 = 0, then 

max
k∈{1,…,n}

𝑡𝑘 + 𝛿𝑡𝑘 < 𝑇. 

 

The hierarchy of the task planner in the strategic planner as illustrated in Figure 

35 can be formed concretely for HAPS by considering the spatial resolution, thereby 

allowing: 

 

1. finer details to be successively considered down the hierarchy in a smaller 

and more isolated abstraction space (e.g. first the sequence of MAs which will 

be decomposed into sequences of LOIs and subsequently into sequences of 

Points-of-Interests (PoIs) and the actions to be executed at the PoIs. The tasks 

of the last level are the primitive tasks; the positions of consecutive PoIs will 

be taken as start and goal position by the numeric flight path planner at the 

tactical planning level. 

2. different decomposition functions at each level to determine the task order, 

either via a combination, or a permutation of a known protocol derived from 

the domain knowledge. 

 

The HTN for HAPS task planning will be described in the following sections.  

 

4.3  Hierarchical Task Network for HAPS 

Figure 37 shows graphically a decomposition of a monitoring task over [𝑇start, 𝑇end] 
to obtain a task plan. The decomposition works successively towards a more reduced 

abstraction space, from MA (MA#) to LOI (monitorLOI# ) and subsequently to 

waypoints at which concurrent tasks of managing the payload and of reporting 

to/communicating with the GCS are also detailed, such as report flying to corridor 

C#, fly to corridor C# (toC#), cross corridor (crossC#), fly to the nearest vertex of the 

LoI (NPL), scan LoI (scan), send images to ground, turn on/off mission camera etc. 

Note that the start time 𝑡0 of the first task is not necessary 𝑇start. 𝑡0 is the time instant 

at which the HAPS has completed the last task of its previous plan. 

 

A task plan for a HAPS is per definition a sequence of 𝑛 time-stamped primitive 

tasks of the HTN  𝜋̃ = 〈𝑜𝑝1(𝑡0, 𝛿𝑡1), … , 𝑜𝑝𝑛(𝑡𝑛−1, 𝛿𝑡𝑛)
〉, along with the durations of 

the tasks 𝛿𝑡𝑖 . However, for the ease of representation, a task plan can also be 

expressed with higher-level tasks; for example, a task plan at the MA-level 𝜋̃MA is 

the sequence of time-stamped tasks of this level, e.g. <MA5 (𝑡0
MA, 𝛿𝑡1

MA) , 

MA4(𝑡1
MA, 𝛿𝑡2

MA), WA13(𝑡2
MA, 𝛿𝑡3

MA)> and the corresponding plan at the LOI-level can 

be represented by a sequence of time-stamped tasks of this level, for example for the 

hierarchical plan shown in Figure 37, 𝜋̃LOI = <

toC2(𝑡0
LOI, 𝛿𝑡1

LOI), crossC2(𝑡1
LOI, 𝛿𝑡2

LOI), toLOI1(𝑡2
LOI, 𝛿𝑡3

LOI),… , crossC5(𝑡9
LOI, 𝛿𝑡10

LOI) >.  
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Figure 37. Temporal hierarchical plan example for one HAPS 

For the rest of this work, the temporal notation 𝑜(𝑡𝑖−1, 𝛿𝑖)  of task 𝑜  that 

commences at time 𝑡𝑖−1 and takes a duration of 𝛿𝑖 can be used interchangeably with 

𝑜(𝑡𝑖, 𝛿𝑖), where 𝑡𝑖 = 𝑡𝑖−1 + 𝛿𝑖 is the completion time of the task. As a rule of thumb, 

if the subscript of 𝑡 is identical with the subscript of the duration, the time represents 

the completion time, while a decremented subscript of 𝑡 signifies the commencement 

time of the task.  

Table 15 summarizes continuous tasks of various levels in the HTN planner at the 

strategic level, along with the enumerated mission constraints listed out in Table 8. 

The different MC each task is subject to highlight the advantage of using a HTN so 

that these constraints can be expressed at different abstraction levels. Since “no-

dawdling” is assumed, at each time instant, one of the continuous tasks is performed. 

Furthermore, continuous tasks cannot be performed concurrently. The mini colored 

bars in Figure 37 are instantaneous tasks which can take place concurrently as the 

concurrent tasks.  

 

Table 15. Tasks at higher abstraction levels to be carried out for HAPS 

mission 

Task description Task names Mission constraints 

Fly in WA# WA# MC1, MC2, MC5 

Monitor MA# MA# MC1, MC2, MC3, 

MC4, MC5 

Monitor LOI# monitorLOI# MC6 

Fly to corridor C# toC#  MC1, MC2 

Cross corridor C# crossC# MC1, MC2 

Fly to the nearest 

vertex of LOI# 
NPL MC6 

Scan LOI# scan MC6 

 

 Task Decomposition  

Like most HTN planners, a top-down, forward decomposing strategy is used. 

Graphically, the decomposition order of a high-level task to lower-level tasks is as 
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shown in the numbered order in Figure 35. Concretely, in the task planning for HAPS, 

the monitoring task “Plan tasks for HAPS 1 over plan horizon [𝑇start, 𝑇end]” can be 

decomposed via combination of subtasks. Not knowing how many subtasks should 

constitute the combination of subtasks, a first subtask is assigned to the combination, 

and is further decomposed until all tasks stemming from it becomes primitive tasks, 

before the subsequent subtask is assigned and decomposed to primitive tasks. The 

process is sequentially repeated until the plan horizon 𝑇end is reached. By numbering 

the order of decisions made during the search of a task plan in the HTN, Figure 38 

illustrates how the decomposition is performed using part of the mission scenario 

depicted in Figure 11 for one HAPS. Encircled in orange is the decision made at the 

MA-level, in red at the LoI-level, while decisions at the PoI level are marked with an 

“x”. Since at the MA-level, the decomposition consists of a combination of subtasks, 

the HTN task planner does not perform a complete decomposition, but decide only 

for the first MA the HAPS will visit (see number 1 marked at MA1). Subsequently, 

the order of the LoI are decided (see number 2 and 3 in the LoI of MA1), followed 

by the orders of PoI, which consist either of the mid-point of the intersection between 

a MA and a corridor (i.e. number 4 and 5), or vertices of the LoI for the monitoring 

pattern (i.e. number 6, 7, 8, and 9). The process is repeated for the next mission 

element WA15, followed by MA9. Note that the decomposition into subtasks of the 

LoI- and PoI-levels are performed entirely, since the decompositions consist either 

of permutations of LoIs or of a fix routine of setting of PoIs. 

 

 
 

Figure 38. Top-down, forward task decomposition order 
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As briefly demonstrated in the illustrative example, the decomposition of a non-

primitive task can be performed either via a fix-order decomposition function, a 

permutation decomposition function or a combinatorial decomposition function. The 

decomposition to subtasks at MA-level is combinatorial, since the planner chooses 

one of the numerous available mission elements to visit each time it has to decide for 

the next task at the MA-level. The decomposition to subtasks at the LoI-level consists 

of permutations, since all LoI of the MA must be monitored in order for the mission 

to be rewarded in case of success (see MR1 of Table 9). Lastly, the decomposition at 

the PoI-level follows a set of fix rules: the HAPS must communicate with the GCS 

before crossing a corridor (see number 4 of Figure 38), check again while leaving the 

corridor (see number 5), fly to the nearest vertex of an LoI and turn on the mission 

camera (see number 6), perform a lawnmower sweep pattern to record images of the 

LoI. To simplify the graphical illustration, the sweep pattern is not shown in detailed; 

but rather, a PoI is places at the diagonal vertex to mark the end of the sweep (see 

number 7).  

 

Algorithm 4-1 to 4-3 describe in a more general manner how a non-primitive task 

is decomposed in a temporal HTN to subtasks per fixed order, per permutation and 

per combination respectively, which are the three kinds of decomposition used in the 

HTN planner at the strategic level of the mission planner for HAPS. 

 

Algorithm 4-1 describes the decomposition of a non-primitive task 𝑜  using a 

decomposition-per-fixed-order function 𝑑𝑓. It first lists out all the possible sequences 

of subtasks, as according to task execution protocols (see Line 3). Note that the 

durations of the subtasks at this level are not computed yet, unless if the subtasks are 

already the primitive tasks. Sequences that violate the mission constraints and can 

already be identified at this stage (without knowing the durations of the subtasks) will 

be eliminated. The check for constraint violation for the first task in the decomposed 

subtask sequence requires the subtask network of the previous task. For each 

sequence in subtask(𝑜(𝑡)), the subtasks are further decomposed (in the order of the 

task in the sequence) with the imposed decomposition function (see Line 7-10). When 

no further decomposition is possible, meaning all tasks are primitive, the durations 

of the task 𝑜(𝑡) are then estimated, by summing of the durations of the subtasks 

stemming from it. Note that 𝑜(𝑡) can have many possible durations since there can 

be more than one subtask networks stemming from it. 
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Algorithm 4-1  Decomposing a non-primitive task 𝒐𝒏(𝒕𝒏)  with the 

decomposition-per-fixed-order function 𝒅𝒇                

Require the task network of the previous task, i.e. 

subtask(𝑜𝑛−1(𝑡𝑛−1), 𝛿𝑡𝑛−1), and the current task to decompose 

𝑜(𝑡) 

1: if 𝑜𝑛(𝑡𝑛) is not a primitive task 

2:     find all sequences of subtasks emerging from 𝑜𝑛(𝑡𝑛) and group into 

the  

    set subtask(𝑜𝑛(𝑡𝑛))  
3:     eliminate sequences from the set subtask(𝑜𝑛(𝑡𝑛)) that are identified to  

    violate the constraints at the subtask level  

4: end if 

5: for each sequence of subtask(𝑜𝑛(𝑡𝑛)) 
6:    decompose each task to its primitive tasks with the assigned 

   decomposition function 

7:    determine the duration of each 𝛿𝑡𝑛  sequence  

8:    eliminate sequences that violate constraints 

9: end for 

 

Decomposing a non-primitive task 𝑜  with the decomposition-per-permutation 

function 𝑑𝑝  is performed in a similar manner, as described in Algorithm 4-2. A 

permutation decomposition is performed when the subtasks of 𝑜 are known and are 

presented in the form of a subtasks array with the necessary repeated occurrence. 

However, the order of the tasks is unknown and shall be decided by 𝑑𝑝. 

 

Algorithm 4-2  Decomposing a non-primitive task 𝒐𝒏(𝒕𝒏)  with the 

decomposition-per-permutation function 𝒅𝒑                

Require the task network of the previous task, 

i.e. subtask(𝑜𝑛−1(𝑡𝑛−1), 𝛿𝑡𝑛−1), and the current task to 

decompose 𝑜𝑛(𝑡𝑛) 

1: if 𝑜𝑛(𝑡𝑛) is not a primitive task 

2:  find the subtasks emerging from 𝑜𝑛(𝑡𝑛) and order them into  

 sequences by permutation to be grouped into the set subtask(𝑜𝑛(𝑡𝑛)) 
3:  eliminate sequences from subtask(𝑜𝑛(𝑡𝑛)) that are identified to   

 violate the constraints at the subtask level 

4: end if 

5: for each sequence of subtask(𝑜𝑛(𝑡𝑛)) 
6:      decompose each task to its primitive tasks with the assigned  

 decomposition function 

7:    determine the duration of each 𝛿𝑡𝑛  sequence  

8:     eliminate sequences that violate constraints 

9: end for 

 

A more different decomposition approach is the decomposition-per-combination 

function 𝑑𝑐. The non-primitive can be decomposed to a number of subtasks chosen 

from a list of subtasks. No repetition is allowed in the list. The size of the subtask-

network is decided either by the number of subtasks or by the horizon 𝑇 of the task 

𝑜. It is worth noting that the latter is considered in this work at the decomposition of 
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the highest-level task to sequences of MA to visit. A 𝑑𝑐 is performed in a top-down 

forward manner. The first subtask 𝑜𝑖
𝑙−1 that fulfills all constraints, where 𝑖 = 1 and 

𝑙 − 1 denotes an abstraction level lower, is selected from the list of subtasks (see Line 

4 in Algorithm 4-3). If the size of the subtask-network of 𝑜 is decided by the length 

of the subtasks, then all possible combination of subtasks from the list will be 

determined, and the rest of the decomposition will then follow the same approach as 

described in Line 5-9 of Algorithm 4-1 and Algorithm 4-2. If the size of the subtask-

network of 𝑜 is limited by the horizon 𝑇, then Algorithm 4-3 applies, which is the 

method used for the decomposition into sequences of MA. The selected 𝑜𝑖
𝑙−1 is then 

further decomposed until all tasks stemming from it are decomposed into primitive 

tasks (see Line 6-12 of Algorithm 4-3). The duration of 𝑜𝑖
𝑙−1 will be computed based 

on the sum of the durations of the primitive tasks. A 𝑜𝑖+1
𝑙−1 will be juxtaposed to 𝑜𝑖

𝑙−1, 

if the sum of durations of all 𝑙 − 1 level subtasks stemming from 𝑜 does not exceed 

𝑇  and the process to decompose 𝑜𝑖+1
𝑙−1  to primitive tasks will be successively 

performed (see Line 7-12). If the execution of the last subtask exceeds the given plan 

horizon 𝑇, the subtask will be truncated. 

 

Algorithm 4-3  Decomposing a non-primitive task 𝒐𝒏(𝒕𝒏) with the decomposition-

per-combination function 𝒅𝒄 over a task horizon 𝑻 

Require the task network of the previous task,  
i. e. subtask(𝑜𝑛−1(𝑡𝑛−1), 𝛿𝑡𝑛−1),  the current task to decompose 

𝑜𝑛(𝑡𝑛), the duration of the task horizon 𝑇  

1: if 𝑜(𝑡𝑛) is not a primitive task 

2:     find all the first tasks of the level below 𝑜1
𝑙−1 that can be executed at/ after 𝑡𝑛 

3:     for each 𝑜1
𝑙−1 

4:         decompose 𝑜1
𝑙−1 into primitive tasks with the decomposition associated to  

         𝑜1
𝑙−1 to obtain subtask(𝑜1

𝑙−1(𝑡1
𝑙−1), 𝛿𝑡1𝑙−1) 

5:         𝑖 ≔ 1 

6:         while 𝑡𝑖
𝑙−1 + 𝛿

𝑡𝑖
𝑙−1 < 𝑡𝑛 + 𝑇 

7:             find all the (𝑖 + 1)-th task of the level below 𝑜𝑖+1
𝑙−1 that can be executed  

            at/ after 𝑡𝑖
𝑙−1 + 𝛿

𝑡𝑖
𝑙−1 

8:             for each 𝑜𝑖+1
𝑙−1 

9:                 decompose 𝑜𝑖
𝑙−1  into primitive tasks with the given decomposition  

                function to obtain subtask(𝑜𝑖
𝑙−1(𝑡𝑖

𝑙−1), 𝛿
𝑡𝑖
𝑙−1) 

10:                 𝑖 ≔ 𝑖 + 1 

11:             end for 

12:         end while 

13:    end for 

14: end if 

 

It is worth noting that if a decomposition-per-combination is nested in another 

decomposition-per-combination, for example if the decomposition of 𝑜1
𝑙−1 in Line 5 

is again dictated by a decomposition-per-combination, then the nested 𝑑𝑐 stops when 

1. the imposed length of the sequence of subtasks at level 𝑙 − 2 is reached, or  

2. the maximum duration of 𝑜1
𝑙−1 is exceeded. 
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The decomposition of a task can be made up of a sequence of decomposition 

functions, e.g. the first few subtasks of a non-primitive task can be decomposed via 

a 𝑑𝑓 , with the subsequent subtasks being decomposed via 𝑑𝑝 . However, the joint 

decomposition function will not be dealt with in this work, since it is not required for 

the HTN in HAPS task planner.  

 

Instead of performing a greedy search which could result in infeasible solutions, 

the hierarchical task planner naturally limits the plans to those feasible, given that a 

subtask network that violates the constraints will be eliminated (Line 5 and 9 of 

Algorithm 4-1 and 4-2), or that the compliance with the constraints are already 

considered during the decomposition (see Line 2 and 7 of Algorithm 4-3).  

 

 Estimation of the Duration of a Task 

Considered in the task planning are only the mission constraints related to the 

airspace structure as listed in Table 8, i.e. MC4 and MC5 that checks if consecutive 

mission elements are connected by a corridor, which is a constraint at the MA# level, 

as well as MC6 . The duration of a task in the case for HAPS is conditioned by the 

dynamics of the platform, or at a less precise level, the optimal cruise speed of the 

platform. The other tasks are concurrent to the flying actions, and therefore do not 

influence the task durations. 

 

The duration of a non-primitive task is estimated by summing the durations of all 

the primitive tasks stemming from it, since it is assumed in the HTN that no dawdling 

is involved (see Section 4.1). A primitive task 𝑜𝑝 that flies the HAPS from a PoI with 

the position vector 𝑝𝑜𝑝(𝑖) , and to another with the position vector 𝑝𝑜𝑝(𝑖+1)  has a 

duration that equals the travel time 𝛿𝑜𝑝 between both which is estimated linearly, i.e. 

with the assumption of a linear trajectory travelled at constant optimal TAS, 𝑣TAS
∗ , 

using the following: 

 

𝛿𝑜𝑝 =
𝑑𝑜𝑝

𝑣TAS
∗ , 

 

4-1 

where  

 

      𝑑𝑜𝑝 = ‖𝑝𝑜𝑝(𝑖+1) − 𝑝𝑜𝑝(𝑖)‖2
 4-2 

  

is the distance travelled while executing the primitive task 𝑜𝑝. 

 

The fact that wind is not considered in the above estimation of travel times 

between PoI results in a non-negligible accumulative error in the estimation of the 

time of arrival, as shown in Figure 36, especially when the plan spans long period of 

time, which in the case of HAPS is usually hours, if not days.  

 

The duration of a task in HTN can be relaxed24, since some complex numeric 

constraints are not considered, for example the wind vector, the HAPS non-linear 

                                                 
24 “Relaxed” is the term often used in AI planning literature to represent the 

numeric parameter of a state using a numeric range. 
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dynamics, obstacle avoidance etc. In the relaxed estimation, the estimation of a task 

is represented by a time interval [𝛿𝑡,min, 𝛿𝑡,max]. 
 

Considering the time-varying wind field already at the strategic planning level 

defies the purpose of having a two-tier planning architecture (see Figure 35) that is 

meant to reduce the search space of the complete mission planning problem down the 

hierarchy in the strategic level to a state space that the numeric planner at the tactical 

level can cope with. However, the wind can be very roughly considered at the 

strategic planning level, and subsequently be treated numerically at the tactical 

planning level. By considering that the wind has a maximum magnitude of |𝑣w|MAX, 

which is the case since the HAPS is only allowed to fly during operation in areas with 

|𝑣w| < 5 m/s (see Table 8), it is hence assumed that a HAPS has a ground speed 

between [𝑣min, 𝑣max] = [𝑣TAS − |𝑣𝑤|MAX, 𝑣TAS + |𝑣𝑤|MAX] . The duration to 

execute the primitive task 𝑜𝑝 is identical to the travel time, which can be modelled 

probabilistically as a uniform distribution over [𝑑𝑜𝑝/𝑣
max, 𝑑𝑜𝑝/𝑣

min] =

[𝛿𝑜𝑝
min, 𝛿𝑜𝑝

max].  

 

4.4 Combinatorial Problem in Selecting the Best Decomposition(s) 

The decomposition at the MA-level in Figure 37 involves a decomposition-per-

combination, while at the LOI-level, it involves a decomposition-per-permutation. 

Especially at the MA-level, the combinatorial problem can be complex, with a 

complexity that grows exponentially with respect to the number of mission elements 

to visit within the plan duration 𝑇, i.e. 𝑛ME
𝑛𝑜ME , where 𝑛ME  is the total number of 

mission elements (MA or WA shown in Figure 10 and Figure 11) and 𝑛𝑜  is the 

number of mission elements that the HAPS manage to visit within 𝑇. Since only a 

single HAPS is considered in this chapter, tests and methods developed here consider 

the mission scenario depicted in Figure 10. The extension to multiple HAPS and a 

larger coverage with more mission elements as depicted by Figure 11 will be tackled 

in the upcoming chapter. 

 

Although pre-mission planning is not as time critical as reactive planning, it must 

be completed before planning timeout. Therefore, not all task plans will be refined in 

due course by the tactical planner (see Figure 35 for the two-tier planning 

architecture). Since there can be many possible task plans  𝜋̃𝑘, 𝑘 ∈ 𝐾, with |K| being 

bounded by 𝑛ME
𝑛𝑜ME , the task plans can be ranked by the prematurely estimated 

objective/reward to obtain (𝜋̃𝑠(𝑘)), where 𝑠(𝑘) is the index of the sorted task plans 

with descending objective. The ranking is said “prematurely”, since the objective of 

each task plan is estimated approximately, because of the assumption on the linear 

motion of the HAPS, as well as the probabilistically estimated travel time described 

in Section 4.3.2. Subsequently, the task plans are being refined (in the order of their 

sorting 𝑠(𝑘)) by the numeric flight path planner at the tactical  level described in 

Chapter 3 within the planning timeout [Kiam and Schulte, 2017b; 2017a].  

 

Yet, little has been done on optimizing the combinatorial problem in the task 

decomposition of HTN planning. In this regard, [Nau et al., 2003] proposes three 

kinds of searches for a task planning problem with multiple decomposition methods 

that require the derivation of a reasonable heuristic, which is not always trivial 

(especially in problems with heterogeneous inter-dependent objectives and 
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constraints). Alternatively, [Castillo et al., 2006; Fdez-Olivares et al., 2006] takes 

randomly one of the decomposition methods to break down to non-primitive task, 

while the temporal HTN planner used in [Kiam and Schulte, 2017b] uses the k-best 

policies of pre-determined ranked solutions of the Markov Decision Problem. The 

latter is fast, since the policies are predetermined, and the search for ranked task plans 

is basically performed by checking the lookup-table generated by the policies. 

However, if the mission scenario is altered, by adding more HAPS or adding/deleting 

mission elements, the k-best policies must be re-computed, which is time-consuming. 

A more flexible approach for solving the combinatorial problem in the decomposition 

into subtasks at the MA-level for single HAPS monitoring can be done by performing 

a brute-force search over all decomposition methods, which is a viable strategy for 

scenarios involving just a few MA, like in Figure 10 [Kiam and Schulte, 2017a].  

 

The brute-force approach to search for the best combination of MA will be used 

here to solve the task planning for single HAPS. The objective value estimation of 

each task plan will be formalized in the next subsections. However, as the complexity 

of the combinatorial problem grows exponentially with the number of HAPS and 

mission elements, brute-force search can no longer be completed within reasonable 

time and its implementation as an anytime approach (that ends after a given time with 

the best plan so far) does not ensure the quality of the proposed solution. Hence, a 

Genetic Algorithm (GA) is developed in the next chapter to deal with the more 

complex combinatorial problem in the task decomposition. 

 

 Evaluation of the Task Quality 

Commercially speaking, the MA are the unit considered, since the MR in Table 9 

concern either only the MA or the LoI, and the HAPS team is only rewarded with the 

reward list in Table 10 if the tasks within a MA are all fulfilled. The brute-force 

search explores every combination possible of MA and evaluates the task plans 

resulting from all combinations, in order to sort them in descending order of the 

objective values. The evaluation of the quality of a task plan refers hence to the 

representation of the plan at the MA level, e.g. <MA5(𝑡1
MA, 𝛿𝑡1

MA), MA4(𝑡2
MA, 𝛿𝑡2

MA), 

WA13(𝑡3
MA, 𝛿𝑡3

MA) ,…>, and the plan represented at the LoI level, e.g. 𝜋̃LOI = <

toC2(𝑡1
LOI, 𝛿𝑡1

LOI), crossC2(𝑡2
LOI, 𝛿𝑡2

LOI), toLOI1(𝑡3
LOI, 𝛿𝑡3

LOI)… , crossC5(𝑡10
LOI, 𝛿𝑡10

LOI) > . 

The quality of a task plan is assessed based on three objective criteria: the expected 

cumulative reward, the effort to meet mission requirements, the diversity of the pool 

of clients the plan satisfies.  

 

4.4.1.1 Criterion 1: Expected Cumulative Rewards per Hour  

This criterion focuses on the contribution of the rewards accumulated in the probable 

events of successful tasks (at the MA-level) along the plan execution. The success of 

a task is considered “probable”, since the durations of each task are only estimated 

using an approximated movement model of the HAPS and therefore, the estimated 

start and end time of a task can only probabilistically represent the truth. As already 

described in Equation 4-2, the duration of a task is modelled uniformly, by taking 

into account the minimum and maximum airspeed in the presence of wind, as well as 

the distance travelled to achieve the task.  
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It shall be noted that the start time of a task plan 𝑡0 is known deterministically. A 

𝑖 -th task at the MA-level 𝑜𝑖
MA  terminates at 𝑡𝑖 = 𝑡0 + ∑ 𝛿𝑗

𝑖
𝑗=1 , where 𝑡0  is 

deterministic and ∑ 𝛿𝑗
𝑖
𝑗=1  follows the distribution of the sum of 𝑖 non-identically 

distributed uniform random variables 𝛿𝑗 . Therefore, the probability of completing 

𝑜𝑖
MA  at 𝑡𝑖  by taking into account that 𝑃(𝑡𝑖) = 𝑃(𝑡𝑖 − 𝑡0) = 𝑃(∑ 𝛿𝑗

𝑖
𝑗=1 )  can be 

calculated with the following equation, as derived in [Bradley and Gupta, 2002]: 

 

𝑃(∑𝛿𝑗

𝑖

𝑗=1

) =
[∑ (f(𝜖𝑘 , 𝛿1:𝑖))

𝑖−1

× sign(f(𝜖𝑘, 𝛿1:𝑖))∏ 𝜖𝑗
𝑖
𝑗=1𝜖⃗⃗𝑘∈Ѵ𝑖 ]

[(𝑖 − 1)! 2𝑖+1∏ 𝑢𝛿𝑗
𝑖
𝑗=1 ]

, 

 

4-3 

 

where Ѵ𝑖  denotes the set with all 2𝑖  vectors of signs  𝜖𝑘 = (𝜖1
𝑘, … 𝜖𝑖

𝑘) ∈ {−1,1}𝑖 , 

𝑢𝛿𝑖 = (𝛿𝑖
max − 𝛿𝑖

min)/2, 𝑖! is the factorial of 𝑖, and 

 

f(𝜖𝑘, 𝛿1:𝑖
ℎ ) =∑𝛿𝑗

𝑖

𝑗=1

+∑(𝜖𝑗  𝑢𝛿𝑗 −𝑚𝛿𝑗
)

𝑖

𝑗=1

, 
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with 𝑚𝛿𝑖
 being the median value of [𝛿𝑖

min, 𝛿𝑖
max]. 

 

 
 

Figure 39. Probability density function of the sum of one to five identical 

uniform distributed random variables (r.v.) representing the travel time 𝜹𝒕 

The following paragraphs intend to shed some lights at a more intuitive level on 

the significance of the above equations. Graphically, the probability density function 

of the sum of more than two uniform distributed random variables depicted in 

Equation 4-3 approaches a Gaussian distribution and 𝑃(∑ 𝛿𝑗
𝑖
𝑗=1 )  becomes more 

wide-spread over a larger range. The more random variables are involved in the sum, 

the smaller the cumulative probability is over a fixed range, given the progressively 

wide-spread probability density function as seen in Figure 39, in which the 

probability density functions of the sum of one to five identical uniform distributed 
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random variables representing the travel time are plotted. The blue curve depicts the 

uniform distribution, while the red curve is the probability distribution of the sum of 

two identical uniform distributed random variables, which resembles the convolution 

of two square pulses. Beyond two random variables, the distribution of the probability 

density function approaches normal distributions.  

 

Nevertheless, the durations 𝛿𝑗 of each task are not all identical, as mentioned in 

the beginning of this subsection. Figure 40 depicts the probability density functions 

of the sum of one to five non-identical uniform distributed random variables 

representing the travel time25. The probability density functions of the sum of non-

identical uniform distributed random variables are similar to those shown in Figure 

39, apart from the sum of two random variables, which takes the form of a symmetric 

trapezium, as seen in Figure 40.  

 

 
 

Figure 40. Probability density function of the sum of one to five non-

identical uniform distributed random variables (r.v.) representing the travel 

time 𝜹𝒕𝒊 

 

As an abuse of notation,   𝜋̃𝑖:𝑛
MA = (< 𝑜𝑖

MA, 𝑡𝑖 >,・・・, < 𝑜𝑛
MA, 𝑡𝑛 >) denotes the 

partial plan from the 𝑖-th to 𝑛-th task at the MA-level for HAPS.  To calculate the 

expected cumulative reward, obtained when applying at state 𝑠𝑖 (corresponding to the 

last monitored MA or WA) and time 𝑡𝑖 the remaining plan   𝜋̃𝑖:𝑛
MA under the weather 

𝑤𝑡𝑖 forecasted for 𝑡𝑖, the Time-dependent Markov Decision Process (TiMDP) [Boyan 

and Littman, 2000] is exploited as a framework to model our problem. To ease 

comprehension, readers may refer to Appendix 6 for the definition of TiMDP in 

[Boyan and Littman, 2000]. Without the intention to solve the TiMDP problem, but 

instead, only the expected cumulative reward function is used to compute the 

                                                 
25 The five uniformly distributed random variables used to plot Figure 40 are of 

𝜇1 =  1163,  𝜇2 = 1919,  𝜇3 = 1498, 𝜇4 = 1960,  𝜇5 = 1340 and 𝑚1 = 2756,
𝑚2 =  3254,  𝑚3 =  1671,  𝑚4 = 1765,  𝑚5 2518, while Figure 39 was plotted with 

five identical uniformly distributed random variables of 𝜇 = 1163 and 𝑚 = 2756.  
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expected cumulative reward of a given policy spanning horizon 𝑇 obtained from the 

hierarchical planner. The cumulative probabilistic reward of a task plan obtained at 

MA-level is given by: 

 

𝐸(Σ|𝑠𝑖, 𝑡𝑖, 𝜋̃𝑖:𝑛
MA, 𝑤𝑡𝑖)  = ∑ 𝐿(𝜇|𝑠𝑖 , 𝑡𝑖, 𝑜𝑖

MA, 𝑤𝑡𝑖)𝜇∈{succ,fail} ⋅  

                                           ∫ 𝑃(𝑡𝑖+1) ⋅ [𝑅(𝜇, 𝑜𝑖
MA, 𝑡𝑖 , 𝑡𝑖+1) +ℝ

                                                                        𝐸(Σ|𝑠𝑖+1, 𝑡𝑖+1, 𝜋̃𝑖+1:𝑛
MA , 𝑤𝑡𝑖+1)] 𝑑𝑡𝑖+1,   

 

 

4-5 

where 𝐿(𝜇|𝑠𝑖, 𝑡𝑖, 𝑜𝑖
MA, 𝑤𝑡𝑖) is the likelihood that action 𝑜𝑖

MA, performed at time 𝑡𝑖 at 

state 𝑠𝑖, is  successful (𝜇 = succ) under weather conditions at 𝑡𝑖, i.e.  𝑤𝑡𝑖, or not (𝜇 =

fail ); 𝑃(𝑡𝑖)  is the probability density function of ending 𝑜𝑖
MA

 at 𝑡𝑖 , and 

𝑅(𝜇, 𝑜𝑖
MA, 𝑡𝑖−1, 𝑡𝑖) is the immediate reward obtained when performing 𝑜𝑖

MA between 

times 𝑡𝑖−1  and 𝑡𝑖  successfully (𝜇 = succ) or unsuccessfully (𝜇 = fail). Note that 

Equation 4-5 has the same structure as the habitual formulation used to obtain the 

expected reward in time-dependent Markov Decision Processes [Boyan and Littman, 

2000], which was originally designed to optimize the success rate of arriving in time 

at a destination via the use of different combinations of means of transport, with each 

bearing a probable failure or delay. 

 

On the one hand, Equation 4-5 combines the immediate reward 𝑅(𝜇, 𝑜𝑖
MA, 𝑡𝑖, 𝑡𝑖+1) 

obtained after monitoring the selected mission area successfully between start time 

𝑡𝑖 and end time 𝑡𝑖+1 (using the corresponding values at the bottom of Table 10) or 

unsuccessfully (using a zero reward), with the expected reward of the remaining 

action plan  𝜋̃𝑖:𝑛
MA; on the other hand, it weights them with the probability of finishing 

the action 𝑃(𝑡𝑖+1) at the given times and the likelihood of performing the actions 

successfully and unsuccessfully. Given the progressively wider spread probability 

distribution of the durations of tasks over time, as illustrated in Figure 40, the integral 

of 𝑃(𝑡𝑖+1) over a time interval for the completion of a task in the far future along the 

task plan is likely to be inferior to that of a task in the near future of the task plan.  

 

Moreover, this expected cumulative reward can be computed using a backward 

iteration approach as described in Algorithm 4-4, that benefits from the fact that the 

immediate reward 𝑅(𝜇, 𝑜𝑖
MA, 𝑡𝑖 , 𝑡𝑖+1) is piecewise constant with respect to 𝑡𝑖+1, given 

that the cloud coverage is piecewise constant26, and  hence 𝐸(Σ|𝑠𝑖
ℎ, 𝑡𝑖

ℎ , 𝜋̃𝑖
ℎ, 𝑤𝑡𝑖) is 

piecewise constant too, enabling hence the integration in Equation 4-5 to be done 

piecewise with the analogy that 𝑃(𝑡𝑖+1) = 𝑃(𝑡𝑖+1 − 𝑡0) = 𝑃(Σ𝑗=0
𝑖 𝛿𝑗   ) . The 

piecewise time intervals considered in the iterative integration are generated using 

the minimum and maximum of the start time of a task (which is also the end time of 

the previous task), as well as the minimum and maximum bounding times of the 

piecewise constant coverage. 

 

                                                 
26 Cloud coverage data is usually available at an hour or three-hour resolution. 
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Algorithm 4-4:  backward iteration of the cumulative probabilistic reward 

Require: task plan at MA-level 𝜋̃MA 

1: determine 𝑛, length of 𝜋̃MA 

2: for 𝑖 = 𝑛 to 1 

3:     for all piecewise intervals [𝑐𝑡𝑖,𝑎, 𝑐𝑡𝑖,𝑏]𝑗
 of the possible start time of 𝑜𝑖

MA 

4:         for all piecewise intervals [𝑐𝑡𝑖+1,𝑎, 𝑐𝑡𝑖+1,𝑏]𝑘
 of the possible end time of 

𝑜𝑖
MA 

5:             evaluate immediate reward  

𝑅 (𝜇, 𝑜𝑖
MA, 𝑡𝑖 ∈ [𝑐𝑡𝑖,𝑎, 𝑐𝑡𝑖,𝑏]𝑗

, 𝑡𝑖+1 ∈ [𝑐𝑡𝑖+1,𝑎, 𝑐𝑡𝑖+1,𝑏]𝑘
) 

6:             if 𝑖 == 𝑛 

7:                 𝐸 (Σ|𝑠𝑖, 𝑡𝑖 ∈ [𝑐𝑡𝑖,𝑎, 𝑐𝑡𝑖,𝑏]𝑗
, 𝜋̃𝑖:𝑛
MA, 𝑤𝑡𝑖)  

                  = ∑ 𝐿 (𝜇|𝑠𝑖 , 𝑡𝑖 ∈ [𝑐𝑡𝑖,𝑎, 𝑐𝑡𝑖,𝑏]𝑗
, 𝑜𝑖
MA, 𝑤𝑡𝑖) ⋅ 𝜇∈{succ,fail}                  

                           ∑ (𝑐𝑡𝑖+1,𝑏 − 𝑐𝑡𝑖+1,𝑎)𝑘 ⋅ (∫ 𝑃(𝑡𝑖+1)[𝑐𝑡𝑖+1,𝑎,𝑐𝑡𝑖+1,𝑏]𝑘

⋅ 𝑑𝑡𝑖+1)   

                            𝑅 (𝜇, 𝑜𝑖
MA, 𝑡𝑖 ∈ [𝑐𝑡𝑖,𝑎, 𝑐𝑡𝑖,𝑏]𝑗

, 𝑡𝑖+1 ∈ [𝑐𝑡𝑖+1,𝑎, 𝑐𝑡𝑖+1,𝑏]𝑘
)  

8:             else 

9:                    𝐸 (Σ|𝑠𝑖, 𝑡𝑖 ∈ [𝑐𝑡𝑖,𝑎, 𝑐𝑡𝑖,𝑏]𝑗
, 𝜋̃𝑖:𝑛
MA, 𝑤𝑡𝑖)   

                  = ∑ 𝐿 (𝜇|𝑠𝑖 , 𝑡𝑖 ∈ [𝑐𝑡𝑖,𝑎, 𝑐𝑡𝑖,𝑏]𝑗
, 𝑜𝑖
MA, 𝑤𝑡𝑖) ⋅ 𝜇∈{succ,fail}              

                            ∑ (𝑐𝑡𝑖+1,𝑏 − 𝑐𝑡𝑖+1,𝑎)𝑘 ⋅ (∫ 𝑃(𝑡𝑖+1)[𝑐𝑡𝑖+1,𝑎,𝑐𝑡𝑖+1,𝑏]𝑘

⋅ 𝑑𝑡𝑖+1) ⋅  

         [𝑅 (𝜇, 𝑜𝑖
MA, 𝑡𝑖 ∈ [𝑐𝑡𝑖,𝑎, 𝑐𝑡𝑖,𝑏]𝑗

, 𝑡𝑖+1 ∈ [𝑐𝑡𝑖+1,𝑎, 𝑐𝑡𝑖+1,𝑏]𝑘
) + 

                             𝐸 (Σ|𝑠𝑖, 𝑡𝑖 ∈ [𝑐𝑡𝑖,𝑎, 𝑐𝑡𝑖,𝑏]𝑗
, 𝜋̃𝑖:𝑛
MA, 𝑤𝑡𝑖)]   

10:            end if 

11:        end for 

12:     end for 

13: end for 

 

The determination of 𝑅(𝜇, 𝑜𝑖
MA, 𝑡𝑖 , 𝑡𝑖+1 ) in Line 5 is based on mission 

requirements of Table 9. However, due to the numerous mission requirements, 

considering all at once could be challenging and might not even be possible given the 

absence of data during the pre-execution mission planning. Therefore, the mission 

requirements are only partially considered in the estimation of the probabilistic 

reward, while others are taken into account at some other steps during the planning. 

It is assumed that MR127 is always true, since a line-of-sight communication with 

large enough bandwidth is ensured 24/7. MR228 is not considered here as it is taken 

into account in the determination of 𝐿 (𝜇|𝑠𝑖, 𝑡𝑖 ∈ [𝑐𝑡𝑖,𝑎, 𝑐𝑡𝑖,𝑏]𝑗
, 𝑜𝑖
MA, 𝑤𝑡𝑖). Equation 7-

1 shows the success likelihood values evaluated based on the cloud coverage 𝑤𝑡𝑖(𝑐𝑐) 

                                                 
27 MR1: All the LoIs of the MA are visually recorded and the images are sent to 

the GCS. 
28  MR2: Ground image coverage of each LoI of the MA is higher than the 

minimum coverage threshold. 
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and image coverage threshold 𝑡ℎ𝑖𝑚𝑎𝑔𝑒. MR329 can be evaluated using the piecewise 

constant intervals of start and end time, 𝑡𝑖 ∈ [𝑐𝑡𝑖,𝑎, 𝑐𝑡𝑖,𝑏]𝑗
 and 𝑡𝑖+1 ∈ [𝑐𝑡𝑖+1,𝑎, 𝑐𝑡𝑖+1,𝑏]𝑘

 

and determines if the immediate reward takes the value in Table 10 or is null. MR430 

on the maximum daily revisits cannot be predicted in advance; nevertheless, with 

Criterium 3 described in Section 4.4.1.3 which intends to promotion diversity in the 

mission elements visited within the plan, revisit frequency of a mission element is 

already being curbed. Lastly, MR531 is fulfilled if 𝑐𝑡𝑖,𝑎 − 𝑡𝑒𝑛𝑑_𝑚𝑎𝑥,𝑙𝑎𝑠𝑡(MA) is larger 

than the allowed minimum revisit time, where 𝑡𝑒𝑛𝑑_𝑚𝑎𝑥,𝑙𝑎𝑠𝑡(MA) is the maximum 

end time of the last visit at the mission area. If the mission area has never been visited, 

𝑡𝑒𝑛𝑑_𝑚𝑎𝑥,𝑙𝑎𝑠𝑡(MA) is −∞. 
 

 
Figure 41. Contribution of actions in the cumulative probabilistic reward 

Note also that this way of proceeding puts more emphasis on the rewards of the 

initial actions than on the final ones, since the probability density function of the sum 

of uniform distributed random variables 𝑃(𝑡𝑖+1) become progressively more 

widespread as shown in Figure 39 and Figure 40. In other words, as seen in the 

example illustrated in Figure 41, the third task of the task plan, namely “task 3”, has 

less contribution in the expected cumulative reward as the third task (yellow 

contribution) in the first plan (the first stack) containing three tasks <task 1, task 2, 

task 3> than as the second task in the second plan, and is most rewarding when it is 

a standalone task in the last plan, in which the reward gain with task 3 only weighted 

by its own probability distribution.  

 

The emphasis on the first tasks is especially practical when planning for long time 

lapses, where there is time to re-plan for the future during the plan execution, which 

is also reasonable, since the updated weather forecast can be considered. 

                                                 
29  MR3: Images captured of each LoI within each MA are taken within the 

corresponding monitoring time windows. 
30 MR4: MA has not been (successfully) visited that day more times than allowed 

by its maximum revisit frequency. 
31 MR5: Time-lapse between two consecutive visits to the same MA is higher than 

its allowed minimum inter-visit time. 
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Finally, since the plan duration varies, it is reasonable to normalize the expected 

cumulative reward by the plan duration (in seconds) to obtain the objective criterion 

𝑂𝐶rew:  

 

𝑂𝐶rew =
𝐸(Σ|𝑠0, 𝑡0, 𝜋̃

MA, 𝑤𝑡0)

𝑇max − 𝑡0
, 

 

4-6 

  

where 𝑇max is the upper limit of the planning horizon [𝑇min,𝑇max], and 𝑡0 the start 

time of the first task. Note however that the obtained plan can end earlier than 𝑇max 
at 𝑡𝑛+1, but the normalization uses 𝑇max, instead of 𝑡𝑛+1, so that the planner strives 

to search for a plan that spans as long as possible over the planning horizon. The use 

of 𝑡0  instead of 𝑇min  removes the restriction that the first task must start at the 

beginning of the planning horizon, which is practical when multiple HAPS are 

involved, since the start time of each HAPS can differ, as it depends on the end time 

of the last task. 

 

4.4.1.2 Criterion 2: Effort  

To keep the clientele satisfied, the HAPS team is required to perform monitoring 

missions for as much of their time in the air as possible. If 𝛿LOI# is the estimated 

median duration spent at each LOI monitored during the plan, the objective function 

representing the HAPS effort to satisfy the clients can be calculated with (while 

normalized with the plan duration): 

 

𝑂𝐶eff =
∑ 𝛿LOI𝑙𝑙

𝑇max − 𝑡0
. 
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4.4.1.3 Criterion 3: Diversity 

The plan must also satisfy a big and diverse clientele pool. That is, even when one 

client pays a much higher reward, the HAPS should strive to monitor the MAs of all 

the clients. To evaluate this diversity criterion 𝑂𝐶div, the Simpson index [Simpson, 

1949] is used, which measures the probability of obtaining two different MA when 

two random draws of tasks are sampled without replacement from the high-level 

mission plan. In other words, the criterion intends to obtain the probability of not 
drawing the same MA when two of them are drawn without replacement from a given 

plan. This criterion is calculated with the following equation, where 𝑛MA  is the 

number of MAs (or clients), 𝑛𝑐  is the number of occurrences of MA𝑐  in the task plan, 

and 𝑁 is the total number of rewarded MAs within the task plan, i.e. waiting areas do 

not count: 
 

𝑂𝐶div = 1 −
∑ 𝑛𝑐(𝑛𝑐 − 1)
𝑛MA
𝑐=1

𝑁(𝑁 − 1)
. 
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4.5 Performance Analysis (Complexity, Memory, etc.) 

The two-tier planning structure shown in Figure 35 is motivated by the fact that the 

task planner can be much more efficient but less precise in the objective estimation 

and the state space can be reduced by reasoning at a higher abstraction space (i.e. 
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lower temporal-spatial resolution). It aims to determine numerous task plans and sort 

them with the objective determined as according to the objective criteria described in 

Section 4.4.1 in a descending order. The task plans are refined with a more precise 

flight path planner at the tactical level, that considers the wind field as well as the 

realistic flight dynamics formulated in Equation 3-4 to 3-6.  

 

 
 

Figure 42. Comparison of reward per hour as predicted by the hierarchical 

task planner at the strategic planner and the numeric flight path planner  

at the tactical level 

Although reward is not the only criterion to rank the quality of the plans, Figure 

42 shows the difference in the cumulative reward (before normalization) estimated 

by the task planner at the strategic level using the median travel times so that the 

comparison is fair with both leaving out the weighting via the likelihood of success 

or probabilistic estimation of the task durations, and the cumulative reward estimated 

by the flight path planner at the tactical level. The ranking of the plans determined by 

the task and the path planners differ. 
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“Artificial Intelligence: it’s not about the destination, it’s about the journey” 

- Frank von Harmelan at STAIRS 2016 in The Hague 

5 Extension of the Mission Planner to 

Multiple HAPS 

This chapter focuses on the extension of the automated pre-execution task planning 

described in the Section 4 for multiple HAPS, which is essential, as more HAPS will 

be deployed in practice to increase mission coverage area (see Figure 11). While still 

considering the heterogeneous mission constraints listed in Table 8 in a time-varying 

environment, the optimization for the fulfillment of time-dependent mission 

requirements (see Table 9) in the presence of multiple HAPS and especially in the 

presence of more MA complicates the constrained optimization problem 32 

encountered for the task decomposition at the MA- and LOI-level even more. Due to 

the larger set of decision variables and a larger state space, a brute-force search for 

all task decompositions is no longer feasible within reasonable planning time. To 

recapitulate, the number of possible task decompositions at the MA-level, as already 

described in Section 4.4 becomes now (𝑛ME)
𝑛HAPS×𝑛𝑜ME , where 𝑛HAPS is the total 

number of HAPS, 𝑛𝑜ME is the number the mission elements in the plan, and 𝑛ME is 

the total number of mission elements in the considered scenario.  

 

The Genetic Algorithm (GA) is known to be a flexible solver, given its 

straightforward random search algorithm that allows a flexible formulation of 

constraints [Jong et al., 2017]. The random search of the GA can be very efficient if 

configured appropriately and if the constraints are handled properly. Therefore, the 

GA is adopted in this work to cope with the optimization of the combinatorial 

problem that occurs during the decomposition into subtasks of the MA- and LoI-

level  [Hehtke, 2018; Kiam et al., 2019b; Kiam et al., 2019a]. The advantages of using 

the GA to guide the search of an optimal decomposition are twofold. First of all, a 

brute-force search exploring all possible combinations can be avoided. Secondly, if 

configured appropriately, the search tends toward convergence to optimality. 

Furthermore, the GA provides plans along each search iteration, and therefore can be 

                                                 
32 Appendix 6 provides a more formal description of a constrained optimization 

problem. 
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implemented as an “anytime”-planner, having in mind that the longer the search is, 

the better the obtained plans are. 

 

The chapter starts by briefly introducing the principles of a GA. A recapitulation 

of the objective criteria listed in the previous section will be provided with the 

generalization for an arbitrary number of HAPS. Subsequently, the implementation 

of the GA for optimal decomposition in the HTN for multiple HAPS will be described 

in detail. Results from random tests carried out will be analysed to explain how the 

GA-related planner parameters are configured. 

 

5.1 Fundamentals of GA 

Evolution strategy is a biologically motivated search method for optimization 

developed in the 1960s by Rechenberg followed by many variants of it, with Genetic 

Algorithm (GA) being one of the most prominent one [Mitchell, 1999]. The algorithm 

is reputable for solving combinatorial problem involving an enormous number of 

possible solutions and has proven to be effective in many UAV planning problems in 

which optimization is required [Shima et al., 2005; Eun and Bang, 2007; Besada-

Portas et al., 2010; Perez-Carabaza et al., 2016; Ramirez Atencia et al., 2019]. The 

strength of GA lies in its genetic operators to migrate from one generation of 

individuals to the next in a random way while letting domain-dependent objectives 

to guide the evolution easily. The most commonly used genetic operators for 

generating new individuals from the parent generation are crossover, mutation and 

inversion [Mitchell, 1999]. 

 

 
Figure 43. General flow of a GA 
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In principle, the decision variables to optimize are coded in the genes while a 

combination of parameters is referred to as a chromosome. The chromosomes are 

also often referred to as individuals to better suit the rest of the terms used such as a 

“population of individuals”, “parents”, “children”, etc.  

 

As shown in Figure 43, a basic GA [Mitchell, 1999] is initialized by randomly 

generating a population of individuals. Subsequently, the fitness of each individual 

is assessed. Very often, the problem requires the objective to be optimized and the 

penalty to be minimized. The sum of the objective and the factored penalty (i.e. 

multiplied by a coefficient) is referred to as the “fitness”. The class of problem that 

consists of optimizing the fitness value is a constrained optimization problem (see 

Appendix 7). The individuals are then ranked according to their fitness. Some 

individuals will be selected to be the parents to create offspring that replace the older 

generation, in hope of bearing a fitter new generation. Therefore, often in practice, 

the fitter individuals are selected as parents. This rule may vary to maintain the 

randomness of the search method.  

 

The creation of a new generation is carried out by using genetic operators such as 

crossover [Jong et al., 2017]. Many crossover methods are possible, with the most 

widely used one being a single-point crossover, in which the parent chromosomes are 

divided into two parts, namely head and tail, and by swapping the tails of both 

parents, new chromosomes are produced.  The crossover probability 𝑃xover  is 

however not always 1; it can be set to a lower probability value so that some good 

parents do not undergo any crossover and will be duplicated into the next generation. 

Another commonly used operator is mutation, the purpose of which is to introduce a 

small probability 𝑃mutation to modify each gene of the child chromosomes randomly. 

While crossover helps to randomly and rapidly explore the search space, it is still 

substantially guided by the chromosomes of the previous generation, hence the risk 

of converging too soon to a local optimum. By mutating the genes randomly, the 

search stands a chance to diversify in the search space explored. 

 

The algorithm repeats with the ranking and creation of a new generation and stops 

when the criteria are met. The stop criteria can be as simple as the number of 

iterations, or when convergence is reached, for example, a convergence is reached 

when every gene of the population has converged, i.e. the value of the gene is 

identical with for example 95% of the population  [Jong, 1975]. 

 

The search for optimum based on GA can be optimized via an improvement of 

any of the steps in Figure 43, resulting in different variants of the GA implementation. 

They must also be adapted accordingly to each planning problem. If given enough 

time and if properly modelled, GA is theoretically capable of finding the optimum. 

However, in practice, finding the global optimum with GA is not guaranteed. GA is 

especially good at finding an acceptable or solution within reasonable time [Beasley 

et al., 1993]. 

 

5.2 Extension of Objective Criteria for Multiple HAPS  

The decision variables involved for the scenario with multiple HAPS 

𝐻𝐴𝑃𝑆1, 𝐻𝐴𝑃𝑆2, 𝐻𝐴𝑃𝑆3, … , 𝐻𝐴𝑃𝑆𝐻 are the same as those defined in Section 4.3. For 

each HAPS, a HTN is formed, of which the variables bear the superscript ℎ ∈
1,2, … ,𝐻 indicating variables of 𝐻𝐴𝑃𝑆ℎ. For example, the 𝑖-th element in a sequence 
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of tasks planned for 𝐻𝐴𝑃𝑆ℎ is represented by 𝑜𝑖
ℎ. The HTN of different HAPS must 

however not violate the inter-HAPS constraints, such as MC3 of Table 8, that 

prohibits the presence of more than one HAPS in a MA, and must fulfill the inter-

HAPS mission requirements, such as MR4 and MR5 of Table 9, which dictate the 

revisit time and frequency. The task plan for 𝐻𝐴𝑃𝑆ℎ of a given level 𝑙 of the HTN 

can be represented by 𝜋̃𝑙,ℎ = 〈𝑜1
𝑙,ℎ(𝑡1, 𝛿𝑡1), … , 𝑜𝑛

𝑙,ℎ(𝑡𝑛, 𝛿𝑡𝑛)〉, where 𝑜𝑖
ℎ are tasks of 

the given level. 

The three criteria 𝑂𝐶rew, 𝑂𝐶eff, 𝑂𝐶div developed in Section 4.4.1 to evaluate the 

objective of a task plan are slightly adapted to sum up the objectives of all HAPS: 

 

𝑂𝐶rew =
∑ 𝐸(Σ|𝑠0

ℎ, 𝑡0
ℎ , 𝜋̃MA,ℎ, 𝑤𝑡0

ℎ )
𝑛HAPS
ℎ=1

∑ (𝑇max − 𝑡0
ℎ)

𝑛HAPS
ℎ=1

, 

 

 

5-1 

𝑂𝐶eff =
∑ ∑ 𝛿LOI𝑙

ℎ
𝑙

𝑛HAPS
ℎ=1

∑ (𝑇max − 𝑡0
ℎ)

𝑛HAPS
ℎ=1

, 

 

5-2 

 

while 𝑂𝐶div  remains identical as defined before in Equation 4-8. Note that the 

denominators of the above objective criteria allow the start time of the task plan for 

each HAPS to differ. 

 

5.3 Implementation of GA for the Search of Optimal Decomposition  

The HTN depicted in Figure 37 for a single HAPS can be extended by stacking at 

each abstraction level the temporal task decomposition of all HAPS together, as 

shown in the hierarchical task plan for two HAPS in Figure 44. Of all the levels, the 

MA-level composes the biggest combinatorial problem. The possible orders of MAs 

to monitor are numerous; moreover, the choice of the decomposition at this level 

affects the rewards received by the HAPS team. The complexity of the hierarchical 

task planning problem is multiplied if the mission planning problem is extended to 

multiple vehicles with even more tasks involved in the mission scenario. 
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Figure 44. An example hierarchical task planning for two HAPS 

The GA is implemented at the MA- and the LOI-level, at which the decomposition 

poses a combinatorial (or selection out of permutation) problem, to help the search 

for good plans within the allocated planning time. The tasks at the PoI-level (below 

the LoI-level) are obtained by undergoing a decomposition-per-fixed-order as 

described in Algorithm 4-1. Therefore, a search problem is non-existing for the 

decomposition at this level.  

 

Some problem specific adaptions of the GA are included and will be elaborated in 

the following subsections. 

 

 Encoding of the Decision Variables 

The encoding of the genes (decision variables) of the GA is limited to the tasks at the 

MA-level, i.e. MA# and WA#, and those at the level below, namely the LoI-level, i.e. 

monitorLOI# (see Figure 45). Although the task durations are still estimated to check 

for time-dependent mission constraints and requirements by further decomposing the 

tasks into primitive tasks at the PoI-level, the temporal factor is left out in the gene 

encoding, i.e. the new generation does not inherit the task durations of the preceding 

generation.  
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Figure 45. Encoding of a chromosome for h HAPS and the temporal 

crossover 

 

The high-level decision variables for each plan are stored in the GA in an array 

(with an element for each HAPS) of lists of discrete mission element identifier, with 

each identifier associated to a task MA# or WA#, as illustrated in Figure 45. Each 

MA# action in the aforementioned lists is subsequently decomposed per permutation 

(see Algorithm 4-2) to encode the visiting ordering of its corresponding LoI. Finally, 

it is worth noting that the number of mission elements 𝑛 of each high-level plan is 

variable and is determined while decomposing per combination in order to let the 

high-level plan span between the mission start and end times [𝑇start, 𝑇end]. 
 

 Initialization 

The first population is randomly initialized while taking into account the connections 

of MAs and WAs supported by the scenario, in order to increase the proportion of 

feasible solutions/chromosomes in the population. The high-level tasks are 

decomposed using Algorithm 4-1 to 4-3 to primitive tasks of the HTN (see Figure 

44) to estimate the duration of each task, as well as the complete mission space, in 

order to ensure that it remains within the plan horizon [𝑇start, 𝑇end]. Unfeasible 

solutions according to the MC in Table 8 are discarded and new plans are randomly 

regenerated, until the initial population is only formed by feasible solutions. 

 

 Fitness Evaluation and Constraints Handling 

The constraints of the problem are classified into mission constraints (MC in Table 

8) affecting the safety of the operation, and mission requirements (MR in Table 9) 

affecting the rewards received by the HAPS team. The distinction has further 

implications: MC are hard-constraints that feasible plans are required to fulfill, while 
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MR are soft-constraints, the violation of which reflects on the reward received for the 

monitoring of the corresponding MA. Hence, they are treated differently in the GA: 

the number of times the MC are violated by a multi-HAPS mission plan is 

accumulated in the constraint violation criterion (CC), while the violation of the latter 

is considered in the computation of the expected cumulative rewards using 

Algorithm 4-4. This class of problem is also known as a constrained optimization 

problem, of which the general definition is provided in Appendix 7. 

 

It is worth noting that the genetic operators (crossover and mutation explained in 

the next subsection – Section 5.3.4) can generate unfeasible solutions (which do not 

fulfill the task constraints). It is not unknown that constrained optimization problems 

can be tricky, since a solution that approaches the optimum may lie in the infeasible 

region for its constraint violation(s). Discarding an infeasible solution however is not 

always the best approach, since pursuing the search in its direction may lead an 

iterative algorithm to get closer to the optimum. Many literature has tried to transform 

the constrained optimization problem to an unconstrained one, by introducing a 

fitness function that sums up the objective and a penalty function that transforms the 

constraint violation into an analytical expression that can for example represent the 

metric distance of a solution to the closes infeasible region [Jong et al., 2017]. 

 

The challenge of such approaches lies with the conception of the penalty function, 

especially for a real-world problem, in which constraints can exist in all forms for 

continuous real number parameters or discrete parameters (including predicates 

represented by integers). [Runarsson and Yao, 2000] introduced stochastic bubble 

sorting for handling constraints in an evolutionary algorithm. Infeasible solutions, 

thanks to the stochastic ranking, have the opportunity of surviving some. By doing 

so, the search for optimum can move from one feasible region to another through an 

infeasible one, as shown in Figure 46. The stochastic ranking procedure is 

recapitulated in Algorithm 5-1, so that readers do not have to refer to the original 

literature. The GA selects the solutions of the survival population among the ones in 

the new and old population using the stochastic ranking procedure with a low swap 

probability 𝑃swap between consecutive chromosomes, or rather plans. The constraint 

violation criterion CC(𝑖) evaluates the number of constraints violated in each task 

plan at the MA-level  𝜋̃MA (i.e. the number of times a MC is violated). With a low 

probability 𝑃swap, even plans that violate the constraints could be better ranked than 

plans that do not (see Line 6-8 of Algorithm 5-1), if their objective are better (i.e. 

𝑓(𝑖) < 𝑓(𝑖 + 1) for a maximization problem, in which the ranking is in the order of 

descending objective), thus treating both adjacent feasible or infeasible plan equally. 

If both consecutive plans have violated the mission constraints, i.e. CC(𝑖) > 0, the 

one that has the higher CC will be moved to the bottom, as described in Line 11-12, 

disregarding hence completely the objective values of the plans. The comparison of 

two adjacent plans in the sorting occurs in many sweeps through the population (see 

Line 2), with a maximum number of sweeps that is equal to the size of the population 

(see Line 1). This is an example setting of the maximum number of sweeps given by 

[Runarsson and Yao, 2000]. However, the sorting can cease earlier if during a sweep, 

no swapping is performed (see Line 16-18). 
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Algorithm 5-1:  constraints handling with stochastic ranking by 

[Runarsson and Yao, 2000] 

Require:  task plans at MA  {𝜋̃MA} = (𝜋̃1
MA,𝒉, 𝜋̃2

MA,𝒉, … , 𝜋̃𝑛
MA,𝒉) 

1: n_sweep = size(population) % number of sweep  

2: for i_sweep=1:n_sweep 

3:     flag_swap = false 

4:     for i=1: size(population)-1 

5:         u = rand(1)  % generate a random number between 0 and 1 

6:         if 𝑢 < 𝑃𝑠𝑤𝑎𝑝  or (CC(𝑖) == 0   and CC(𝑖 + 1) == 0) 

 7:             if 𝑓(𝑖) is worse than 𝑓(𝑖 + 1) %f is the weighted objective 

function 

8:                 swap ({𝜋̃𝑖
MA}, {𝜋̃𝑖+1

MA}) 
9:                 flag_swap = true 

10:            end if 

11:           else if CC(𝑖) worse than CC(𝑖 + 1) 
12:             swap ({𝜋̃𝑖

MA}, {𝜋̃𝑖+1
MA}) 

13:             flag_swap = true 

14:         end if 

15:     end for 

16:     if flag_swap == false 

17:         break 

18:     end if 

19: end for 

 

 

 
a. 1st generation 

 
b. 2nd generation 

 
c. 3rd generation 

 

 
d. 4th generation 

 
e. 5th generation 

 

Figure 46. Search for optimum using GA while handling constraints  

using stochastic ranking 

 

The benefit of using the stochastic ranking described in Algorithm 5-1 can be 

graphically emphasized using a two-dimensional state space, as shown in Figure 46. 

Individuals that violate the constraints could survive (see solutions in the forbidden 

zones in Figure 46c-e), thanks to the stochastic ranking, and thereby accelerates the 
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convergence to the optimum. Furthermore, being able to traverse through forbidden 

zones (search space with individuals that violate the hard constraints MC, or rather 

infeasible regions) is extremely useful, especially if the optimum is surrounded by 

forbidden areas, while the initial population does not contain any individual that is 

not separated from the optimum by the forbidden zones.  

 

 Generation of New Population  

The GA uses binary tournament selection shown in Figure 47 for choosing the pairs 

of parents to perform problem-specific crossover with a high mating 

probability  𝑃xover . In the tournament selection, a few chromosomes (size of 

tournament 𝑘tournament = 2) are randomly selected from the population to pre-select 

a pool of chromosomes. The chromosome with the best evaluated fitness (as 

according to the stochastic bubble-sort ranking) is chosen as a parent. The purpose of 

using a tournament selection is to avoid choosing the same fittest parents repeatedly. 

Therefore, the smaller 𝑘tournament is, the less likely the same parents will be selected.  

 
 

Figure 47. Tournament selection 

The implemented crossover is slightly unusual, given the fact that each solution 

stores the highest-level sequence of actions (i.e. MA# and WA#) of several HAPS and 

the middle-level LOIs permutation expansions of each MA of the highest-level action 

sequences. Moreover, the duration of the highest-level actions (as well as the middle 

ones) are different and random. To deal with that variability in the action durations 

the crossover performed is from the approach used in [Andrés-Toro et al., 2004]. The 

crossover is recapitulated in Algorithm 5-2. In particular, a value within [𝑇start, 𝑇end] 
is randomly selected as crossing-time 𝑡xover  (see Line 1). Subsequently, if the 

mission elements of both parent chromosomes are mission areas and are different, 

i.e. MA(𝑡xover,parent1) != MA(𝑡xover,parent2), the nearest estimated median starting 

time to 𝑡xover of MA-level actions is identified for each HAPS (see Line 4). Any 

action that takes place after this starting time belongs to the tail, while others belong 

to the head, as illustrated in Figure 45 (for one of the possible high-level solutions 

when monitoring the scenario Figure 11 with ℎ  HAPS). Next, a single-point 

crossover is performed for MA-level actions for each HAPS, maintaining in the 

children the existing LoIs ordering associated to each MA in the parents. 
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If  the mission areas that 𝑡xover  crosses are identical for both parents, i.e. 

MA(𝑡xover,parent1) == MA(𝑡xover,parent2), a permutation order crossover at the LoI-

level will be performed for both parents, and for each HAPS (see Line 6).  

 

Algorithm 5-2: Selection of a crossover section 

Require:  Parent chromosomes of multiple HAPS 

1: randomly select a time instant 𝑡crossover for crossover 

2: for each HAPS do 

3:     if MA(𝑡xover) of both parents are different then 

4:         identify the nearest median starting time at MA level and    

        perform crossover  

5:     else 

6:         permute the LoIs at the lower LoI-level 

7:     end if 

8: end for 

 

Each gene at the MA-level of the new generation can be mutated with a relatively 

low mutation probability 𝑃mut . The advantage of increasing the degree of 

randomness with probable mutations and also with the probable swapping of “illegal” 

individuals to the higher rank using Algorithm 5-1 are multifold: 

 

1. to avoid converging to a local optimum; 

2. to accelerate the search by creating individuals at very different areas that 

might not be explored without the randomness; 

3. to accelerate the convergence to the optimum, or to an optimum isolated by 

forbidden areas.  

 

The next generation consists of the best from the preceding and new generations, 

i.e. individuals of parent and child generation are all set together to be ranked using 

the stochastic sorting method described in Algorithm 5-1. 

 

5.4 Configuration of the GA 

GA is known to be flexible for its encoding of decision variables, its ability to handle 

constraints, as well as its straightforward implementation. However, the search for 

optimum is efficient (i.e. fast convergence to the optimum) only if the GA is properly 

configured with optimally tuned parameters like in [Besada-Portas et al., 2010; Perez-

Carabaza et al., 2016; 2018]. Some parameters are rather straightforward to set, or 

rather its variation does not affect the efficiency of the planner much. The choices of 

these parameters are defined in the following manner: 

 

1. Population size = 50 

The limiting factor to the choice of the population size is the computation 

time. Test results have shown that convergence is obtained within 50 

iterations. Furthermore, with a population size of 50, the computation time of 

50 iterations remains less than 3 minutes.  

2. 𝑘tournament = 3 

The parameter is usually set to a small value in order to increase the 

randomness induced by the tournament. Experimental results show that other 
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neighboring values do not have much impact on the efficiency of the planner 

[Hehtke, 2018]. 

3. 𝑃xover = 0,9 

The crossover probability is usually set to almost 1 in order to promote the 

occurrence of a crossover when generating new chromosomes, instead of 

retaining the parents. Furthermore, the new generation is selected among the 

precedent and newly generated chromosomes. Retaining parents decreasing 

the diversity of the population, thereby affecting the randomness of the 

search. 

4. The weightings of the objective criteria 𝑤rew, 𝑤div, 𝑤eff are set to 0.5, 0.3, 

and 0.2, so that the weighted objective criteria are brought down to almost the 

same contributions in the weighted sum of objectives with more weight 

allocated to the reward term 𝑓 = 𝑤rew𝑂𝐶rew + 𝑤eff𝑂𝐶eff + 𝑤div𝑂𝐶div. 

 

Table 16. Configurations to test for tuning the GA-guided task planner 

 𝑷𝐬𝐰𝐚𝐩 = {0.1, 0.2} 𝑷𝐦𝐮𝐭 = {0.05 0.1} Duplicate handling 

1. 𝑃mut = 0.2      

2. No handling 

C1 0.2 0.05 1 

C2 0.2 0.05 2 

C3 0.2 0.1 1 

C4 0.2 0.1 2 

C5 0.1 0.05 1 

C6 0.1 0.05 2 

C7 0.1 0.1 1 

C8 0.1 0.1 2 

 

Nevertheless, not all parameters can be defined in advance, and require therefore 

experimental tests to decide for the optimal settings, for example the swap probability 

𝑃swap of Algorithm 5-1, the mutation probability of genes 𝑃mut, and the different 

duplicate handling approaches. 𝑃swap  must remain low, or the majority of the 

population are infeasible plans; however, swapping in the case of constraint violation 

promotes faster convergence, as seen in Figure 46. Additionally, to promote 

randomness in view of a faster convergence or of avoiding a convergence to a local 

optimum, mutation is also introduced. However, the mutation probability 𝑃mut shall 

remain low; otherwise, unfeasible plans can be generated, or convergence will be 

unnecessarily delayed. Furthermore, while generating new chromosomes for the next 

generation, duplicates are unavoidable, and can dominate the population, leading 

hence to an early convergence to the duplicate plan. Two duplicate handling methods 

are tested: either 1) the mutation probability is increased when a duplicate is detected, 

or 2) the duplicates are not discarded.  

 

The tuning can be done using Wilcoxon tests (a pairwise test of different 

algorithms or different parameter settings) to compare the statistical results. Different 

configuration sets listed in Table 16, combining different parameters.  
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Figure 48. Time windows for ground activity monitoring 

 

Three randomly generated mission scenarios are used to test the different 

configuration sets. More than one mission scenario was used, in order to ensure that 

a configuration does not dominate by chance. The mission scenarios are all based on 

the airspace structure depicted in Figure 11, while the rewarding time windows for 

the monitoring tasks are marked with the blue rectangles shown in Figure 48. Besides, 

the MA with names in black encompass the LoI that can be visited only once during 

the day; more visits will not be rewarded. MA with names in red encompass LoIs that 

can be visited as frequently as possible. The minimum time lapse between two visits 

to the same MA is set to two hours. The wind magnitude and cloud coverage in each 

mission area are randomly generated using a normal distribution with a mean and 

standard deviation of wind magnitude of (𝜇𝑤, 𝜎𝑤) = (3, 1) m/s  for the wind 

magnitude and (𝜇𝑐𝑐 , 𝜎𝑐𝑐) = (30%, 15%) for cloud coverage. Since the GA is based 

on random search principle, 20 runs are performed for each configuration in each test 

scenario, in order to obtain statistical results of the tests.  

 

Figure 49 summarizes the results of the tests performed using dominance graphs 

over the number of iterations. To read the dominance graphs, the uppermost 

configuration is the “base” configuration, while the rest are compared against it. If 

the base configuration dominates (with higher mean objective value of the 20 runs) 

against another configuration, the cell is filled with green; if the base configuration 

is dominated by the compared configuration, the cell is filled with red. The first row 

is gray, since the base configuration cannot dominate itself, nor can it be dominated 

by itself. 

 

Although the test results could vary slightly from one randomly generated scenario 

to another, Configuration 1 (C1) thrives in all the tests. The following figure shows 

that configuration sets like C2 and C8 without duplicate handling have relatively 

small standard deviation, resulting hence in the tendency to “converge” too early to 

a suboptimal objective value, 𝑓 , or rather have difficulties to divert from the 

population to search in a broader area in order to approach optimum.  It is also 

observed that C3 has a larger standard deviation than C1, and a lower mean. In fact, 

during the tests, the best plan found by C3 among the 20 runs dominates the best 

found by C1. However, the larger mutation probability results in a much more 
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substantial probability in losing more quality chromosomes, and in return, obtaining 

a more diverse chromosome sample, which prevents the convergence to the optimum 

in most test runs; therefore standard deviation in objective value of the 20 test runs is 

larger.  

 

The parameters of C1 are therefore selected. For the GA integrated in the 

hierarchical task planner at the strategic planning level.  

 

 
a. First random test scenario 

 

 
b. Second random test scenario 

 

 
c. Third random test scenario 

 

 Figure 49. Tests for optimal configuration set for the GA  
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Figure 50.    Objective value of the first randomly generated scenario 
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“What we have to find is a middle way, to find a probabilistic description which 

says something, not everything, and also not nothing.” 

- John Horgan cited Ilya Prigogine in The End of Science 

6 Plan Repair via Reactive Avoidance  

As explained and illustrated in the temporal sequence diagram in Figure 16, Figure 

17 and Figure 18, the possibility of a danger unforeseen by the pre-execution mission 

planner cannot be ruled out. If the danger happens far in the future, there is time left 

for the mission planner to compute a new plan. However, if the danger is nearby and 

a reactive avoidance is needed, the HAPS can either abandon its current plan and be 

steered to a safe area to await a new plan from the mission planner, or the reactive 

strategy can be triggered to guide the HAPS to stay out of the short-term danger and 

merge back subsequently to executing its reference plan.  

 

The previous is a more straight-forward strategy that will not be treated here in 

this work. Principally, it can be achieved by first identifying a nearby safe flight zone 

(i.e. a flight zone that has little to no disturbance for the near future) and a route there 

will be calculated using the techniques mentioned in Chapter 3, while omitting all 

mission constraints and requirements and considering only the safety features (i.e. 

flight dynamics, obstacles and flight zones) [Müller et al., 2018]. The latter is less 

straight-forward given that the HAPS must consider some hard constraints involving 

the static or dynamic dangerous zones, while also consider its fidelity to the original 

mission plan [Attmanspacher, 2019]. 

 

However, the latter, also referred to as the High-Fidelity Avoidance Strategy 

(HFAS) within this work, has multiple advantages and can be deployed in the 

following situations: 

 

1. If a small unexpected obstacle is detected by the onboard situation awareness 

sensors, e.g. cloud, the reference plan can be “repaired” by having the HAPS 

deviate shortly from the plan without requesting for a new plan. Therefore, 

with a lower risk of re-planning, the mission management is less complex. 

2. If the communications link to the GCS is lost, the deviation from the original 

path is temporary and can be performed without the GCS. The subsequent 

merging back to the original plan helps the antenna of the GCS to track the 

HAPS and reestablish a line-of-sight communication. 
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In this chapter, the scenario in which the avoidance strategy is applied to is first 

described graphically. Its Markov Decision Process (MDP) model is then formally 

detailed. Subsequently, the concise state space setting and the tractability of the 

model are analysed. The results of the avoidance strategy are shown, and some 

potential future improvements are also listed. 

 

6.1 Model of Reactive Avoidance Strategy 

Graphically, the HFAS can be deployed in a typical situation illustrated in Figure 51, 

where an unforeseen dynamic obstacle marked with a red polygon is approaching the 

reference planned trajectory and might collide with the HAPS, should the HAPS 

proceed with the plan (see Figure 51a). Multiple strategies could be applied to avoid 

the dynamic obstacle, while trying to remain adhered to the original plan. The HAPS 

can either try the faster route as shown in Figure 51b to fly pass the colliding point 

or a longer route to fly behind the obstacle as in Figure 51c. By taking avoidance 

strategy A, the HAPS must do some extra miles in order to adhere to the original 

flight trajectory at the right time instant; meanwhile, in avoidance strategy B, the 

HAPS starts to deviate later to minimize the partial route against the wind vector as 

much as possible and prolongs the ride with the wind.  

 

 

 

 

 

 

a. Use case of the HFAS 

 

b. Avoidance strategy A 

 

c. Avoidance strategy B 

 

Figure 51. Use case of the HFAS 

In order to be deployed also in the case of communication link loss, the HFAS 

should be implemented onboard. Many reactive avoidance techniques for unmanned 

flights are based on Markov Decision Process (MDP) [Cheng et al., 2019; Temizer 
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et al., 2010] for practical reasons. The solution to a MDP is computed offline; also 

known as the strategy, it is a function that maps a state to an action that 

probabilistically has the highest chance of bringing the agent to its goal. The strategy 

is used to make decisions on-the-fly, according to the state the HAPS is currently in; 

no extra computation is necessary, enabling hence the decision-making to be 

instantaneous, even when the call to the strategy is implemented onboard on a 

microcontroller with minimal computation capacity.  

 

6.2 Markov Decision Process 

In the real world for robotics, the truth is often unknown and can only be estimated. 

The uncertainty arises from [Thrun et al., 2005]: 

1. the erroneous perception of the world using sensors, 

2. the inaccuracy of the problem model due to higher-level abstraction to reduce 

the complexity, 

3. the unknown future that can only be predicted. 

 

Markov decision process (MDP) is a widely used technique to determine a control 

policy for an autonomous agent to decide accordingly and promptly at a given state 

in order to maximize the rewards and minimize the risks, while the consequences of 

the action are uncertain [Thrun et al., 2005]. Due to the uncertainties involved in the 

problem, the decision can only be made probabilistically, i.e. only expected rewards 

(or expected risks) can be maximized (or minimized). Mathematically, a MDP can 

be defined as follows [Bertsekas and Tsitsiklis, 1996]. 

 

Definition 6-1 (Markov Decision Process, MDP) A MDP is a 4-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) 
where 𝑆 is a finite set of states, 𝐴 is a finite set of actions, 𝑃: 𝑆 × 𝑆 × 𝐴 → [0,1] is the 

state transition probability, and 𝑅: 𝑆 × 𝐴 → 𝑅+  is the reward function. γ  is the 

discount factor selected within the range ]0,1], in order to prioritize the rewards in 

the near future. 

The solution to an MDP model is a policy which seeks to optimize the rewards of 

a mission accomplishment by maximizing the discounted expected cumulative 

reward: 

 

𝑅𝑇 = 𝐸 [∑𝛾𝑡
𝑇

𝑡=0

𝑟𝑡], 
 

6-1 

 

where 𝑟𝑡 is the immediate reward, 𝑇 is the planning horizon.   

 

Note that MDP does not deal with the uncertainty due to perception, which is dealt 

with in Partially Observable Markov Decision Processes (POMDP). 

 

An interesting advantage of the MDP lies with its two-step deployment, which 

consists of the offline determination of a decision policy (also known as the 

“strategy” in the reactive avoidance for HAPS) and subsequently the online invoking 

of the policy during execution [Thrun et al., 2005]. The online step is efficient since 

the complex computation of the policy is completed offline. By doing so, the 

consequence of an action can be determined after the execution of each control 

decision, and the next action can be decided with the knowledge of the current state 
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after the execution of the previous action33. This is especially beneficial for reactive 

avoidance since first-of-all, there is no time allowance for tedious computation of a 

plan and secondly, the control parameter can be decided online while taking the total 

rewards/risks over the execution horizon into account, by assuming an infinite 

horizon while determining the optimal policy. 

 Modelling the HFAS 

Given a plan determined with the hybrid HAPS mission planner depicted in Figure 

35, a reference four-dimensional trajectory {𝑝} can be obtained by integrating over 

time the numeric control parameters decided by the flight path planner at the tactical 

planning level.  If the trajectory is closely followed by the flight controller, the 

position where the HAPS should be at time 𝑡 is 𝑝(𝑡), as shown in Figure 52. In the 

HFAS, since the HAPS maintains its altitude during operation, the altitude element 

is neglected, and only lateral avoidance is considered. 

 

If obstacles unforeseen during the offline planning are detected at 𝑡 and appear to 

be in the way (like 𝑜𝑏𝑠1) or approaching the reference trajectory (like 𝑜𝑏𝑠2), the 

HAPS must deviate from the reference plan, but still keep the next waypoint 

𝑝(𝑡 + Δ𝑡) in mind, so that it adheres to {𝑝} whenever possible. Δ𝑡 is the decision 

step, or time interval at which a decision will be made based on the information 

gathered from the situation awareness module described in Section 2.2.4.  

 

 

Figure 52. Problem parameters for avoiding an obstacle reactively 

Note that it is essential to describe the situation as concisely as possible with 

parameters so that a MDP remains tractable. The workspace 𝑋 of the HAPS defined 

in Section 2.3 is excessive. In the reactive avoidance use case, it is worth noting that 

the absolute positions of the HAPS or the obstacles are unnecessary information. 

Rather, the relative configurations between the HAPS and the obstacles are important 

                                                 
33 The MDP is a “memoryless” model. 
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to help the decision-making process, as depicted in Figure 52. The relative 

configurations are described by the relative distance 𝑑𝑖𝑠𝑡𝑖 and the relative bearing 𝜃𝑖 
between the HAPS velocity vector and the vector connecting the HAPS to the 

barycenter of the obstacle 𝑜𝑏𝑠𝑖. However, experimental results show that 𝑑𝑖𝑠𝑡𝑖 better 

denotes the minimum distance to the obstacle (edges), as it is more consequent for 

large obstacles, as shown in Figure 56. 

 

In the case of HAPS, since only a lateral deviation is considered here, the position 

vector 𝑝(𝑡) can be reduced to a two-dimensional vector and the pitch angle between 

the HAPS and the barycenter of the obstacles can be neglected in the problem 

statement. 𝑑𝑖𝑠𝑡𝑖  is hence the distance projected on the two-dimensional plane. 

Similarly, the relative configuration to the next waypoint 𝑝(𝑡 + Δ𝑡) on the trajectory 

can be described by the relative distance 𝑑𝑖𝑠𝑡ℎ  and the bearing 𝜃ℎ  between the 

velocity vector and the vector connecting the HAPS to 𝑝(𝑡 + Δ𝑡). 
 

For the sake of “fidelity” to the reference path plan, it is also necessary to keep 

track of the reference path, or rather the position the HAPS is supposed to achieve at 

the next time instant, if the unforeseen obstacles did not exist. 𝑑𝑖𝑠𝑡ℎ  denotes the 

distance to the next position of the reference path 𝑝(𝑡 + Δ𝑡), while 𝜃ℎ denotes the 

bearing between the HAPS velocity vector and the vector connecting the HAPS to 

the 𝑝(𝑡 + Δ𝑡). 
 

The actions considered, 𝑎 , are increase/decrease its own heading by Δ𝜃 , thus 

changing also 𝜃𝑜𝑏𝑠  and 𝜃ℎ , or “do nothing”, while maintaining the true airspeed. 

Qualitatively, if the obstacle(s) is far away, or if the HAPS course heading is already 

leading the platform away from the obstacle, “do nothing” is the reasonable action. 

If the obstacle(s) is close by, the HAPS must be steered away from the obstacle by 

either increasing or decreasing its heading, therefore changes also 𝜃𝑜𝑏𝑠  and 𝜃ℎ 

accordingly. 

 

The distance and the bearing to an obstacle at the next state (i.e. 𝑑𝑖𝑠𝑡𝑜𝑏𝑠
′  and 𝜃𝑜𝑏𝑠

′ ) 

are independent of the other obstacles, and 𝑑𝑖𝑠𝑡𝑜𝑏𝑠
′  depends on the 𝑑𝑖𝑠𝑡𝑜𝑏𝑠, 𝜃𝑜𝑏𝑠 of 

the current state and the action taken 𝑎, while 𝜃𝑜𝑏𝑠
′  depends only on 𝜃𝑜𝑏𝑠  and the 

action taken. Likewise, the dependency for 𝑑𝑖𝑠𝑡ℎ
′  and 𝜃ℎ

′  of their previous states is 

deduced. Therefore, the state transition probability for {𝑜𝑏𝑠1, … , 𝑜𝑏𝑠𝑜} can be 

simplified to Equation 6-2. 

 

𝑃(𝑠′|𝑠, 𝑎)
= 𝑃(𝑑𝑖𝑠𝑡1

′ , 𝜃1
′ , … , 𝑑𝑖𝑠𝑡𝑂

′ , 𝜃𝑂
′ , 𝑑𝑖𝑠𝑡ℎ

′ , 𝜃ℎ
′ |𝑑𝑖𝑠𝑡1, 𝜃1, … , 𝑑𝑖𝑠𝑡𝑂 , 𝜃𝑂 , 𝑑𝑖𝑠𝑡ℎ, 𝜃ℎ , 𝑎)

= (∏ 𝑃(𝑑𝑖𝑠𝑡𝑜𝑏𝑠
′ |𝑑𝑖𝑠𝑡𝑜𝑏𝑠, 𝜃𝑜𝑏𝑠, 𝑎) ⋅ 𝑃(𝜃𝑜𝑏𝑠

′ |𝜃𝑜𝑏𝑠, 𝑎)
𝑂

𝑜𝑏𝑠=1
)     

      ⋅ 𝑃(𝑑𝑖𝑠𝑡ℎ
′ |𝑑𝑖𝑠𝑡ℎ, 𝜃ℎ , 𝑎) ⋅ 𝑃(𝜃ℎ

′ |𝜃ℎ, 𝑎) 

 

 

6-2 

 

Note that in practice, the problem is formulated only for up to two obstacles 

{𝑜𝑏𝑠1, 𝑜𝑏𝑠2}. The reason being that a reactive avoidance in the presence of many 

obstacles is too risky; in that case, the reference flight plan should be aborted, and the 

HAPS shall either be steered to a safe zone awaiting a new plan [Müller et al., 2018]. 

If this is also not an option, an emergency landing is required. 
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Thus, a state 𝑠 ∈ 𝑆  of the MDP is hence 𝑠 = (𝑑𝑖𝑠𝑡1, 𝜃1, 𝑑𝑖𝑠𝑡ℎ, 𝜃ℎ) in the case 

where only one unforeseen obstacle is present in the vicinity of the HAPS, and 𝑠 =
(𝑑𝑖𝑠𝑡1, 𝑑𝑖𝑠𝑡2, 𝜃1, 𝜃2, 𝑑𝑖𝑠𝑡ℎ, 𝜃ℎ) if two unforeseen obstacles are present in the vicinity. 

Strategies for a single obstacle and for two obstacles are determined separately and 

invoked onboard by the reactive avoidance module according to the number of 

detected unforeseen obstacles. 

 

 Solution to MDP 

An MDP can be solved for infinite planning horizon using the value iteration34 

[Bertsekas and Tsitsiklis, 1996]. The solution is a policy 𝜋HFAS, which is a mapping 

function 𝜋HFAS: 𝑆 → 𝐴 that maps a state 𝑠 ∈ 𝑆 to the action 𝑎 ∈ 𝐴 that maximizes the 

expected value: 

 

𝑉(𝑠) = max
𝑎∈𝐴

[𝑟(𝑠, 𝑎) + ∑ 𝑉(𝑠′)𝑃(𝑠′|𝑎, 𝑠)𝑁
𝑗=1 ], 6-3 

 

and the policy obtained 𝜋HFAS: 𝑆 → 𝐴 is as follows: 

 

𝜋HFAS(𝑠) = argmax (
𝑎∈𝐴

𝑟(𝑠, 𝑎) + ∑ 𝑉(𝑠′)𝑃(𝑠′|𝑎, 𝑠)𝑁
𝑗=1 ). 6-4 

 

6.3 Implementation and Results 

Although the model in Section 6.2.1 could be expressed in a continuous space, the 

MDP is however intractable without discretization. The discretization of the state 

space must not be too fine, or the complexity of the problem increases exponentially. 

However, it must be reasonable so that the problem is not overly abstracted, resulting 

in a loss of information or maneuverability. Table 17 summarizes the discretization 

of the state space. 

 

Table 17. State space discretization of the MDP 

State parameter 

set 

Domain discretization 

𝑨 = {𝒂} {-1, 0, +1} °/s 

𝚯𝒉 = {𝜽𝒉} {-15, 0, 15, 180} ° 

𝑫𝒊𝒔𝒕𝒉 = {𝒅𝒊𝒔𝒕𝒉} {1, 100} km 

𝚯𝒐𝒃𝒔 = {𝜽𝒐} {-90, -45, -15, 0, 15, 45, 90, 180} ° 

𝑫𝒊𝒔𝒕𝒐𝒃𝒔 = {𝒅𝒊𝒔𝒕𝒐} {5, 15, 100} km 

 

Note that the values in the discretized space denote the upper limit of a range with 

the lower limit taking either the value before or the natural lower limit the metric 

measures. For example, “-15” in the state parameter set for the bearing with the next 

position on the reference path, Θℎ, denotes the range [-180,-15[, and “100” of 𝐷𝑖𝑠𝑡𝑜𝑏𝑠 

                                                 
34  Solving the MDP formulated for reactive avoidance for HAPS with value 

iteration or policy iteration results in the same policy.  Furthermore, no significant 

difference in performance was observed [Attmanspacher, 2019]. 
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denote the distance range [15, 100[.  The distances are discretized based on thresholds 

that signify the levels of “criticality”. 

 

The distance to the obstacle(s) or to the next waypoint on the reference path are 

set in a way that the avoidance strategy is able to decide which obstacle is more 

critical and if it is far enough from danger to proceed to adhering the reference path. 

Meanwhile, the bearing to the obstacle(s) or to the next waypoint on the reference 

path is to inform the reactive avoidance module if the HAPS is flying into or away 

from the obstacle(s) or the next waypoint. 

 

The HFAS computed on the GCS by the mission planner is invoked onboard by 

the reactive avoidance module when at least one unforeseen obstacle is in the vicinity 

of the HAPS, i.e. 𝑑𝑖𝑠𝑡ℎ < 100 km. The HFAS stops to apply when all obstacles are 

beyond 100 km from the HAPS, and if the HAPS ‖𝑝(𝑡 + Δ𝑡) − 𝑝(𝑡)‖2 < 1 km, or 

if ‖𝑝(𝑡 + Δ𝑡) − 𝑝(𝑡)‖2 converges to a constant value. The latter implies that the 

HAPS has already adhere to the reference path but is unable to catch up with the next 

waypoint, especially in the case where the reference path is linear. 

 

 Single Static Obstacle 

Figure 53 shows on the North-East plane the alternative trajectory taken to avoid an 

unforeseen static obstacle lying on the reference path (marked in red). After the 

avoidance, the HAPS adheres back to the reference path, avoiding possibly hence a 

re-planning in this case. The markers on the blue alternative path denote time instants 

or positions at which an action that is not “do-nothing” is undertaken, i.e. 𝑎 > 0 °/s. 
 

 

Figure 53. HFAS for a single static unforeseen obstacle 

The deviation from the reference path over time (shortest distance to the reference 

path) is shown in Figure 54, while Figure 55 shows the difference in position 
‖𝑝(𝑡 + Δ𝑡) − 𝑝(𝑡)‖2  at each time instant. Although, the difference does not 

necessary decrease to zero, since the HAPS is “behind schedule”, but it does not 

increase unlimitedly, resulting in a loss of track of the reference path, and requires 

thus a re-planning. In this particular case, the HAPS is 610 s behind schedule. 
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Figure 54. Deviation from the reference path over time 

 

Figure 55. ‖𝒑(𝒕 + 𝚫𝒕) − 𝒑(𝒕)‖𝟐 at each instant 

 Two Static Obstacles 

Similarly, Figure 56 shows the undertaken flight path to avoid the two static 

obstacles. The difference in this example is that the avoidance is done much closer to 

the obstacles. The reason being that instead of taking the distance to the barycenter 

of the obstacles for 𝑑𝑖𝑠𝑡𝑜, in this example, the state parameter denotes the minimal 

distance to the 𝑜𝑏𝑠. By doing so, the deviation from the reference path is reduced, 

and there is also more space for avoidance, especially when threat map becomes 

denser with the presence of a second obstacle. 
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Figure 56. HFAS for two static unforeseen obstacles 

 

Figure 57. Deviation from the reference path over time (2 static obstacles) 

 

Figure 58. ‖p(t+Δt)-p(t) ‖ at each instant (2 static obstacles) 

 Moving Obstacle(s) 

The computed HFAS was also tested for moving obstacles, although the movement 

of the obstacles is not modelled. However, this abstraction of state parameter is 

reasonable, since the action taken to avoid a collision is taken at every instant, 

freezing thus the movement of the obstacles, of which the HAPS has no control. 

Figure 59 shows the alternative flight path taken over time to avoid the moving 
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obstacle, while the deviations from the reference path and the quantitative description 

of how far behind schedule the HAPS is are shown in Figure 60a and Figure 60b 

respectively.  

 

   

   

Figure 59. HFAS a single unforeseen moving obstacle 

 

 

a. 

 

b. 

Figure 60. a) Deviations from the reference path; b) ‖p(t+Δt)-p(t) ‖ for a 

single unforeseen moving obstacle 

 

More challenging tests were conducted on two moving obstacles. HFAS 

succeeded to reactively avoid collisions with the obstacles, as shown in an example 

test in Figure 61 and Figure 62. 
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Figure 61. HFAS two unforeseen moving obstacles 

 

 

a. 
 

b. 

Figure 62. a) Deviations from the reference path; b) ‖p(t+Δt)-p(t) ‖ for two 

unforeseen moving obstacles 

  





135 

 

 

“The problems today are not caused by super smart AI, but stupid AI” 

- Toby Walsh in WIRED on 20 September 2017 

7 Implementation and Validation 

In this section, the implementation of the pre-execution mission planner described 

from Section 3 to Section 5 is illustrated to show how the various modules interact 

as a whole, as well as with the operator, in order to fulfill the system specifications 

described in Section 2.2. Test results obtained using real weather data and a HAPS 

simulator are also analysed to validate the planning concept. Although the 

computation of HFAS described in Section 6 is also performed prior to mission 

execution by the mission planner on the GCS, it is independent from the rest of the 

modules and therefore, will not be further elaborated in this section. Furthermore, 

since the aircraft dynamics model used in the HFAS is based on the same model 

adopted for the point-to-point flight path planning (see Section 3), the validation of 

the latter in this section implies the correctness of the HFAS. How the HFAS is 

triggered during a mission flight was briefly described in Section 6, but the exact 

implementation falls out of the scope of this work.  

 

To recall, as fixed-wing aircrafts, HAPS can fly typically at an optimal equivalent 

airspeed of 9 m/s [Müller et al., 2018] and cruise at the operating altitude at a speed 

of |𝑣TAS|~ 29 m/s (see Table 5 in Section 1 for the specifications of the platform). Its 

ground velocity can be obtained via 𝑣GS = 𝑣TAS + 𝑣w. Besides, they are equipped 

with an electro-optical mission camera and therefore must perform the monitoring 

tasks during daylight. For example, on a day in spring, the ground activity monitoring 

mission can start at 08:00 in the morning and finish at 16:00 in the afternoon. 

Therefore, for the tests used in this section, the HAPS are set to linger at the WA 

(HAPS-1 in WA13 and HAPS-2 in WA14) to await commands at 07:00 local time; 

meanwhile, a plan for the next 8 hours must be determined and approved by the 

operator. Note that the start time of the daily mission depends on the local sunrise 

and sunset hours.  

 

7.1 Implementation of the Mission Planner  

 

While Figure 35 only shows the functional architecture among the modules, Figure 

63 shows here in a much more concise manner the functions of the modules as well 

as their interaction with the human operator. The task planner implemented at the 

strategic planning level first plans for the tasks the HAPS must execute over a given 
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plan horizon. At this level, mission constraints and requirements are taken into 

account, but the four-dimensional wind field, as well as the HAPS non-linear 

dynamics constraints are only very approximately considered, therefore the 

constraints are marked in light gray. Only a range of the possible wind magnitude is 

considered, i.e. |𝑣𝑤| ∈ [0, 5] m/s, while the platform dynamics are assumed linear at 

constant speed.  

 

 
 

Figure 63. Procedure of a mission planning 

 

The feasible task plans found within the allocated time for strategic planning (3 

minutes) are then ranked accordingly according to their objective values and 

presented to the operator. At this level, the operator is also entitled to intervene and 

alter the ranking of the task plans.  

 

With the rest of the planning time, the task plans are “refined” by the numeric 

flight path planner implemented at the tactical planning level, in order to better 

estimate the time and position of the HAPS over the plan horizon, thereby estimate 

better the quality of the plans. At this stage, wind field and the platform dynamics are 

numerically treated. The refined plans will be sorted accordingly and presented to the 

operator, so that the plan to execute 𝜋 can be selected. 

 

In order to “refine” as many task plans as possible, a multithreading is 

implemented, so that two task plans are being concurrently refined by the path 

planner. The multithreading can be multiplied if necessary. The primitive task plan 

can be represented by a sequence of time-stamped PoIs, which are sequentially used 

(in total-order) as start and goal conditions for the tactical numeric flight path planner. 
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 User Interface of the Mission Planner 

In this subsection, the User Interface (UI) will be briefly described, for a better 

understanding of the potential interaction with the human operator the mission 

planner offers35.  

 

 
 

Figure 64. Cloud map on coverage map from onboard EO-sensor  

shown on the user interface 

 

 

 

Figure 65. Flight instrument 

Shown in Figure 64 is the main display of the UI. On the left are the flight 

instrument display, and the display for sensor health status as well as the energy 

                                                 
35 Note that no systematic study was conducted in this work on how the planner 

should interact with the human operator(s) and when a human intervention is deemed 

optimal. Although essential, the study falls out of the scope of this work. 
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management. An enlarged view of the flight instrument display can be seen in Figure 

65, in which the true airspeed (“Air speed”), the ground speed (GS) are shown on the 

left bar, the amplitude (“Amplitude”) on the right, the pitch and roll angles in the 

middle. The compass at the bottom shows the yaw angle of the HAPS. An important 

display here is also the wind direction, which is indicated by the arrow in the 

compass. 

 

On the right of the display is a map on which the current location of the HAPS is 

marked. Also found on the map is the weather map derived from the onboard cloud 

detection unit; in this particular display, the cloud coverage map in grid and the cloud 

map with units of cloud situated between the HAPS and the ground are displayed.   

 

Optionally, the map display can show other information as well. In Figure 66a is 

the mission scenario for a single HAPS depicted on the map, together with the 

planned flight path marked with a black line from the WA to multiple POIs in a MA. 

The red polygons are the weather critical zones summarized from the weather 

forecast data. The display of additional information, for example the motorway flags 

on the ground or wind field etc. can also be activated if necessary (see Figure 66b).  

 

 
 

a. Mission scenario with the 

planned path 

 

 
 

b. Wind vector field and the details 

of the ground 

 

Figure 66. Optional information displayed on the map 

 

A second display is dedicated for the mission planner, as seen in Figure 67, in 

which the plans for a single HAPS over a plan horizon of 8 hours are displayed. At 

this stage, only the task planner at the strategic level has completed its planning. The 

suggested task plans are displayed in a sorted order, according to the objective of 

each. The hierarchical structure of the plans is also shown, i.e. the different physical 

abstraction levels from the MA, to the LOI and to the POI are displayed, in which 

case, the operator can decide which level of detail to look at while trying to 

understand the plans.  
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a. Display of the task plans in the ranking suggested by the strategic planner 

 

 

 

b. Ranking of the task plans after alteration by the operator 

 

Figure 67. Plan display for a single HAPS 
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On the mission planner display, a function is implemented for the operator to alter 

the ranking of the task plans (see arrows “up” and “down” on the left in Figure 67a). 

To recall, the ranking is essential for the order in which the task plans will be refined 

by the numeric flight path planner in the tactical planning level (see Figure 63). In 

this particular example, the operator decides to move “Plan 1” to the last on the list, 

resulting hence in the ranking displayed in Figure 67b.  

 

7.2 Validation of the Planning Functions 

The planning techniques developed for HAPS are model-based, i.e. by using the 

expert knowledge, the formal model of the system was developed, which is used to 

search for the optimal plan36. The results of the tests for efficiency of the planners 

were presented in each section, and some analysis of the results have helped to 

improve the performance of the planner, for instance, by introducing an external 

framework to call the numeric flight path planner iteratively (see Section 3.3.3.2), or 

by configuring the GA-guided hierarchical task planner properly for better and faster 

convergence (see Section 5.4).  

 

Left to validate in this section is the executability, i.e. if the plans conform with 

reality and how well the planners can cope with the versatile real world. 

 

The following subsection intends to: 

1. validate the model of the HAPS platform dynamics and the model of the 

environment used in the flight path planner in Section 3 by checking the 

executability of the flight path plans;   

2. analyse the ability of the GA in Section 5 to cope with the versatile real world 

despite the abstraction of information for faster and better37 task planning. 

 

 Validation: Executability of the Flight Path Planner 

The scenario used for the validation tests is as depicted in Figure 11, with mission 

elements placed in the South of Germany. The region was selected due the 

availability of historical weather data (useful to realistically simulate the environment 

and flight dynamics [Köhler et al., 2017a]). 

 

7.2.1.1 External 6-DoF HAPS Simulator 

To validate the generated paths, we use a six degrees of freedom (6-DoF) aircraft 

simulator provided by the German Aerospace Center (Deutsches Zentrum für Luft- 

und Raumfahrt, DLR) constructed based on a realistic HAPS model coupled with a 

four-dimensional flight controller [Müller et al., 2018]. The latter ensures that the 

aircraft is controlled in the vertical and lateral directions with respect to the reference 

flight path, as well as the airspeed are followed to keep track of the time of arrival at 

each point of the path.  

 

                                                 
36 Although the planning techniques described in Section 3-5 do not guarantee 

optimality, they are guided by optimality by trying to decrease flight time, increase 

rewards etc.  
37  The task planner is also judged by how well the fitness value, or more 

specifically, the cumulative probabilistic rewards reflect the quality of the plan. 
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The weather forecast data used for planning as well as the nowcast data for the 

flight simulation are historical data from 27th June 2015. On that day, sunrise starts 

around 05:15 local time and by 07:00, the sun is shines above the horizon. Therefore, 

the mission flight starts at 07:00, but it would also be wise for the HAPS to fly to its 

first mission area slightly before.  

 

The exploited weather data considered in the pre-mission flight path planning are 

the COSMO-DE wind data [Baldauf et al., 2011], the Cumulonimbus forecast 

predicted with fuzzy logic [Köhler et al., 2017b], additional data to highlight strong 

wind and turbulence zones [Köhler et al., 2017a].  

 

7.2.1.2 Validation of the Flight Dynamics Model 

The plan issuing from the flight path planner, as described in Section 3.3 is a sequence 

of time-stamped actions, which will then be used to predict with extrapolation the 

four-dimensional (space and time) flight path. To recapitulate, the HAPS dynamics, 

as well as the time varying environment, are modelled with PDDL+, a declarative 

language that allows to specify the dynamics and constraints characterizing complex 

hybrid control systems with ease. Flight plans, derived from PDDL+ formulation of 

non-linear, non-homogeneous dynamics constraints, as well as collision avoidance 

with mobile obstacles, can be calculated efficiently using ENHSP [Scala et al., 2016], 

a domain-independent hybrid planner, as an off-the-shelf planner. Albeit plans are 

generated on a more abstract model of the world, we show that these plans result 

executable when tested on a high-fidelity simulator. 

 

 
 

Figure 68. Typical flight path 

 

A six-hour plan was computed by the mission planner within five minutes 

planning time with an Intel i7-6700K, 4GHz processor. The plan computed by the 

numeric flight path planner at the tactical planning level is a sequence of time-

stamped actions. These are then used to predict by integrating over time the reference 

path. Figure 68 shows partially the reference path from 06:30am local Bavarian time 

until noon on the 27th June 2015, generated by the planner and the corresponding path 

flown by the HAPS simulator. In fact, if the forecasted weather is admissible, flight 
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paths that were successfully computed are feasible. The feasibility is measured by the 

deviation from the reference.  

 

 

 
 

Figure 69. Lateral deviation in position between the planned path and the 

simulated flight path 

Figure 69 shows the lateral deviation of a few hours of simulation data. The 

maximum deviation between the planned reference flight path and the simulated 

flight path is less than 420 m; simulation results also show that the mean lateral 

deviation between the planned reference flight path and the simulated flight path is 

about 143 m, which is acceptable for a HAPS [Müller et al., 2018], as the safety 

margin to any physical constraint (NoGo-areas of mission area) is set to at least 1 km, 

on account of the unforeseen movement or development of the weather situation, 

which is not considered in the coarsely discretized weather forecast (time interval 

between forecast sets is usually 1 hour, and can be also 3 hours) and cannot be 

properly extrapolation.  

 

 
 

Figure 70. The relation between the lateral deviation in position and the 

turn rate of HAPS. The yellow bars indicate the range of the deviation, while 

the black error bars indicate the standard deviations with the cross marking 

the mean error. 

 

Several factors could have caused the deviation from the reference path. The most 

obvious being 
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1. the different weather data used in the planner and in the simulator; 

2. the integration step in the planner and the flight controller. 

 

The first cause is unavoidable, which is also realistic, since the planning phase is 

carried out prior to mission execution. Therefore, only forecast data can be considered 

during planning, while the simulator uses the nowcast weather data. This conforms 

with the reality, in which the real weather situation can be different from the forecast.   

 

The flight control operates at much higher frequency, e.g. 1000 Hz, while the 

integration step to predict the flight path out of the path plan is set to 1 s (same as the 

validation step set for the flight path planner, see Section 3.3.3.1). However, as 

observed in Figure 70, it is established that the greater the turn rate is, the harder it is 

to follow the planned path, due to the much larger integration time step used to 

generate the reference path, compared to the frequency of the flight controller. This 

also motivates an adaption of the planning model so that frequent turns will be 

penalized and avoided. This, however, is not as straightforward, since the planner’s 

aim is to minimize travel time. Therefore, if turns are considered an additional cost, 

either it must be weighted appropriately, or a pareto-front optimization can be used. 

The inclusion of a penalty on turns in the flight path planning is left for future work.  

 

Not only that the plans produced by the underlying flight path planner is 

executable, the model also comes with another advantage, namely less burden is 

exerted on the electro-motors. Figure 71 shows that the flight controller can follow 

the paths by maintaining an equivalent airspeed of around 9– 10 m/s, which is the 

optimal equivalent airspeed (see Section 2.1.1). It is hence more energy efficient and 

operationally safer since it is unlikely that the electro-motors are pushed to their 

power limit, while trying to follow the planned reference path. 

 

 
 

Figure 71. EAS during the test 

 

 Validation: Ability of the Task Planner to Cope with the Versatile 

Environment 

In this section, the temporal hierarchical task planner described in Chapter 4 and the 

extension for multiple HAPS in Chapter 5 are tested, and the results are analysed with 

respect to the planner’s ability to cope with the time-varying environment using the 

underlying probabilistic model. To put forth the benefit of our new approach, the 
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results are compared with tests conducted using several different scenarios (S1, S2, 

and S3) to be solved with different planners: planners using the GA guided 

hierarchical task planner or without guidance using a brute-force search. The tests are 

run on a 4.00 GHz x 8 Intel Core i7-6700K CPU with 32GB RAM, using a Matlab 

implementation of the GA, except for the integral operations required in Equation 4-

5, that are implemented in C. 

 

All scenarios under test share the layout of MAs, WAs, LoIs and Cs depicted in 

Figure 11, which comprises an area of 500 km × 500 km. LoIs and MAs dimensions, 

respectively; the mission elements have orders of magnitude of tens or of hundreds 

of kilometers as summarized in Table 7. 

 

Scenario 1 and 2 (S1 & S2) use the same weather forecast, taken from the National 

Meteorological Service38 at 05:00 local time on the 24th April of 201839. Scenario 3 

(S3) uses synthetic weather data to test the performance and convergence speed of 

the GA-guided planner on cloudy days (where the cloud coverage is higher than 50% 

for almost 50% time of the day). Both forecasts are summarized in timeline diagrams 

for each MA the plan horizon (08:00-16:00), as shown in Figure 72. The mission 

flight starts at 08:00 local time instead, since the sunrise hour on the 24th April 2018 

was around 06:10 40 . The blue-gray shade each hour indicates the mean cloud 

coverage: the darker the shade is, the more substantial the cloud coverage is. The red 

dots indicate the hours within which the mean wind magnitude is greater than 3 m/s.  

 

The blue (dark or light) rectangular edges denote the time windows at which the 

LoIs of the respective MAs are requested by the clients to be monitored. Besides, the 

MA with names in black encompass the LoIs that can be visited only once during the 

day; more visits will not be rewarded. MA with names in red encompass LoIs that 

can be visited as frequently as possible. The minimum time lapse between two visits 

to the same MA is set to two hours. 

 

Finally, in S1 only one HAPS is contracted to carry out the mission, while in S2 

and S3 a second HAPS is incorporated, making the combinatorial problem at the 

highest decomposition level exponentially more complex and activating hence the 

constraint that prohibits the coexistence of multiple HAPS in the same MA (see 

Section 5.3). 

 

                                                 
38 Weather Data. 2018. German National Weather Service. https://www.dwd.de/EN. 

(2018). 
39 A different day is selected for the test since the 27th June 2015 was in general 

very cloudy, with a cloud coverage of above 90% most time of the day, and therefore 

is not beneficial for the test on the ability of the planner to cope with versatile weather. 
40 Mission operation commences when the sun shines on the solar panels of the 

stratospheric platform. 

https://www.dwd.de/EN
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a. Historical cloud coverage data used for S1 and S2 

 

 
 

b. Synthetical generated cloudy scenario used for S3 

 

Figure 72. Cloud coverage used for the tests 

 

If Equation 4-5 is used to evaluate the expected cumulative reward of a task plan, 

the likelihood of a successful and a failed monitoring task at a mission area are given 

as follows:  
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𝐿(succ|𝑠𝑖, 𝑡𝑖 , 𝑜𝑖
MA, 𝑤𝑡𝑖) =  {

0.9, 𝑤𝑡𝑖(𝑐𝑐) < 𝑡ℎ𝑖𝑚𝑎𝑔𝑒  

0.3, otherwise                
,  

 

𝐿(fail|𝑠𝑖, 𝑡𝑖 , 𝑜𝑖
MA, 𝑤𝑡𝑖) =  {

0.1, 𝑤𝑡𝑖(𝑐𝑐) < 𝑡ℎ𝑖𝑚𝑎𝑔𝑒  

0.7, otherwise                
,  

 

 

7-1 

where 𝑤𝑡𝑖(𝑐𝑐) is the cloud coverage in percentage at 𝑡𝑖 and 𝑡ℎ𝑖𝑚𝑎𝑔𝑒 is the threshold 

in percentage for the recorded image coverage of all LoI of the MA (see Table 10), 

in order to be rewarded. 

 

7.2.2.1 Planner Configurations 

Four planner configurations are used to perform the tests. The first configuration (P1) 

uses the GA described in Section 5.3 to guide the search for the optimal 

decomposition at the mission level of the temporal HTN planner. As the performance 

of the GA depends on its parameter settings, the parameters summarized in Table 18 

were chosen after determining statistically the best configuration for several 

scenarios, as described in Section 5.4. 

 

Table 18. Parameterization of the GA planner 

Iterations 50 

Population size 50 

Tournament size 3 

Crossover, 𝑷𝐱𝐨𝐯𝐞𝐫 0.9 

Mutation, 𝑷𝐦𝐮𝐭 0.05 

Stochastic ranking swapping, 𝑷𝐬𝐰𝐚𝐩 0.2 

Duplicate handling 𝑃mut = 0.2  

for duplicates 

Objective function addition weights: 

𝒘𝐫𝐞𝐰  0.5 

𝒘𝐝𝐢𝐯  0.3 

𝒘𝐞𝐟𝐟  0.2 

 

In the second planner configuration (P2), the decomposition at the highest level of 

the temporal HTN planner is performed by brute-force search. Not only is the purpose 

of this configuration to show the computational benefits of using a GA to optimize 

the task decomposition, but also to determine the optimal solution and check if P1 

converges towards it.  

 

The third and fourth planner configurations (P3 and P4) substitute the probabilistic 

cumulative reward in Equation 4-5 used in the reward objective criterion 5-1 by the 

cumulative reward presented in Equation 7-1: 

 

𝐸(Σ|𝑠0
ℎ, 𝑡0

ℎ , 𝜋𝑛,0
ℎ ) 

= ∑ 𝐿(𝜇 = succ|𝑠𝑖
ℎ, 𝑡𝑖

ℎ,det, 𝑎𝑖
ℎ, 𝑤𝑡𝑖) ⋅ 𝑅(𝜇 = succ, 𝑎𝑖

ℎ, 𝑡𝑖
ℎ,det, 𝑡𝑖+1

ℎ,det),

𝑎𝑖∈𝜋𝑛,0
ℎ

 

 

7-2 
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where the ending time 𝑡𝑖
ℎ,det

 for each action is considered deterministic, i.e. the 

uncertainty of the execution time or duration of each task arising from the abstraction 

of the wind data and the platform dynamics in the task planner is neglected.  

 

In short, and also summarized in Table 19, P1 and P2 consider the wind effects in 

the randomness of the ending times of the high-level actions (see Figure 40 for the 

distribution of the ending times), while P3 and P4 use a deterministic ending time 

obtained ignoring the variability caused by the wind. Finally, P3 is similar to P1 (i.e. 

both use the GA described in Section 3.2 to guide the decomposition at the highest 

mission levels), while P4 is similar to P2 (i.e. both use brute-force search). Hence, 

the solution by P4 also serves as the reference solution for P3, as the solution of P2 

does it for P1. 

 

Table 19. Configuration of planners 

 Search for optimal 

decomposition 

Estimation of 

task durations 

Optimal? 

P1 GA probabilistic Not guaranteed 

P2 Brute-force probabilistic Yes 

P3 GA deterministic Not guaranteed 

P4 Brute-force deterministic Yes 

 

7.2.2.2 Results and Analysis 

For planners using the GA (i.e. P1 and P3), the tests were run for a total of 50 

iterations, as indicated in Table 18. P1 and P3 clearly benefit from the fact that each 

GA iteration takes about 1-2 seconds and obtain their solution in less than 3 minutes 

after 50 iterations. The time used to obtain, by brute-force search, the optimal solution 

in P2 and P4 is scenario-dependent. For S1, the tests were conducted with only one 

HAPS, P2 took 2.43 hours while P4 took 2.55 hours. When two HAPS are involved, 

for instance in S2 and S3, P2 and P4 required 20.97 hours and 16.1 hours respectively. 

It is also worth noting that the brute-force search ran out of memory when two HAPS 

were involved, and, hence, read/write operations on the SSD hard-drive were 

required, contributing hence also to the longer computation time. From the 

computational point of view, the GA clearly accelerated the solution identification, 

or rather the search or optimal higher-level task decomposition within the HTN 

planner. 

 

The planning for a single HAPS always find the optimal solution within the 30 

first iterations, either with P1 (with the optimal solution of P2 found), or with P3 

(with the optimal solution of P4 found).  

 

The performance and the plans by the four planner configurations for S2 and S3 

are shown in Figure 73 and Figure 74 in the three tested scenarios S1, S2, and S3 

respectively. Due to the randomness of the GA algorithm, a total of 20 tests were run 

for P1 and P3, in order to obtain statistical results. Figure 73a and Figure 74a show 

the evolution of the statistical results of the 20 test runs obtained by each GA planner 

over the number of iterations for P1 (in blue) and P3 (in green), and the maximum 

objective value found after the brute-force search by P2 (in orange) and P4 (in red). 

The mean is represented by the solid lines, while the standard deviation is represented 
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by the shaded areas of the weighted objective 𝑓 of the best solution at each GA 

iteration. The objective values of P1 and P2 are lower than those of P3 and P4, which 

is normal, mainly due to the fact that the reward of each task in the plans of P1 and 

P2 only contributes probabilistically to the objective value (as described in Equation 

4-5). Finally, although the GA planners are not always able to identify the best 

solution obtained by brute-force search, they are capable of obtaining a feasible 

overall-good solution in less than 3 minutes. 

 

Figure 73b and Figure 74b show the plans at the MA-level found by each planner, 

with integer 1-12 being the MA and 13-16 being the WA 1-4. The labelling of the 

mission elements can be found in Figure 11. The task ordering is displayed while 

taking into account the median time of the actions predicted by the temporal HTN 

planner for P1 and P2, and the deterministic timing (without wind) for P3 and P4. 

Some plans exceed the end time of the planning horizon, e.g. 16:00, while others end 

clearly too early. This is due to the time-dependent crossover that is rounded up to 

the closest start time of a neighboring task of 𝑡xover, resulting hence in varying plan 

lengths. The labels on the y-axis ‘P#-$’ identify the plans found using planner 

configuration P# for HAPS-$. The plans shown for planner P2 and P4 are simply the 

optimal ones obtained by brute-force according to their corresponding objective 

functions. For P1 and P3, the displayed plan is the best feasible plan found most often 

out of the 20 test runs. If several ones are found with the same frequency, in that case, 

the one with the highest objective value is shown. Note that the degree of similarity 

between plans found by P1 (or P3) and the optimal brute-force planner configuration 

P2 (or P4) indicates the degree of optimality of the GA.  

 

The best plans shown in Figure 73b and Figure 74b are refined by the numeric 

flight path planner at the tactical level described in Section 3. The final refined plans 

decide if a task is successfully executed or not, in order to compare the plan quality 

of P1, P2, P3 and P4. Figure 73c and Figure 74c show the timing of the refined plans; 

MA that are successfully monitored are highlighted with a green dot, while those fail 

to be rewarded are highlighted with a red dot. In white are mission elements that 

correspond to WA, and therefore, are not rewarded.  

 

The results for S3 show especially the benefits of using a probabilistic arrival time 

(within Equation 4-5) in P1 and P2, versus using a deterministic arrival time (within 

Equation 7-1) in P3 and P4. The plans of HAPS-1 by P3 and P4 (P3-1 and P4-1) 

neglect the existence of the wind that could induce an error in the arrival times. This 

led to the unsuccessful monitoring of their initial mission areas (within its allowed 

time window) during the simulations. It is also worth noting that although not all 

MAs of the plans by P1 and P2 are successfully monitored, but failures occur later in 

the plans. This effect is expected in the plans by P1 an P2, which use Equation 4-5 to 

consider the distribution of each MA arrival time (spread wider in the far future MAs 

of the plan, as shown in Figure 40). In other words, the probabilistic execution time 

of each task used in Equation 4-5 ensures that, the further a MA is in the mission 

time, the less important its contribution to the probabilistic reward is, because the 

reliability of a near future task plan is more important than a far future one. This is a 

good planning strategy for HAPS operations, since re-planning is often required 

when new weather forecast update is available (e.g. typically hourly). 
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a. Convergence of objective value 

 

 
b. Obtained plan 

 

 
c. Plan execution timeline 

 

Figure 73. Benchmarking: Hierarchical Task Planning in Scenario 2 
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a. Convergence of objective value 

 

 
b. Obtained plan 

 

 
 

c. Plan execution timeline 

 

Figure 74. Benchmarking: Hierarchical Task Planning in Scenario 3 
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Last, but not least, the increasing mean objective value over the iterations also 

indicate that P1 is more suitable to be implemented as an anytime planner (i.e. an 

implementation that provides a plan at any time instant), than by simply using a brute 

force search. A brute force search does not reflect on the quality of the found solutions 

with respect to search time, while with a GA-guided search like in P1 or P3, the task 

planner can be implemented as an anytime planner, whose solution improves with 

the increasing search time (i.e. more iterations).  
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8 Conclusion 

In the previous chapter, the planning functionalities and the plan feasibility computed 

by the pre-execution mission planner were successfully tested and validated on the 

mission scenario described in Section 2.1 using a realistic 6-DoF HAPS simulator 

and historical weather data.  

 

The pre-execution mission planner is developed as a two-tier planner: with a task 

planner working at the strategic level, and a numeric flight path planner working at 

the tactical level.  

 

The task planner uses a HTN to structure the various tasks of HAPS missions, for 

practical reasons and for transparency. The HTN is practical because mission 

constraints and requirements expressed at different abstraction levels can be directly 

included into the HTN (see Section 4.3). It is transparent because the plans issuing 

from the task planner can be understood at different abstraction levels too by the 

human operator (see Figure 67). A very important aspect of the task planner is that 

the HTN is temporal, allowing hence: 

 

1.  to keep track of task execution times, which is essential for a dynamic 

environment,   

2.  task concurrency, which is important when multiple agents are involved.  

 

Although abstracting information during planning, the task planner tries to take 

into account the uncertainties arising from the abstraction in the search of good plans 

using the probabilistic cumulative reward in the objective evaluation adopted by the 

GA (see Section 5.3). Furthermore, by using the GA to guide the search for optimal 

plan, the unsolved combinatorial problem subject to heterogeneous constraints in a 

HTN planner is surmounted.  

 

The sorted task plans (with descending objective values) from the strategic 

planning level will then be presented to the HAPS operator, who can, as desired, alter 

the sorting order or not. Although not thoroughly studied, the potential of a human 

intervention at this level is highlighted, so that the pre-execution mission planner can, 

if necessary, also behave as a worker in collaboration with the operator in the WSys 

illustrated in Figure 13b.  
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The task plans will be “refined” by the tactical planner in the order they are sorted, 

which consists of a numeric flight path planner that can optimize the travel time 

(although optimality is not guaranteed) and better estimated the mission success rate, 

since the wind field, platform dynamics and dynamic obstacles are numerically 

considered too. At this level, a deterministic problem model is assumed. The flight 

path planning problem of HAPS is classified as a kinodynamic path planning 

problem; a PDDL AI planner is used for the first time to solve this class of problem. 

The planning performance is competitive with the RRT planner from OMPL. 

 

A reactive avoidance strategy HFAS found by solving an MDP is also proposed. 

HFAS is high fidelity, as it provides a guidance to the HAPS to avoid sporadic 

obstacles on the way, while trying to find its way back to the reference plan. HFAS 

shall be triggered in the presence of scarce unforeseen obstacles during plan 

execution, i.e. maximum in the presence of two unforeseen obstacles. By doing so, 

the plan can be repaired, and a re-planning can be avoided. The strategy is computed 

by the mission planner on the GCS, due to its computational complexity. The 

deployment of it is done onboard, together with plan monitoring and flight control 

and is therefore out of the scope of this work. 

 

Although works carried out are based on HAPS in a time-varying environment, 

without the loss of generality, the developed methods can also be adapted and applied 

on other moving agents in a dynamic environment (see example applications briefly 

discussed in Section 8.3). 

 

8.1 Future Improvements on the Mission Planning for HAPS  

The planner proposed in this work, from the modelling of the problem to the solving 

of it, is only one possible solution. The individual modules can be improved for more 

efficiency and better-quality plans. Additionally, the structure of the planner, i.e. how 

the modules are coupled with each other, can also be altered. The following lists a 

number of possible improvements and alterations to test for the HAPS pre-execution 

mission planning problem.  

 

1. The reactive avoidance method developed in Section 6.2.1 does not consider 

the velocity of the obstacles to avoid in the model. This is acceptable for the 

case of HAPS, although the model is not rigorous. However, if the obstacle is 

a fast-moving object, e.g. another aircraft, the consideration of the velocity of 

the obstacles might be necessary, which can increase the computational 

complexity and leads to intractability. Clustering techniques can be applied 

to reduce the state space of the MDP. 

2. In this work, the number of HAPS available to fulfill tasks of a mission is 

fixed. A method to determine the minimal number of HAPS (fixed in the 

current version of the planner) required to fulfill the mission can be 

developed. This is especially useful for resource management during 

operation. 

3. The GA in Section 5.3 can be accelerated using parallelization techniques, 

since many steps in the GA are independent among individuals.  

4. The weighted objective functions used in the GA as summarized in Table 18 

can be optimized in a pareto-front fashion; the benefits against the current 

straightforward weight function can be analysed. 
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5. As already mentioned in Section 7.2.1.2, frequent turns can be considered as 

additional costs in the flight path planning. A balance between this cost and 

the cost on travel time must be found either by introducing an appropriate 

weighting function or by using a pareto-front optimization method.  

6. The human-machine teaming can be studied more systematically in order to 

know at which stage the human operator should intervene, but at the same 

time is not overloaded, especially when he/she has to control multiple HAPS. 

The level of automation of the mission planner must then be adapted 

according to its role as a worker or a tool in the WSys (see Figure 13). 

7. Although out of the scope of this work, the plan execution and plan 

monitoring for HAPS must be studied carefully in the future; by doing so, the 

needs to adapt the underlying methods in the mission planner for more 

efficient plan repair can be identified. 

 

8.2 Lessons Learnt in AI Planning for Real-World Applications 

Mission planning methods used for HAPS in this work are based on AI tools and 

optimization approaches. Some tools like the PDDL planner can be used off-the-shelf 

for flight path planning with minimal adaption on the implementation, while others 

are deemed unusable and customized planners have to be developed for this specific 

application, like the temporal HTN planner in Chapter 4 and 5. A few observations 

were made during this work and could be further developed and implemented for 

domain-independent AI planners. 

1. A more general framework for the HTN can be developed with a modelling 

language that allows the formulation of realistic planning problem in a time-

varying environment of such class. The domain-independent decomposition 

functions applicable to any task planning problem defined in this framework 

in Section 4.3.1 can be studied more in-depth, in order to be generalized to 

any HTN. Furthermore, a cascaded inter-level decomposition theory is 

missing and must be conceived for the generalization of HTN decomposition 

methods. As already pointed out in Section 4.3.1, the decomposition of a non-

primitive task using successive methods is not studied here. This must be 

developed in order to generalize the decomposition methods of HTN. 

2. An attempt to integrate the GA into a domain-independent temporal HTN to 

solve the combinatorial problem in the task decomposition can be pursued.  

3. Although a complete task+motion planning in a tightly-coupled fashion using 

a PDDL+ planner is not feasible for the lack of scalability, as shown in 

Section 3.3.4.1, the degree of “tightly-coupled”-ness can be improved, by 

including also some task planning in the motion planning problem modelling 

with PDDL+. A tightly-coupled task+motion planning can guarantee 

coherence, since the goal is unified. Furthermore, the use of a PDDL+ planner 

is advantageous for plan explainability.   

4. The temporal sequence diagram in Section 2.2.4.1 is developed for a 

deterministic temporal (semi)-automated system. It is worth noting that there 

is a lack of representation for probabilistic or fuzzy information signals or 

timeline. For example, how much time the operator needs to respond to the 

system, or if he/she responds, must be represented.   
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8.3  Reusability of the Mission Planning Methods on Other Applications 

The methods described in this work can be adapted to suit other applications in 

dynamic environments, specifically applications which require a centralized mission 

planner at the command and control center. The following is a non-exhaustive list of 

descriptions of possible applications. 

1. First responders for emergencies must often cooperate between different 

organizations to cope with the highly dynamic situations, especially in case 

of a terrorist attack, earthquake, etc. Very often, the success rate depends 

highly on the time of response and efficient deployment of resources. A 

centralized mission planning can improve the cooperation between various 

first responder teams and optimize the positive outcomes while being 

conform with protocols and regulations by using a temporal HTN planner. It 

can also minimize the travel time of first responders to the scene (e.g. which 

route an ambulance should take to avoid heavy traffic) by using an appropriate 

numeric path planner. Increasing the level of autonomy can help operators at 

the command and control center to respond and react appropriately, even 

under stress. However, open-loop actions must be considered in the planning, 

since many the situations can often only be partially known or even unknown 

to the planner. Open-loop actions allow the on-site first responders to react to 

unforeseen critical situations, while only minimal alteration is needed for the 

remaining plan. 

2. In order to increase safety and reduce damage, modern manned fighter planes 

are often accompanied by fighter Unmanned Combat Aerial Vehicles 

(UCAV), so that the latter can disable the Surface-to-Air Missile (SAM) sites, 

before the fighter plan approaches its target. The success rate of disabling 

SAM sites can only be modelled probabilistically, while the actions of the 

fighter planes to decide by the command center must react accordingly. The 

environment can be considered dynamic, by not with a continuous process of 

updated state parameters, but with the presence of probabilistic events during 

the operation. The computation of a strategy similar to the reactive planning 

described in Chapter 6 can be extended. However, in the highly reactive 

planning problem, each UCAV may have to decide for its action. In order to 

ensure tractability while still keeping an eye on the coordination of multiple 

vehicles, a decentralized multi-agent MDP may be used instead.  
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Appendix 1: Monocular Camera 

 

Figure 75. The relation between the field of view and the focal length of a 

pinhole camera 

 

The horizontal field-of-view, 𝐹𝑜𝑉H, is given by 

 

𝐹𝑜𝑉H = 2 ⋅ atan (
0.5 ℎI
𝑓

) . 
 A1-1 

 

Similarly, the vertical field-of-view, 𝐹𝑜𝑉V can be determined too. 

 

 

 

 

 

𝑓 

ℎI 

𝐹𝑜𝑉v 
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Appendix 2: Coefficients of a Line 

Segment 

 
Figure 76. Line segment defined by 𝒑𝒕𝟏 and 𝒑𝒕𝟐 

Let (𝑥, 𝑦)  be an arbitrary point lying on the non-vertical line segment L 

connecting 𝑝𝑡1 and 𝑝𝑡2. The gradient of L can be expressed by  

 

𝑚 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

=
𝑦2 − 𝑦

𝑥2 − 𝑥
.    A2-1 

We obtain thus 

 
(𝑥2 − 𝑥)(𝑦2 − 𝑦1) = (𝑦2 − 𝑦)(𝑥2 − 𝑥1),   A2-2 

 

and by expanding, we obtain 

 
(𝑦1 − 𝑦2)⏟      

𝑎

𝑥 + (𝑥2 − 𝑥1)⏟      
𝑏

𝑦 = 𝑥2𝑦1 − 𝑥1𝑦2              

                                                 = 𝑥2𝑦1 − 𝑥1𝑦1 + 𝑥1𝑦1 − 𝑥1𝑦2 
                                                 = 𝑏𝑦1 + 𝑎𝑥1. 

 

 A2-3 
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Appendix 3: Formulation in PDDL+ 

In the following, a fairly simple example of deterministic planning for an automated 

tap control of an irrigation system is illustrated to show a few key formulations 

offered by PDDL+ [Fox and Long, 2006]. In this example, the control of the tap of 

the water reservoir for the irrigation system installed at each farm on remote lands 

(without utility infrastructure) distributed over Germany is automated (see Figure 

77). The operator of the remote farming is supposed to deliver water to refill the water 

reservoirs to ensure that they are never empty.  

 

 
Figure 77. Automated tap control for farm irrigation systems distributed 

over Germany 

However, in order to know the delivery schedule in advance, some planning must 

be done with respect to the rain forecast. If there is no rain for a long period, the soil 

is dry, and the water tap must be opened to irrigate. This is a hybrid planning problem 

with temporal and numeric factors (with only linear equations involved), as well as 

mixed discrete-continuous elements. The following excerpts show how PDDL+ can 

be used to model the planning problem using actions, events, processes and durative 
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actions. These formulations will all be included in the “domain” file. Note that the 

formulations in PDDL are declarative, declaring first the action or operator, followed 

by the attribute and a numeric parameter, if the operation is numeric. 

  

1. Action 

The action open-tap is to be decided by the planner and executed 

independently by each automated tap mounted on the water reservoirs of the 

remote garden boxes. The independent control is ensured by the object in 

the parameter formulation that will be instantiated in the problem instance 

definition, which is comparable to object-oriented programing. The action 

is to be performed when the soil is dry. After the action is performed, the 

effects will be “added”. The counters for the rain or drought duration are 

reset. 

 
(:action open-tap 
 :parameters(?garden-box -location) 
 :preconditions(dry ?garden-box) 
 :effect (and  
  (tap-opened ?garden-box) 
  (assign (duration-no-rain ?garden-box) 0) 
  (assign (duration-rain ?garden-box) 0) 
  (assign (duration-irrigation ?garden-box) 0)) 
 ) 

 

The action close-tap is performed once the irrigation duration has 

achieved max-irrigation. The state of tap-opened, as well as the 
dry state are then deleted. 

 

(:action close-tap 
 :parameters(?garden-box -location) 
 :preconditions(and 
  (tap-opened ?garden-box) 
  (>= (duration-irrigation ?garden-box)  
      max-irrigation) 
 :effect (and 
  (not (tap-opened ?garden-box) 
  (not (dry ?garden-box))) 
) 

 

2. Event 

Events are dynamic happenings that are instantaneous. When it has not 

rained for a long period (max-no-rain), the state dry is added for the 

garden box. 

 

(:event set-dry 
 :parameters(?garden-box -location) 
 :preconditions(> (duration-no-rain ?garden-box)            
                  max-no-rain) 
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 :effect((dry ?garden-box)) 
) 
 

Similarly, if it has rained for some time, i.e. min-rain, the dry state is 

deleted and the counters for rain or drought durations are reset, just like after 

the irrigation. 

 
(:event set-wet 
 :parameters(?garden-box ?location) 
 :preconditions(> (duration-rain ?garden-box)  
                  min-rain) 
 :effect (and  
  (not (dry ?garden-box)) 
  (assign (duration-no-rain ?garden-box) 0) 
  (assign (duration-rain ?garden-box) 0)) 
) 

 

3. Process 

Processes are also dynamic happenings, but unlike events, they are 

continuous, i.e. they induce continuously a state parameter change in the 

system, as long as the preconditions are met. The counter duration-no-
rain for each garden box is increased at each time step by #t when 

the rain forecast predicts dry weather. It is worth noting that PDDL+ has 

automated temporal planning functions; therefore, a discrete time step #t is 

incorporated.   

 
(:process increase-duration-no-rain 
 :parameters (?garden-box -location) 
 :precondition (not (raining ?garden-box ?time)) 
 :effect(increase (duration-no-rain ?garden-box) #t) 
) 
 

Likewise, when rain is forecasted, the counter duration-rain is also 

increased stepwise continuously by #t over the forecasted rain period. 

 

(:process increase-duration-rain 
 :parameters (?garden-box -location) 
 :precondition (raining ?garden-box ?time) 
 :effect (increase (duration-rain ?garden-box) #t) 
) 

 
The planner keeps track of the time counter that starts from the beginning 

of the plan. However, the system time can be difference; it must be updated 

so that the planner knows which line of weather forecast to read. 

 

(:process increase-plantation-time 
 :parameters() 
 :precondition () 
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 :effect (increase time #t) 
) 

 

4. Durative action 

A durative action is similarly to a process with limited and known duration. 

It can also be formulated using a process by included the limited duration as 

a precondition. The formulation in form of a durative action of reducing the 

water volume by delta-water-volume at each time step in the reservoir 

over the irrigation period max-irrigation is shown here, while the 

irrigation duration is increased discretely and continuously by #t.  

 
(:durative-action reduce-water-volume 
 :parameters (?garden-box -location) 
 :duration (= ?duration max-irrigation) 
 :condition (and  
  (> (water-volume ?garden-box) 0) 
  (tap-opened ?garden-box)) 
 :effect (and  
  (decrease water-volume (* #t delta-water-volume)) 

(increase (duration-irrigation ?garden-box) #t)) 
) 
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“Les grandes personnes […] ont toujours besoin d’explications.” 

- Antoine Saint-Exupéry in Le Petit Prince 

Appendix 4: A Preliminary Case Study 

for XAIP 

Fox et al. [Fox et al., 2017] advocated for the benefit of using AI planners, for 

example a PDDL planner, as a model-based planning tools, given their ability to 

capture the causal and temporal relations at each step of the plan. A planning domain 

properly modelled does not only help the planner to plan efficiently and correctly, 

the model also serves as an explanatory tool for humans to understand the output of 

the effect of an action, thereby understanding why a plan is decided and why some 

plans are not executable. Planning for problems with more advanced numeric 

operations, such as path planning, is often beyond human cognitive capacity, since 

human brain works at a higher abstraction level, thereby leaving little space for 

human intervention. However, the more prevalent and intelligent automated systems 

become, the more inevitable it is to consider a Human-Autonomy Teaming (HAT) 

approach that allows the human to play more than just a supervisory role [Schulte 

and Donath, 2018]. Much attention has been attributed in the past years to 

Explainable AI Planning (XAIP) [Fox et al., 2017] in order for the human to 

understand, interact and trust the automated planner. Such a relation between human 

and machine is desired to make possible Mixed-Initiative Planning (MIP) [Kiam et 

al., 2019c].  

 

It was argued in [Fox et al., 2017] that model-based AI-planners, such as domain-

independent planners that understand PDDL, have a unique potential to contribute to 

XAIP. By modelling a problem as axioms using proper formalism, the model can be 

also used to validate a plan and communicate with the human operator. Described in 

the next subsection is a simple path planning example to put forth the advantage of 

being explainable using a model-based AI planer. Thanks to a plan validator, MIP in 

numeric path planning is made possible, which is conventionally non-trivial as most 

numeric path planning tools are exploited more like a “intelligent calculator” and the 

decision of plans is often deemed as beyond comprehension to the user.  

 

Due to the fact that many available AI planning tools do not support formulations 

with trigonometric functions, a simple grid world example is chosen instead of taking 

the HAPS path planning problem as an example.  
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Robot & Frank 

A scenario consisting of a housekeeping robot assigned by his master, Frank, to 

collect the garbage in the backyard is used to demonstrate the possibility of a MIP 

for numeric path planning using a model-based planning approach.  

 

The initial setup is illustrated in Figure 78, where objects 𝑟 represent the robot, 

positioned initially at (𝑥, 𝑦) = (100, 150) and 𝑔 the garbage bin at (250, 300). The 

robot can move incrementally in x- and y-directions (i.e. linear movements) and are 

subject to dynamics constraints, which can be simply expressed as |𝑣𝑥| and |𝑣𝑦| < 5, 

with |𝑣𝑥| and |𝑣𝑦| being the speed in x- and y- directions. The red lines represent tree 

rows that the robot cannot traverse, and the blue circle the mobile water jet, 𝑤, that 

will move across the garden along the dashed lines at a velocity of (2 m/s, 2 m/s). 

Any collision of the robots with the water jets or the tree must be avoided. 

 

 

Figure 78. Simple MIP example: Robot & Frank 

Additionally, any object within the light blue shaded areas (20 m × 20 m) around 

the water jet will get wet. It is hence forbidden for the robot to open the lid of the 

garbage bin 𝑔 to collect the garbage if it is placed within the shaded blue area. Lastly, 

the robot must be in the vicinity of the garbage bin, as enclosed by the orange square 

(2 m × 2 m), to be able to reach for the lid and collect the garbage. 
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Planning 

Processes to increase the position and velocity of the robot in x- and y- directions 

are similar to those described in Table 11 to update the heading rate and position of 

the HAPS. A few events are necessary in this example to model the garbage getting 

wet if the lid is open while the water jet is in its vicinity, or the contrary in the case 

where the water jet is far away from the garbage bin. Snippets of the events are 

presented in Figure 79. 

The robot uses its integrated PDDL-based AI planner (ENHSP in this example) to 

compute a valid temporal plan. The plan trace is shown in Table 20. A plan trace 

consists of a list of time-stamped actions to be executed. 

 

MIP  

However, Frank is not happy with the plan as he thinks that it is disturbing to have 

the robot moving too fast in the household. Subsequently, he tries to negotiate that 

the robot does not move faster than 4.2 m/s in each direction, and thereby requests 

that the robot stops accelerating after time instant 𝑡 = 38 s (see MIP attempt 1 of  

(:event garbageStaysDry 
 :parameters ( ) 
 :precondition (and (not (permissionToCollect)) 
              (or (> (/ (+ (edgeMinXDo) (edgeMaxXDo)) 

2) 
                          (compoundWetGarbageMaxX)) 

          (< (/ (+ (edgeMinXDo) (edgeMaxXDo)) 2) 
                          (compoundWetGarbageMinX)) 
          (> (/ (+ (edgeMinYDo) (edgeMaxYDo)) 2)  

                          (compoundWetGarbageMaxY)) 
          (< (/ (+ (edgeMinYDo) (edgeMaxYDo)) 2)  

                          (compoundWetGarbageMinY)))) 
:effect (permissionToCollect)) 
 
(:event garbageGetWet 
 :parameters ( ) 
 :precondition (and (permissionToCollect) 
      (and (< (/ (+ (edgeMinXDo) (edgeMaxXDo)) 2)  

                          (compoundWetGarbageMaxX)) 
          (> (/ (+ (edgeMinXDo) (edgeMaxXDo)) 2)   

                          (compoundWetGarbageMinX)) 
          (< (/ (+ (edgeMinYDo) (edgeMaxYDo)) 2)   

                          (compoundWetGarbageMaxY)) 
          (> (/ (+ (edgeMinYDo) (edgeMaxYDo)) 2)  

                          (compoundWetGarbageMinY)))) 
:effect (not (permissionToCollect))) 

Figure 79. PDDL+ snippets to formulate the events of the garbage  

staying dry or wet 
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Table 20), by truncating all actions to increase velocity after 𝑡 =  38 s, leaving 

however the goal action collectGarbage to still be executed at 𝑡 = 48 s.  

 

Equipped with the plan validator VAL, the robot checks the plan proposed by Frank. 

VAL [Howey et al., 2004] is a plan validator for problems modelled using PDDL41. 

The purpose of the plan validator is not only to check the numeric correctness of a 

plan42, but can also explain why a plan fails by exhibiting the cause of failure (“Plan 

Repair Advice”) and by advising a fix (“Follow each of” ).  

 

In MIP attempt 1, VAL produces an error message explaining that the robot has 

not reached the garbage can yet at 𝑡 = 48 s, if the robot does not continue increasing 

its speed after 𝑡 = 38 s. Frank subsequently negotiates to delay the action to collect 

the garbage in MIP attempt 2. However, the plan still fails and, as indicated by VAL, 
the robot does not have the permission to collect the garbage, since the garbage bin 

is found too near (i.e. within the shaded area) to the mobile water jet -- the garbage 

could be wet if the robot attempts to open the lid. In MIP attempt 3, Frank delays 

the action to collect the garbage to allow enough time for the water jet to move away 

from the garbage bin. The plan can be successfully executed, although there is room 

for improvement, since the event garbagestaysdry is triggered at 𝑡 =173.5 s, and 

that the robot has the permissiontocollect, while the robot collects the garbage 

almost 27 s later at 𝑡 =  200 s. In his last MIP attempt, Frank sets the 

collectGarbage action to time instant 174 s. 

 

Table 20. VAL used for mixed initiative planning 

Plan trace Validator (VAL) 

0.00000: (moveRobot )  

0.00000: (increaseVelX )  

0.00000: (increaseVelY )  

... 

38.00000: (increaseVelX ) 

38.00000: (increaseVelY ) 

... 

47.00000: (increaseVelX )  

48.00000: (collectGarbage )  

Original plan: 

… 

Checking next happening (time 38)  

Updating (velocityx) (4.2) by 0.1 increase  

Updating (velocityy) (4.2) by 0.1 increase  

... 

Successful plans   

 

0.00000: (moveRobot )  

0.00000: (increaseVelX )  

0.00000: (increaseVelY )  

... 

MIP attempt 1: 

Plan failed to execute 

 

Plan Repair Advice: 

(collectgarbage) has an unsatisfied precondition at 

time 48  

                                                 
41 VAL, like most PDDL planners, does not support trigonometric functions. Hence 

it is not possible to test the plan validator against a more complex and realistic use 

case like the HAPS. 
42 If an external validator is used, the plan validation is even more objective, given 

that erros in the planner may not be recurring in the plan validator. Therefore, the 

integrity of the plan is increased. 
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38.00000: (increaseVelX ) 

38.00000: (increaseVelY ) 

48.00000: (collectGarbage ) 

 

 

(Follow each of: 

(Satisfy (positionx)[=235.8] > 

((garbagepositionx)[=250] - 

(garbagemargin)[=10]))  

and  

(Satisfy (positiony)[=285.7] > 

((garbagepositiony)[=300] - 

(garbagemargin)[=10]))) 

0.00000: (moveRobot )  

0.00000: (increaseVelX )  

0.00000: (increaseVelY )  

... 

38.00000: (increaseVelX ) 

38.00000: (increaseVelY ) 

50.00000: (collectGarbage ) 

MIP attempt 2: 

Plan failed to execute 

Plan Repair Advice: 

(collectgarbage) has an unsatisfied precondition at 

time 50 

(Set (permissiontocollect) to true)                                            

0.00000: (moveRobot )  

0.00000: (increaseVelX )  

0.00000: (increaseVelY )  

... 

50.00000: 

(waitForPermission ) 

200.00000: (collectGarbage )  

MIP attempt 3: 

EVENT triggered at (time 173.5) 

Triggered event (garbagestaysdry) 

Adding (permissiontocollect) 

Checking next happening (time 200) 

Adding (robotstop) 

Adding (garbagecollected) 

Successful plans:                                                  

0.00000: (moveRobot )  

0.00000: (increaseVelX )  

0.00000: (increaseVelY )  

... 

38.00000: (increaseVelX ) 

38.00000: (increaseVelY ) 

50.00000: 

(waitForPermission )  

174.00000: (collectGarbage ) 

MIP attempt 4: 

EVENT triggered at (time 173.5) 

Triggered event (garbagestaysdry) 

Adding (permissiontocollect) 

Checking next happening (time 174) 

Adding (robotstop) 

Adding (garbagecollected)  

 

 

 

  





171 

 

 

 

Appendix 5: Time-Dependent Markov 

Decision Process (TiMDP) 

According to [Boyan and Littman, 2000], a TiMDP with the tuple <
𝑋, 𝑆, 𝑇𝑛, 𝑀𝜇, 𝐿, 𝑅, 𝐾 >, where  

 

• 𝑋, 𝑆 are the continuous and discrete state space, 

• 𝑇𝑛 is the task name space, 

• 𝑀𝜇  is the discrete set of outcomes 𝜇 =< 𝑠𝑢𝑐𝑐, 𝑠𝜇
′ , 𝑇𝜇, 𝑃𝜇 > ,with 𝑠𝑢𝑐𝑐 

representing the success (𝑠𝑢𝑐𝑐 ≔ 𝑡𝑟𝑢𝑒) or failure (𝑠𝑢𝑐𝑐 ≔ 𝑓𝑎𝑙𝑠𝑒) of the 

action that leads to the outcome 𝜇 , 𝑇𝜇  specifying the relative or absolute 

arrival time and 𝑃𝜇 the pdf over the relative or absolute arrival times, 

• 𝐿(𝜇|𝑥, 𝑠, 𝑡, 𝑎) is the likelihood of outcome 𝜇 ∈ 𝑀 given 𝑥 ∈ 𝑋, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 

and 𝑎 ∈ 𝐴, 

• 𝑅(𝜇, 𝑡, 𝛿) is the reward for outcome 𝜇 at time 𝑡 with duration 𝛿. 
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Appendix 6: Constrained Optimization 

Problem 

A system with 𝑛  variables 𝑥⃗ = (𝑥1, … , 𝑥𝑛) ∈ 𝒮 , where 𝒮  denotes the search 

space, is subject to an objective function 𝑓(𝑥⃗) to optimize and constraints 𝒞 that are 

not to be violated, and thereby restraining the feasible space to ℱ = 𝒮  . Looking for 

the optimum in such a system can be treated as a constrained optimization problem.  

 

It is not uncommon to solve the problem by introducing a penalty term 𝑝(𝑑(𝑥⃗, 𝒞)) 
to form a fitness function combining the objective and the penalty functions:  

 

𝜓(𝑥⃗) =  𝑓(𝑥⃗) + 𝑝(𝑑(𝑥⃗, 𝒞)), 

 

where 𝑑(𝑥⃗, 𝒞) can be understood as the metric distance to the infeasible regions and 

𝑝 the penalty function to avoid the search of optimum close to the infeasible regions. 

By doing so, the problem becomes an unconstrained one.  

 

However, it is not always easy to define a suitable penalty function for the hard 

constraints [Runarsson and Yao, 2000], especially if the system is made up of a 

mixture of discrete and continuous variables of inhomogeneous nature. Many static, 

dynamic or even adaptive penalty functions have been developed to allow for 

different penalties throughout generations in the GA. All these methods require 

however extensive knowledge of the problem and if badly designed, can slow down 

the algorithm or even get trapped in local optima.
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Abbreviations 

ADS Airbus Defence and Space 

AFUA Advanced Flexible Use of Airspace 

ANML Action Notation Modeling Language 

AI Artificial Intelligence 

AIRMET AIRman’s METeorological information 

API Application Programming Interface 

ATC Air Traffic Control 

ATM Air Traffic Management 

AUV Autonomous Underwater Vehicle 

BAF Bundesaufsichtsamt für Flugsicherung 

Cb Cumulonimbus 

CGAL Computational Geometry Algorithms Library 

COSMO-

DE/COSMO-D2 

COnsortium for Small-scale MOdeling 

DGAC French Directorate-General for Civil Aviation/ 

Direction Générale de l’Aviation Civile 

DLR Deutsches zentrum für Luft- und Raumfahrt 

DoF Degree of Freedom 

EAS Equivalent Air Speed 

EASA European Aviation Safety Agency 

ECMWF European Center for Medium-Range Weather Forecast 

EHC Enforced Hill Climbing 

EO Electro-Optical 

ETA Estimated Time of Arrival 

EUROCONTROL European Organisation for the Safety of the Air 

Navigation 

FCS Flight Control System 

FL Flight Level 

FoV Field of View 

GA Genetic Algorithm 

GA Genetic Algorithm 

GAFOR General Aviation FORecast 

GAMET General Aviation METeorological information 

GCS Ground Control Station 

GFS Global Forecast System  
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HALE High-Altitude Long-Endurance 

HAPPIEST High-Altitude Pseudo-satellites: Proposal of Initiatives 

to Enhance SaTellite communication) 

HAPS High-Altitude Pseudo-Satellite 

HAT Human-Autonomy Teaming 

HFAS High-Fidelidy Avoidance Strategy 

HFR High-level Flight Rules 

IPC International Planning Competition 

ICAO International Civil Aviation Organization 

IFR Instrumental Flight Rules 

IR Infrared 

LEO Low Earth Orbit 

MDP Markov Decision Process/ Problem 

METAR METeorological Aerodrome Routine weather report 

MIP Mixed Initiative Planning 

MIP Mixed-Initiative Planning 

MMS Mission Management System 

MOOP Multi-Objective Optimization Problem  

MP Mission Planner 

NCEP National Center for Environmental Prediction 

NOAA National Oceanic and Atmospheric Administration 

ODE Ordinary Differential Equation 

OMPL Open Motion Planning Library 

PDDL Problem Domain Definition Language 

PoI Point of Interest 

RGB Red-Green-Blue (often used to represent the true-color 

palette)  

ROS Robot Operating System 

RPA Remotely-Piloted Aircraft 

RRT Rapidly exploring Random Tree 

SIGMET SIGnificant METeorological phenomena 

SSSP Single-Source Shortest Path 

TAF Terminal Aerodrome Forecast 

TAS True Air Speed 

TC Task Constraints 

TiMDP Time-dependent Markov Decision Process 

TRL Technology Readiness Level 

UAS Unmanned Aerial Systems 

UI  User Interface 

UML Unified Modeling Language 

VFR Visual Flight Rules 

WA* Weighted A* 

WP WayPoint 

XAIP eXplainable AI Planning 

WGS84 World Geodetic System 1984 

ADS-B Automatic Dependent Surveillance – Broadcast 

HFR High-level Flight Rules 
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Symbols 

|S| the cardinality or the size of the set S 
| 

 
 

 

 

 

cardina lity  

𝑨  set of actions 
A 

𝒃  bearing between the course tangent and the start-

goal vector 

b 

𝑪  infeasible region 
c 

𝑪𝑨  set of preconditions of the actions a ∈ A 
C A  

𝑪𝑴  set of mission requirements 
C M 

𝑪𝑿  constraints on the workspace 
C X  

𝒅  metric distance 
d 

𝒅  decomposition function 
d 

𝜹  duration of a task 
delta 

𝒅𝒊𝒔𝒕𝒊  distance between the HAPS and the barycenter 

of obstacle i 

Dist of i  

𝒅𝒊𝒔𝒕𝒉  distance between the HAPS and the next 

waypoint 

 

𝑭  feasible region 
f 

𝒇  objective function 
f 

𝑯  set of HAPS h1, … , hH 
H 

𝒉  a HAPS  
h 

𝒌𝒕𝒐𝒖𝒓𝒏𝒂𝒎𝒆𝒏𝒕  size of the tournament selection 
K of 

tournament 

𝝀  longitude 
Lambda 

𝒏∗   number of * 
N of star 

𝝂   penalty 
 

𝒐  a task in the HTN 
O 

𝒐𝒑  a primitive task of the HT 
o of p 

𝒐𝒃𝒔𝒊   i-th obstacle 
Obstacle i  

𝒑  position vector  
p 

{𝒑}  reference trajectory obtained from the plan 
p 

𝑷𝒙𝒐𝒗𝒆𝒓   crossover probability in the genetic algorithm 
P of 

crossover 

𝑷𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏  mutation probability in the genetic algorithm 
 P of 

mutation  

𝑷𝒔𝒘𝒂𝒑  swap probability in the stochastic ranking of the 

GA 

P of swap 

𝝋  latitude  
Phi  

𝝅  plan 
pi 

𝝅̃  task plan found at the strategic planning level 
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𝝅𝒉  plan for HAPS h  
Pi h 

𝝅̃𝒍,𝒉  task plan expressed at level l  of the HTN for 

HAPS h 

 

𝝅̃𝒉(𝒊)  partial plan for HAPS h from time instant ti 
Pi h from i 

𝝅̃𝒊:𝒋
𝒉   partial plan for HAPS h from i-th task to j-th task 

Pi h from I 

to j  

𝜳  fitness function 
psi  

𝒒   attitude vector 
q 

𝒓   reward mapping function 
r 

𝑺  search space 
s 

𝒔  signal 
s 

𝒕  time instant  
t 

𝑻  plan horizon [tmin, tmax] 
T 

𝑻  duration of a plan 
T 

𝒕𝟎  initial plan time 
T 0 

𝜽𝒊  relative bearing between the HAPS velocity 

vector and the vector connecting the HAPS to the 

barycenter of the obstacle i  

Theta of i 

𝑼  control space  
U 

𝒖  control parameter 
u 

𝒗  ground speed 
v 

𝒗𝑬𝑨𝑺  equivalent airspeed  
V of EAS 

𝒗𝑻𝑨𝑺, 𝒗𝑻𝑨𝑺
∗   true airspeed and optimal (*) true airspeed 

V of TAS 

𝒗𝒘  wind velocity 
V of w 

𝒙⃗⃗⃗ = (𝒙𝟏, … , 𝒙𝒏)  variables of a system written in vector 
x 

𝑿   workspace 
X 

𝒁𝒊  set of measurements of the physical environment 

from sensor i  

Z i 

𝒛𝒉   altitude  
Z of h 

(⋅)𝑻  transpose of a vector/matrix 
T  

  



179 

 

 

 

List of Figures 

Figure 1. Zephyr 7 during launch ©Airbus Defence and Space GmbH ............. 2 
Figure 2. A screenshot on the live flight path of Kelleher in summer 2018 

© flightradar24 ................................................................................................. 2 
Figure 3. Ascending flight of Kelleher on the first day of test (11 July 2018) and 

descending flight before landing on the last day (06 August 2018) .............. 4 

Figure 4. Flight paths projected on the latitude-longitude plane during mission 

flight on different days ..................................................................................... 5 

Figure 5. Ground speed of Kelleher obtained from ADS-B data  (Test day is 

relative to local time) ........................................................................................ 5 
Figure 6. Vertical flight profile of Kelleher;  delimited in gray are the sunset and 

sunrise time ....................................................................................................... 6 
Figure 7. Cumulative occurrence probability of the track turn rate for Kelleher

 ............................................................................................................................ 7 
Figure 8. Roadmap of the work............................................................................. 15 

Figure 9. View of a camera mounted on a pan-tilt unit ...................................... 19 
Figure 10. Mission Scenario for HAPS to be deployed for  ground activity 

monitoring ....................................................................................................... 20 
Figure 11. Typical scenario for monitoring missions with multiple HAPS ...... 21 
Figure 12. Work Processes (WProcs) of a HAPS MMS ...................................... 25 

Figure 13. WSys of WProc: HAPS SYS ................................................................. 27 

Figure 14. HAPS Mission Management System (MMS) ..................................... 28 
Figure 15. Temporal elements in the sequence diagram ..................................... 30 
Figure 16. HAPS MMS temporal sequence diagram - part 1 ............................ 32 
Figure 17. HAPS MMS temporal sequence diagram - part 2 ............................ 33 

Figure 18. HAPS MMS temporal sequence diagram - part 3 ............................ 34 

Figure 19. Overview of planning and scheduling methods ................................. 45 

Figure 20. The fastest paths are marked in red. In a wind field, the fastest paths 

are not necessarily the shortest paths, which are the direct paths the goals.

 .......................................................................................................................... 49 
Figure 21. Flow of different flight path planning schemes ................................. 51 
Figure 22. Reachable nodes marked by the hollow circles in the kinematic tree; 

the gray-filled circle represents an obstacle ................................................. 54 
Figure 23. PDDL has come a long way from classical planning to hybrid 

planning combining numeric and temporal state variables ....................... 60 

file:///C:/Users/Blondy/Documents/BoShiSuiShi/PhD_Thesis/Kiam_PhD_v1-2.docx%23_Toc16805758


180 

 

 

Figure 24. Analogy between the problem definition for a classical sampling-

based motion planner and the formulation in PDDL+ ............................... 64 
Figure 25. Visualization in 3D of the polytope of a windfield cell ..................... 69 
Figure 26. Path planning in the presence of wind and moving obstacles ......... 72 

Figure 27. Initial bearing ....................................................................................... 73 
Figure 28. Wide and narrow operation areas used for the tests ........................ 74 
Figure 29. Success rate to plan within 5s in a wide operation area for different 

distances from start to goal and different initial bearings {𝟐𝟎°, 𝟏𝟎𝟎°, 𝟏𝟖𝟎°}
.......................................................................................................................... 75 

Figure 30. Success rate to plan in a corridor-like narrows space  from start to 

goal within 5 s ................................................................................................. 76 
Figure 31. Performance of the planner with respect to obstacles occlusion ratio 

in the case of two and five obstacles respectively ........................................ 77 

Figure 32. Formulation in PDDL+ of an action  to carry out a task non-

repeatedly........................................................................................................ 83 

Figure 33. A typical airspace structure defined for repetitive monitoring tasks

.......................................................................................................................... 83 
Figure 34. Success rate with respect to the number of POIs (number of tasks)

.......................................................................................................................... 85 

Figure 35. General architecture of the HAPS planning framework ................. 89 
Figure 36. The average difference between the linearly predicted travel time 

using a constant derivative of the position with respect to time, and the 

feasible path found using ENHSP that considers the forecasted wind grid, 

platform dynamics and obstacles in the airspace........................................ 90 

Figure 37. Temporal hierarchical plan example for one HAPS ........................ 93 
Figure 38. Top-down, forward task decomposition order ................................. 94 
Figure 39. Probability density function of the sum of one to five identical 

uniform distributed random variables (r.v.) representing the travel time 𝜹𝒕
........................................................................................................................ 101 

Figure 40. Probability density function of the sum of one to five non-identical 

uniform distributed random variables (r.v.) representing the travel time 

𝜹𝒕𝒊 .................................................................................................................. 102 

Figure 41. Contribution of actions in the cumulative probabilistic reward ... 105 
Figure 42. Comparison of reward per hour as predicted by the hierarchical task 

planner at the strategic planner and the numeric flight path planner  at the 

tactical level .................................................................................................. 107 

Figure 43. General flow of a GA ......................................................................... 110 
Figure 44. An example hierarchical task planning for two HAPS .................. 113 
Figure 45. Encoding of a chromosome for h HAPS and the temporal crossover

........................................................................................................................ 114 
Figure 46. Search for optimum using GA while handling constraints  using 

stochastic ranking ........................................................................................ 116 
Figure 47. Tournament selection ........................................................................ 117 

Figure 48. Time windows for ground activity monitoring ............................... 120 
Figure 49. Tests for optimal configuration set for the GA ............................... 121 
Figure 50.    Objective value of the first randomly generated scenario .......... 122 
Figure 51. Use case of the HFAS......................................................................... 124 
Figure 52. Problem parameters for avoiding an obstacle reactively............... 126 
Figure 53. HFAS for a single static unforeseen obstacle .................................. 129 
Figure 54. Deviation from the reference path over time .................................. 130 



181 

 

 

Figure 55. 𝒑𝒕 + 𝚫𝒕 − 𝒑𝒕𝟐 at each instant ........................................................... 130 

Figure 56. HFAS for two static unforeseen obstacles ........................................ 131 
Figure 57. Deviation from the reference path over time (2 static obstacles)... 131 

Figure 58. ‖p(t+Δt)-p(t) ‖ at each instant (2 static obstacles) ............................ 131 
Figure 59. HFAS a single unforeseen moving obstacle ..................................... 132 
Figure 60. a) Deviations from the reference path; b) ‖p(t+Δt)-p(t) ‖ for a single 

unforeseen moving obstacle ......................................................................... 132 
Figure 61. HFAS two unforeseen moving obstacles .......................................... 133 

Figure 62. a) Deviations from the reference path; b) ‖p(t+Δt)-p(t) ‖ for two 

unforeseen moving obstacles ....................................................................... 133 
Figure 63. Procedure of a mission planning ....................................................... 136 
Figure 64. Cloud map on coverage map from onboard EO-sensor  shown on the 

user interface ................................................................................................. 137 

Figure 65. Flight instrument ................................................................................ 137 

Figure 66. Optional information displayed on the map .................................... 138 

Figure 67. Plan display for a single HAPS ......................................................... 139 
Figure 68. Typical flight path .............................................................................. 141 
Figure 69. Lateral deviation in position between the planned path and the 

simulated flight path..................................................................................... 142 

Figure 70. The relation between the lateral deviation in position and the turn 

rate of HAPS. The yellow bars indicate the range of the deviation, while the 

black error bars indicate the standard deviations with the cross marking 

the mean error. ............................................................................................. 142 
Figure 71. EAS during the test ............................................................................ 143 

Figure 72. Cloud coverage used for the tests ..................................................... 145 
Figure 73. Benchmarking: Hierarchical Task Planning in Scenario 2............ 149 
Figure 74. Benchmarking: Hierarchical Task Planning in Scenario 3............ 150 

Figure 75. The relation between the field of view and the focal length of a pinhole 

camera ........................................................................................................... 157 

Figure 76. Line segment defined by 𝒑𝒕𝟏 and 𝒑𝒕𝟐.............................................. 159 

Figure 77. Automated tap control for farm irrigation systems distributed over 

Germany ........................................................................................................ 161 

Figure 78. Simple MIP example: Robot & Frank ............................................. 166 
Figure 79. PDDL+ snippets to formulate the events of the garbage  staying dry 

or wet ............................................................................................................. 167 
 

  

file:///C:/Users/Blondy/Documents/BoShiSuiShi/PhD_Thesis/Kiam_PhD_v1-2.docx%23_Toc16805829
file:///C:/Users/Blondy/Documents/BoShiSuiShi/PhD_Thesis/Kiam_PhD_v1-2.docx%23_Toc16805829




183 

 

 

 

List of Tables 

Table 1. Properties of a HAPS and the challenges in planning it poses .............. 7 
Table 2. Weather data products included in the aviation weather service 

provided by DWD ........................................................................................... 10 
Table 3. Numerical global weather data............................................................... 11 

Table 4. On-board weather sensors ...................................................................... 12 
Table 5. Specifications of HAPS vs. Airbus 320 .................................................. 18 

Table 6. Example parameters of a mission camera based on MEDUSA .......... 18 
Table 7. Dimensions of the mission elements: longest diagonals in kilometers 22 

Table 8. Mission Constraints (MC) for safety and airspace regulations ........... 22 
Table 9. Mission Requirements (MR) for successful monitoring....................... 23 

Table 10. Rewards to be given for each MA (× 𝟏𝟎𝟑) ......................................... 23 

Table 11. Modelling the HAPS kinodynamic planning problem with PDDL+ 65 

Table 12. Parameter configuration for performance tests  in wide operation 

areas ................................................................................................................. 74 

Table 13. Success rate of obtaining a plan within 5 s timeout for point-to-point 

kinodynamic motion planning ....................................................................... 79 

Table 14. Formulation in PDDL+ for multiple HAPS and multiple tasks ........ 83 
Table 15. Tasks at higher abstraction levels to be carried out by for HAPS 

mission ............................................................................................................. 93 

Table 16. Configurations to test for tuning the GA-guided task planner ....... 119 
Table 17. State space discretization of the MDP ............................................... 128 

Table 18. Parameterization of the GA planner.................................................. 146 
Table 19. Configuration of planners ................................................................... 147 
Table 20. VAL used for mixed initiative planning ............................................ 168 

 

  



184 

 

 

 

  



185 

 

 

 

9 References 

Airbus (2007) ‘Adverse Weather Operations: Optimum Use of the Weather Radar’, 

Flight Operations Briefing Notes. 

Airbus Defence and Space (2017a) ‘Airbus Zephyr - Unique Contribution to Decision 

Superiority’. 

Airbus Defence and Space (2017b) ‘Zephyr: Focus of an aircraft. Endurance of a 

satellite.’ [online] www.airbusdefenceandspace.com (Accessed 3rd March 2019). 

Airbus S.A.S. (2005, Revised February 2019) ‘A320: Aircraft Characteristics: 

Airport and Maintenance Planning’. 

Aldinger, J., Mattmüller, R. and Göbelbecker, M. (2015) ‘Complexity of Interval 

Relaxed Numeric Planning’, KI 2015: Advances in Artificial Intelligence, 

Dresden, Germany. 

Allen, R. and Pavone, M. (2015) ‘Toward a Real-Time Framework for Solving the 

Kinodynamic Motion Planning Problem’, IEEE International Conference on 

Robotics and Automation, Seattle, Washington, USA. 

Anderson, K.R. (1978) ‘A Reevaluation of an Efficient Algorithm for Determining 

the Convex Hull of a Finite Planar Set’, Information Processing Letters, 7-1, 

pp.53–55. 

Andrés-Toro, B., Girón-Sierra, J.M., Fernández-Blanco, P., López-Orozco, J.A. and 

Besada-Portas, E. (2004) ‘Multiobjective Optimization and Multivariable Control 

of the Beer Fermentation Process with the Use of Evolutionary Algorithms’, 

Journal of Zhejiang University SCIENCE, Vol. 5, No. 4, pp.378–389. 

Andrews, D.G., Holton, J.R. and Leovy C. B. (1987) ‘Middle Atmosphere Dynamics’, 

International Geophysics Series, No. 40. 

Antony, T., Amatya, S., Mastrogiovanni, F. and Baglietto, M. (2018) ‘Task-Motion 

Planning in Belief Space’, RSS Workshop on Exhibition and Benchmarking of 

Task and Motion Planners, Pittsburgh, Pennsylvania, USA. 

Attmanspacher, J. (2019) ‘Implementierung einer reaktiven Vermeidungsstrategie 

für HAPS’, Bachelor's thesis, University of the Bundeswehr, Munich. 

Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M. and 

Reinhardt, T. (2011) ‘Operational Convective-Scale Numerical Weather 

Prediction with the COSMO Model: Description and Sensitivities’, Monthly 

Weather Review, Vol. 139, No. 12, pp.3887–3905. 

Beard R. W. and McLain, T.W. (2012) ‘Small Unmanned Aircraft: Theory and 

Practice’, Princeton University Press. 



186 

 

 

Beasley, D., Bull, D.R. and Martin, R.R. (1993) ‘An Overview of Genetic Algorithms 

: Part 1, Fundamentals’, University Computing, 15-2, pp.58–69. 

Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J. and Greenwald, T. (2010) 

‘Objective Satellite-Based Detection of Overshooting Tops Using Infrared 

Window Channel Brightness Temperature Gradients’, Journal of Applied 

Meteorology and Climatology, Vol. 49, No. 2, pp.181–202. 

Beihoff, B., Oster, C., Friedenthal, S., Paredis, C., Kemp, D., Stoewer, H., Nichols, 

D. and Wade, J. (2014) ‘A world in motion: Systems engineering vision 2025’, 

International Council on Systems Engineering - INCOSE. 

Benton, J., Smith, D., Kaneshige, J., Keely, L. and Stucky, T. (2018) ‘CHAP-E: A 

Plan Execution Assistant for Pilots’, Twenty-Eighth International Conference on 

Automated Planning and Scheduling (ICAPS), Delft, The Netherlands. 

Bernardini, S., Fox, M. and Long, D. (2014) ‘Planning the Behaviour of Low-Cost 

Quadcopters for Surveillance Missions’, Proceedings of the Twenty-Fourth 

International Conference on Automated Planning and Scheduling, Portsmouth, 

New Hampshire, USA. 

Bertsekas, D.P. and Tsitsiklis, J.N. (1996) ‘Neuro-Dynamic Programming’, Athena 

Scientific, Belmont, Massachusetts. 

Besada-Portas, E., La Torre, L. de, La Cruz, J.M. de and Andrés-Toro, B. de (2010) 

‘Evolutionary Trajectory Planner for Multiple UAVs in Realistic Scenarios’, IEEE 

Transactions on Robotics, Vol. 26, No. 4, pp.619–634. 

Blanning, R.W. (1981) ‘Model-Based and Data-Based Planning Systems’, OMEGA 

- The International Journal of Management Science, 9-2, pp.163–168. 

Blum, A.L. and Furst, M.L. (1997) ‘Fast Planning Through Planning Graph 

Analysis’, Artificial Intelligence. 

Boyan, J.A. and Littman, M.L. (2000) ‘Exact Solutions to Time-Dependent MDPs’, 

Proceedings of the 13th International Conference on Neural Information 

Processing Systems (NIPS), Denver, Colorado, USA. 

Bradley, D.M. and Gupta, R.C. (2002) ‘On the Distribution of the Sum of n Non-

Identically Distributed Uniform Random Variables’, Annals of the Institute of 

Statistical Mathematics, 54-3, pp.689–700. 

Brasefield, C.J. (1949) ‘Winds and Temperatures in the Lower Stratosphere’, Journal 

of Meteorology, No. 7. 

Bryce, D. and Kambhampati, S. (2007) ‘A Tutorial on Planning Graph Based 

Reachability Heuristics’, AI Magazine, 28(1), pp.47–83. 

Cashmore, M., Fox, M., Long, D. and Magazzeni, D. (2016) ‘A Compilation of the 

Full PDDL+ Language into SMT’, Twenty-Sixth International Conference on 

Automated Planning and Scheduling (ICAPS), London, United Kingdom. 

Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palomeras, 

N., Hurtos, N. and Carreras, M. (2015) ‘ROSPlan: Planning in the Robot 

Operating System’, Proceedings of the Twenty-Fifth International Conference on 

Automated Planning and Scheduling, Jerusalem, Israel. 

Castillo, L., Fdez-Olivares, J., García-Pérez, Ó. and Palao, F. (2006) ‘Efficiently 

Handling Temporal Knowledge in an HTN Planner’, Proceedings of the Sixteenth 

International Conference on Automated Planning and Scheduling (ICAPS), 

Cumbria, United Kingdom. 

Cervo, F. (2014) ‘AFUA: Advance Flexible Use of Airspace: Optimizing Civil-

Military Airspace Integration’. 

CGAL (2012) ‘CGAL-User and Reference Manual’. 



187 

 

 

Chakrabarty, A. and Langelaan, J.W. (2013) ‘UAV Flight Path Planning in Time 

Varying Complex Wind-Fields’, American Control Conference (ACC), 

Washington, DC, USA. 

Chakrabarty, A. and Langelaan, J.W. (2010) ‘Flight Path Planning for UAV 

Atmospheric Energy Harvesting Using Heuristic Search’, AIAA Guidance, 

Navigation, and Control Conference, Toronto, Ontario Canada. 

Chen, K., Xu, J. and Reiff-Marganiec, S. (2009) ‘Markov-HTN Planning Approach 

to Enhance Flexibility of Automatic Web Service Composition’, IEEE 

International Conference on Web Services (ICWS), Los Angeles, California, 

USA, pp.9–16. 

Cheng, Q., Wang, X., Yang, J. and Shen, L. (2019) ‘Automated Enemy Avoidance of 

Unmanned Aerial Vehicles Based on Reinforcement Learning’, Applied Sciences, 

Vol. 9, No. 4, p.669. 

Clothier, R.A., Williams, B. and Perez, T. (2013) ‘A Review of the Concept of 

Autonomy in the Context of the Safety Regulation of Civil Unmanned Aircraft 

Systems’, Australian System Safety Conference (ASSC), Adelaide, Australia. 

Coles, A., Coles, A., Fox, M. and Long, D. (2012) ‘COLIN: Planning with 

Continuous Linear Numeric Change’, Journal of Artificial Intelligence Research, 

No. 44, pp.1–96. 

Corney, J., Rea, H., Clark, D., Pritchard, J., Breaks, M. and Macleod, R. (2002) 

‘Coarse filters for shape matching’, IEEE Computer Graphics and Applications, 

Vol. 22, No. 3, pp.65–74. 

Crosby, M., Petrick, R.P.A., Rovida, F. and Krüger, V. (2017) ‘Integrating Mission 

and Task Planning in an Industrial Robotics Framework’, Proceedings of the 

Twenty-Seventh International Conference on Automated Planning and 

Scheduling (ICAPS), Pittsburgh, Pennsylvania, USA. 

De, L. and Guglieri, G. (2012) ‘Advanced Graph Search Algorithms for Path 

Planning of Flight Vehicles’, in Agarwal, R. (Ed.), Recent Advances in Aircraft 

Technology, InTech. 

Delauré, B., Michiels, D., Lewyckyj, N. and van Achteren, T. (2013) ‘The 

Development of a Family of Lightweight and Wide Swath UAV Camera Systems 

Around an Innovative Dual-Sensor On-Single-Chip Detector’, International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences, XL. 

Della Penna, G., Intrigila, B., Magazzeni, D. and Mercorio, F. (2010) ‘A PDDL+ 

Benchmark Problem: The Batch Chemical Plant’, Proceedings of the Twentieth 

International Conference on Automated Planning and Scheduling (ICAPS), 

Toronto, Canada. 

Della Penna, G., Magazzeni, D., Mercorio, F. and Intrigila, B. (2009) ‘UPMurphi: A 

Tool for Universal Planning on PDDL+ Problems’, Proceedings of the Nineteenth 

International Conference on Automated Planning and Scheduling (ICAPS), 

Thessaloniki, Greece. 

Deutscher Wetterdienst (2018) ‘Produktliste Flugwetterdienst’ [online] 

www.dwd.de (Accessed 12 April 2019). 

Deutscher Wetterdienst (2015) ‘pc_met - Internet Service: Ihr schneller Start zum 

aktuellen Flugwetter’ [online] www.dwd.de (Accessed 12 April 2019). 

Donald, B., Xavier, P., Canny, J. and Reif, J. (1993) ‘Kinodynamic Motion Planning’, 

Journal of the Association for Computing Machinery, 40-5, pp.1048–1066. 



188 

 

 

Dvorak, F., Bit-Monnot, A., Ingrand, F. and Ghallab, M. (2014) ‘A Flexible ANML 

Actor and Planner in Robotics’, ICAPS Workshop on Planning and Robotics 

(PlanRob), Portsmouth, USA. 

DWD (2018) ‘Ersetzung von COSMO-DE durch COSMO-D2’. 

ECMWF (2018) ‘IFS Documentation - Cy45r1: Operational implementation 5 June 

2018’, European Centre for Medium-Range Weather Forecasts, Shin. 

Edelsbrunner, H., Kirkpatrick, D. and Seidel, R. (1983) ‘On the shape of a set of 

points in the plane’, IEEE Transactions on Information Theory, Vol. 29, No. 4, 

pp.551–559. 

ESA (2017) ‘NAVISP Element 1 Workplan for 2018’, Paris. 

Estivill-Castro, V. and Ferrer-Mestres, J. (2013) ‘Path-Finding in Dynamic 

Environments with PDDL-Planners’, 16th International Conference on Advanced 

Robotics (ICAR), IEEE [online] 

http://ieeexplore.ieee.org/servlet/opac?punumber=6755997. 

Eun, Y. and Bang, H. (2007) ‘Cooperative Task Assignment and Path Planning of 

Multiple UAVs Using Genetic Algorithm’, American Institute of Aeronautics and 

Astronautics (AIAA) Infotech, Aerospace, Rohnert Park, California, USA. 

EUROCONTROL and EASA (2018) ‘UAS ATM Integration: Integration 

Operational Concept’, European Organisation for the Safety of Air Navigation 

(EUROCONTROL). 

Everaerts, J. and Lewyckyj, N. (2011) ‘Obtaining a Permit-to-Fly for a HALE-UAV 

in Begium’, International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences, 38-1. 

Fdez-Olivares, J., Castillo, L., García-Pérez, Ó. and Palao, F. (2006) ‘Bringing Users 

and Planning Technology Together. Experiences in SIADEX’, Proceedings of the 

Sixteenth International Conference on International Conference on Automated 

Planning and Scheduling, Cumbria, United Kingdom. 

Ferguson, D. and Stentz, A. (2005) ‘The Field D* Algorithm for Improved Path 

Planning and Replanning in Uniform and Non-Uniform Cost Environments’, 

Carnegie Mellon University, Technical Report CMU-TR-RI-05-19. 

Filippis, L. de and Guglieri, G. (Eds.), (2012) Advanced Graph Search Algorithms 

for Path Planning of Flight Vehicles, InTech. 

Finnegan, P. (2017) ‘World Civil Unmanned Aerial Systems: Teal Market Profile and 

Forecast’, Teal Group Corporation. 

Fox, M. and Long, D. (2006) ‘Modelling Mixed Discrete-Continuous Domains for 

Planning’, Journal of Artificial Intelligence Research (JAIR), No. 27, pp.235–

297. 

Fox, M. and Long, D. (2003) ‘PDDL2.1 : An Extension to pddl for Expressing 

Temporal Planning Domains’, Journal of Artificial Intelligence Research (JAIR), 

No. 20, pp.61–124. 

Fox, M., Long, D. and Magazzeni, D. (2017) ‘Explainable Planning’, IJCAI 

workshop on Explainable AI [online] http://arxiv.org/pdf/1709.10256v1. 

Fratini, S. and Cesta, A. (2012) ‘The APSI Framework: A Platform for Timeline 

Synthesis’, Proceedings of the Workshop on Planning and Scheduling with 

Timelines, Atibaia, Brazil, Vol. 2012. 

Funk, F. and Stütz, P. (2017) ‘A Passive Cloud Detection System for UAV: Weather 

Situation Mapping with Imaging Sensors’, IEEE Aerospace Conference, Big Sky, 

Montana, USA, pp.1–12. 



189 

 

 

Garmin (2018) ‘Garmin-GWX70’ [online] 

http://www.completeavionics.com/assets/gwx_70-spec-sheet.pdf (Accessed 11st 

March 2019). 

Gaschler, A., Petrick, R.P.A., Kröger, T., Khatib, O. and KNoll, A. (2013) ‘Robot 

task and motion planning with sets of convex polyhedra’. 

Gaschler, A.K. (2016) ‘Efficient Geometric Predicates for Integrated Task and 

Motion Planning’, Technische Universität München. 

Geffner, H. and Bonet, B. (2013) ‘A Concise Introduction to Models and Methods 

for Automated Planning: Synthesis Lectures on Artificial Intelligence and 

Machine Learning’, Vol. 7, No. 2, pp.1–141. 

Georgievski, I. and Aiello, M. (2014) ‘An Overview of Hierarchical Task Network 

Planning’, arXiv. http://arxiv.org/pdf/1403.7426v1. 

Gerdts, M. (2012) ‘Optimal Control of ODEs and DAEs’, De Gruyter. 

Gerevini, A., Saetti, A. and Serina, I. (2003) ‘Planning through Stochastic Local 

Search and Temporal Action Graphs in LPG’, Journal of Artificial Intelligence 

Research, No. 20, pp.239–290. 

Ghallab, M., Nau, D. and Traverso, P. (2004) ‘Automated Planning: Theory & 

Practice’, Elsevier. 

Graham, R.L. (1972) ‘An Efficient Algorithm for Determining the Convex Hull of a 

Finite Planar Set’, Information Processing Letters, No. 1, pp.132–133. 

Hammouri, O.M. and Matalgah, M.M. (2008) ‘Voronoi Path Planning Technique for 

Recovering Communication in UAVs’, IEEE/ACS International Conference on 

Computer Systems and Applications, Doha, Qatar, pp.403–406. 

Hart, P., Nilsson, N. and Raphael, B. (1968) ‘A Formal Basis for the Heuristic 

Determination of Minimum Cost Paths’, IEEE Transactions on Systems, Man, and 

Cybernetics: Systems, pp.100–107. 

Haslum, P., Lipovetzky, N., Magazzeni, D. and Muise, C. (2019) ‘An Introduction to 

the Planning Domain Definition Language: Synthesis Lectures on Artificial 

Intelligence and Machine Learning’, Morgan & Claypool Publishers. 

Hehtke, V. (2018) ‘Solving a Time-Dependent Multi-HALE Mission Planning 

Problem Using Genetic Algorithm’, Master's thesis, University of the 

Bundeswehr, Munich. 

Hoffmann, J. (2003) ‘The Metric-FF Planning System: Translating "Ignoring Delete 

Lists" to Numeric State Variables’, Journal of Artificial Intelligence Research, 

No. 20, pp.291–341. 

Höller, D., Bercher, P., Behnke, G. and Biundo, S. (2018) ‘A Generic Method to 

Guide HTN Progression Search with Classical Heuristics’, Twenty-Eighth 

International Conference on Automated Planning and Scheduling (ICAPS), Delft, 

The Netherlands. 

Honeywell (2016) ‘IntuVue® RDR-4000 3D Weather Radar Systems: Technical 

White Paper’, Honeywell (Ed.). aerospace.honeywell.com (Accessed 11st March 

2019). 

Hooker, J.N. (1995) ‘Testing Heuristics: We Have It All Wrong’, Journal of 

Heuristics, No. 1, pp.33–42. 

Howey, R., Long, D. and Fox, M. (2004) ‘VAL: automatic plan validation, 

continuous effects and mixed initiative planning using PDDL’, 16th IEEE 

International Conference on Tools with Artificial Intelligence (ICTAI), Boca 

Raton, Florida, USA, pp.294–301. 

Hunter, S.L.C. (2015) ‘Safe Operations Above FL600’, Space Traffic Management 

Conference, Florida, USA. 



190 

 

 

Ingrand, F. and Ghallab, M. (2013) ‘Robotics and Artificial Intelligence-a 

Perspective on Deliberation Functions’, AI Communications. 

Jarvis, R.A. (1973) ‘On the Identification of the Convex Hull of a Finite Set of Points 

in the Plane’, Information Process. Lett. 

Johnson, M., Jung, J., Rios, J., Mercer, J., Homola, J., Prevot, T., Mulfinger, D. and 

Kopardekar, P. (2017) ‘Flight Test Evaluation of an Unmanned Aircraft System 

Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight 

Operations’, Twelfth USA/Europe Air Traffic Management Research and 

Development Seminar (ATM), Seattle, Washington, USA. 

Jong, K.A. de (1975) ‘Analysis of the Behavior of a Class of Genetic Adaptive 

Systems’, The University of Michigan, Technical Report No: 185. 

Jong, K. de, Fogel, L. and Schwefel, H.-P. (Eds.), (2017) Handbook of Evolutionary 

Computation, Oxford University Press. 

Katz, M. and Hoffmann, J. (2014) ‘Mercury Planner: Pushing the Limits of Partial 

Delete Relaxation’, Eighth International Planning Competition (IPC 2014), 

Portsmouth, New Hampshire, USA. 

Kavraki, L.E., Švestka, P., Latombe, J.-C. and Overmars, M.H. (1996) ‘Probabilistic 

Roadmaps for Path Planning in High-Dimensional Configuration Spaces’, IEEE 

Transactions on Robotics and Automation,, 12(4), pp.566–580. 

Keller, T. and Helmert, M. (Eds.), (2013) Trial-based Heuristic Tree Search for 

Finite Horizon MDPs. 

Kiam, J.J., Besada-Portas, E., Hehtke, V. and Schulte, A. (2019a) ‘GA-Guided Task 

Planning for Multiple-HAPS in Realistic Time-Varying Operation Environments’, 

The Genetic and Evolutionary Computation Conference (GECCO), Prague, Czech 

Republic. 

Kiam, J.J., Gerdts, M. and Schulte, A. (2016) ‘Fast Subset Path Planning/ 

Replanning to Avoid Obstacles with Time-Varying Probabilistic Motion Patterns’, 

Eighth European Starting AI Researcher Symposium (STAIRS), The Hague, The 

Netherlands, volume 284. 

Kiam, J.J., Hehtke, V., Besada-Portas, E. and Schulte, A. (2019b) ‘Hierarchical 

Planning Guided by Genetic Algorithms for Multiple HAPS in a Time-Varying 

Environment’, International Conference on Intelligent Human Systems Integration 

(IHSI), San Diego, California, USA. 

Kiam, J.J., Scala, E., Ramirez, M. and Schulte, A. (2018) ‘Using a Hybrid AI-Planner 

to Plan Feasible Flight Paths for HAPS-Like UAVs’, International Conference of 

Planning and Scheduing (ICAPS) PlanRob Workshop, Delft, The Netherlands. 

Kiam, J.J. and Schulte, A. (2017a) ‘Multilateral Mission Planning in a Time-Varying 

Vector Field with Dynamic Constraints’, IEEE International Conference on 

Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, pp.305–310. 

Kiam, J.J. and Schulte, A. (2017b) ‘Multilateral Quality Mission Planning for Solar-

Powered Long-Endurance UAV’, IEEE Aerospace Conference, Big Sky, 

Montana, USA. 

Kiam, J.J., Schulte, A. and Scala, E. (2019c) ‘Using AI-Planning to Solve a 

Kinodynamic Path Planning Problem and its Application for HAPS’, International 

Conference on Intelligent Human Systems Integration (IHSI), San Diego, 

California, USA. 

Klöckner, A. (2016) ‘Behavior Trees for Mission Management of High-Altitude 

Pseudo-Satellites’, Verlag Dr. Hut. 



191 

 

 

Köhler, M., Funk, F., Gerz, T., Mothes, F. and Stenzel, E. (2017a) ‘Comprehensive 

Weather Situation Map Based on XML-Format as Decision Support for UAVs’, 

The Journal of Unmanned System Technology, 5-1. 

Köhler, M., Tafferner, A. and Gerz, T. (2017b) ‘Cb-LIKE – Cumulonimbus 

Likelihood: Thunderstorm forecasting with fuzzy logic’, Meteorologische 

Zeitschrift, Vol. 26, No. 2, pp.127–145. 

Krozel, J. and Andrisani II, D. (1990) ‘Navigation path planning for autonomous 

aircraft: Voronoi diagram approach’, Journal of Guidance, Control, and 

Dynamics, Vol. 13, No. 6, pp.1152–1154. 

Kuffner, J.J. and LaValle, S.M. (2000) ‘RRT-Connect: An Efficient Approach to 

Single-Query Path Planning’, IEEE International Conference on Robotics and 

Automation (ICRA), San Francisco, California, USA. 

Laumond, J.-P. (Ed.), (1998) Robot Motion Planning and Control, Springer, London. 

LaValle, S.M. (1998) ‘Rapidly-Exploring Random Trees: A New Tool for Path 

Planning’, Technical Report 98-11. 

LaValle, S.M. and Kuffner, J.J. (2001) ‘Randomized Kinodynamic Planning’, The 

International Journal of Robotics Research, Vol. 20, No. 5, pp.378–400. 

Leena, P.P., Ratnam, M.V., Murthy, B.K.V. and Rao, S.V.B. (2012) ‘Detection of 

High Frequency Gravity Waves Using High Resolution Radiosonde 

Observations’, Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 77, 

pp.254–259. 

Li, F., Manerikar, A.V. and Kak, A.C. (2018) ‘RMPD -- A Recursive Mid-Point 

Displacement Algorithm for Path Planning’, Twenty-Eighth International 

Conference on Automated Planning and Scheduling (ICAPS), Delft, The 

Netherlands. 

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A. and Thrun, S. (2005) ‘Anytime 

Dynamic AStar - An Anytime, Replanning Algorithm’, Proceedings of the Fifteenth 

International Conference on International Conference on Automated Planning and 

Scheduling, Montery, California, USA. 

Lima, O., Ventura, R. and Awaad, I. (2018) ‘Integrating Classical Planning and Real 

Robots in Industrial and Service Robotics Domains’, Planning and Robotics 

(PlanRob) Workshop (ICAPS), Delft, The Netherlands. 

Lolla, T., Haley Jr., P.J. and Lermusiaux, P.F.J. (2015) ‘Path Planning in Multi-Scale 

Ocean Flows: Coordination and Dynamic Obstacles’, Ocean Modelling, Vol. 94, 

pp.46–66. 

Lolla, T., Ueckermann, M.P., Yigit, K., Haley, P. and Lermusiaux, P.F.J. (2012) 

‘Path Planning in Time Dependent Flow Fields using Level Set Methods’, IEEE 

International Conference on Robotics and Automation (ICRA), IEEE [online] 

http://ieeexplore.ieee.org/servlet/opac?punumber=6215071. 

Mandalika, A., Salzman, O. and Srinivasa, S. (2018) ‘Lazy Receding Horizon A* for 

Efficient Path Planning in Graphs with Expensive-to-Evaluate Edges’, Twenty-

Eighth International Conference on Automated Planning and Scheduling 

(ICAPS), Delft, The Netherlands. 

McDermott, D. (2000) ‘The 1998 AI Planning Systems Competition’, AI Magazine. 

Meeran, S. and Share, A. (1997) ‘Optimum Path Planning Using Convex Hull and 

Local Search Heuristic Algorithms’, Mechatronics, Vol. 7(8), pp.737–756. 

Miller, W.D. (2018) ‘V&V of Cyber-Physical, Autonomous, Artificial Intelligence, 

and Deep Learning Systems’ [online] [PowerPoint presentation] 

https://www.faa.gov/about/office_org/headquarters_offices/ang/offices/tc/library



192 

 

 

/v&vsummit/v&vsummit2018/v&vsummit2018.html (Accessed 20 January 

2020). 

Mitchell, M. (1999) ‘An Introduction to Genetic Algorithms’, The MIT Press. 

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and 

Riedmiller, M. (Eds.), (2013) Playing Atari with Deep Reinforcement Learning. 

Mosier, K.L., Fischer, U., Burian, B.K. and Kochan, J.A. (2017) ‘Autonomous, 

Context-Sensitive, Task Managemenet Systems and Decision Support Tools I: 

Human Autonomy Teaming Fundamntals and State of the Art’, National 

Aeronautics and Space Administration - NASA, Ames Research Center, Moffett 

Field, California. 

Müller, R., Kiam, J.J. and Mothes, F. (2018) ‘Multiphysical Simulation of a Semi-

Autonomous Solar Powered High Altitude Pseudo-Satellite’, IEEE Aerospace 

Conference, Big Sky, Montana, USA. 

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D. and Yaman, F. 

(2003) ‘SHOP2-An HTN Planning System’, Journal of Artificial Intelligence 

Research, No. 20, pp.379–404. 

Nugent, P.W., Shaw, J.A. and Piazzolla, S. (2009) ‘Infrared Cloud Imaging in 

Support of Earth-Space Optical Communication’, Optics Express, 17-10, 

pp.7862–7872. 

Otte, M., Silva, W. and Frew, E. (2016) ‘Any-Time Path-Planning: Time-Varying 

Wind Field + Moving Obstacles’, IEEE International Conference on Robotics and 

Automation (ICRA), Stockholm, Sweden. 

Owen, M., Beard, R.W. and McLain, T.W. (Eds.), (2013) Implementing Dubins 

Airplane Paths on Fixed-wing UAVs, Springer. 

Pecora, F., Andreasson, H., Mansouri, M. and Petkov, V. (2018) ‘A Loosely-Coupled 

Approach for Multi-Robot Coordination, Motion Planning and Control’, 

International Conference on Automated Planning and Scheduling (ICAPS), Delft, 

The Netherlands. 

Pehlivanoglu, Y.V. (2012) ‘A New Vibrational Genetic Algorithm Enhanced with a 

Voronoi Diagram for Path Planning of Autonomous UAV’, Aerospace Science 

and Technology, No. 16, pp.47–55. 

Perez-Carabaza, S., Besada-Portas, E., Lopez-Orozco, J.A. and La Cruz, J.M. de 

(2018) ‘Ant Colony Optimization for Multi-UAV Minimum Time Search in 

Uncertain Domains’, Applied Soft Computing, Vol. 62, pp.789–806. 

Perez-Carabaza, S., Besada-Portas, E., Lopez-Orozco, J.A. and La Cruz, J.M. de 

(2016) ‘A Real World Multi-UAV Evolutionary Planner for Minimum Time Target 

Detection’ in the 2016. Denver, Colorado, USA, ACM Press, New York, New 

York, USA, pp.981–988. 

Piotrowski, W., Fox, M., Long, D., Magazzeni, D. and Mercorio, F. (2016) ‘Heuristic 

Planning in PDDL+ Domains’, Proceedings of the Twenty-Fifth International 

Joint Conference on Artificial Intelligence, Phoenix, Arizona, USA. 

Pohl, I. (1970) ‘Heuristic Search Viewed as Path Finding in a Graph’, Artificial 

Intelligence, No. 1, pp.193–204. 

Ragi, S. and Chong, E. (2013) ‘UAV Path Planning in a Dynamic Environment via 

Partially Observable Markov Decision Process’, IEEE Transactions on 

Aerospace and Electronic Systems, Vol. 49(4), pp.2397–2412. 

Ramirez Atencia, C., Del Ser, J. and Camacho, D. (2019) ‘Weighted strategies to 

guide a multi-objective evolutionary algorithm for multi-UAV mission planning’, 

Swarm and Evolutionary Computation, Vol. 44, pp.480–495. 



193 

 

 

Redman, B.J., Shaw, J.A., Nugent, P.W., Clark, R.T. and Piazzolla, S. (2018) 

‘Reflective All-Sky Thermal Infrared Cloud Imager’, Optics Express, Vol. 26, 

No. 9, pp.11276–11283. 

Rees, M. (2019) ‘First Approval for Fully Autonomous Drone Flights in Europe 

Granted’ [online] www.unmannedsystemstechnology.com (Accessed 14th March 

2019). 

Roussos, G., Dimarogonas, D.V. and Kyriakopoulos, K.J. (2009) ‘3D Navigation and 

Collision Avoidance for Nonholonomic Aircraft-like Vehicles’, International 

Journal of Adaptive Control and Signal Processing, No. 0, pp.1–21. 

Rüdiger, E. and Drechsler, R. (2009) ‘Weighted A∗ Search – Unifying View and 

Application’, Artificial Intelligence, Vol. 173, No. 14, pp.1310–1342. 

Rumbaugh, J., Jacobson, I. and Booch, G. (1999) ‘The Unified Modeling Language 

Reference Manual - UML’, Addision-Wesley. 

Runarsson, T.P. and Yao, X. (2000) ‘Stochastic ranking for constrained evolutionary 

optimization’, IEEE Transactions on Evolutionary Computation, Vol. 4, No. 3, 

pp.284–294. 

Russell, S.J. and Norvig, P. (2003) ‘Artificial Intelligence: A Modern Approach’. 

Scala, E., Haslum, P., Thiebaux, S. and Ramirez, M. (2016) ‘Interval-Based 

Relaxation for General Numeric Planning’, 22nd European Conference on 

Artificial Intelligence (ECAI), The Hague, The Netherlands. 

Schmitt, F. and Schulte, A. (2016) ‘Mixed-Initiative Missionsplanung in 

militärischen Hubschraubermissionen’, Workshop Kognitive Systeme, Bochum, 

Germany. 

Schulte, A. and Donath, D. (2018) ‘A Design and Description Method for Human-

Autonomy Teaming Systems’, in Karwowski, W. and Ahram, T. (Eds.), Intelligent 

Human Systems Integration, Springer International Publishing, Cham, pp.3–9. 

Schulte, A., Donath, D. and Lange, D.S. (2016) ‘Design Patterns for Human-

Cognitive Agent Teaming’, International Conference on Engineering Psychology 

and Cognitive Ergonomics, Toronto, Canada. 

Shima, T., Rasmussen, S. and Sparks, A.G. (2005) ‘UAV Cooperative Multiple Task 

Assignments using Genetic Algorithms’, Proceedings of the 2005 American 

Control Conference, American Automatic Control Council [online] 

http://ieeexplore.ieee.org/servlet/opac?punumber=9861. 

Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell 

and Pieter Abbeel (2014) ‘Combined Task and Motion Planning Through an 

Extensible Planner-Independent Interface Layer’. 

Silvia Richter, M.W. (2010) ‘The LAMA Planner: Guiding Cost-Based Anytime 

Planning with Landmarks’, Journal of Artificial Intelligence Research, No. 39, 

pp.127–177. 

Simpson, E.H. (1949) ‘Measurement of Diversity’, Nature, No. 163, p.688. 

Sirin, E., Parsia, B., Wu, D., Hendler, J. and Nau, D. (2004) ‘HTN Planning for Web 

Service Composition Using SHOP2’, Journal Web Semantics: Science, Services 

and Agents on the World Wide Web, Fort Belvoir, VA, 1-4, pp.377–396. 

Skala, V. (2015) ‘Point-in-Convex Polygon and Point-in-Convex Polyhedron 

Algorithms with O(1) Complexity Using Space Subdivision’, International 

Conference of Numerical Analysis and Applied Mathematics (ICNAAM). 

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S. and Abbeel, P. (2014) 

‘Combined Task and Motion Planning Through an Extensible Planner-

Independent Interface Layer’, Proceedings of IEEE International Conference on 

Robotics and Automation (ICRA), Hong Kong, China. 



194 

 

 

Stentz, A. (1995) ‘The Focussed D* Algorithm for Real-Time Replanning’, In 

Proceedings of the International Joint Conference on Artificial Intelligence, 

Quebec, Canada. 

Stockdale, T., Balmaseda, M. and Ferranti, L. (2017) ‘The 2015/2016 El Niño and 

beyond’, ECMWF (Ed.). 

Sucan, I.A., Moll, M. and Kavraki, L.E. (2012) ‘The Open Motion Planning Library’, 

IEEE Robotics & Automation Magazine, Vol. 19, No. 4, pp.72–82. 

Sun, J., Li, B., Jiang, Y. and Wen, C.-Y. (2016) ‘A Camera-Based Target Detection 

and Positioning UAV System for Search and Rescue (SAR) Purposes’, Sensors, 

Basel, Switzerland, Vol. 16, No. 11. 

Sutton, R.S. and Barto, A.G. (2017) ‘Reinforcement Learning: An Introduction’, The 

MIT Press. 

Temizer, S., Kochenderfer, M.J., Kaelbling, L.P., Lozano-Perez, T. and Kuchar, J.K. 

(2010) ‘Collision Avoidance for Unmanned Aircraft using Markov Decision 

Processes’, American Institute of Aeronautics and Astronautics (AIAA) 

Guidance, Navigation, and Control Conference (GNC), Toronto, Ontario, Canada. 

Thrun, S., Burgard, W. and Fox, D. (2005) ‘Probabilistic Robotics’, MIT Press. 

Urmson, C. and Simmons, R. (2003) ‘Approaches for Heuristically Biasing RRT 

Growth’, Proceedings 2003 IEEE/RSJ International Conference, Las Vegas, 

Nevada, USA, pp.1178–1183. 

Vallati, M., Magazzeni, D., Schutter, B. de, Chrpa, L. and McCluskey, T.L. (2016) 

‘Efficient Macroscopic Urban Traffic Models for Reducing Congestion: a PDDL+ 

Planning Approach’, Proceedings of the Thirtieth AAAI Conference on Artificial 

Intelligence, Phoenix, Arizona, USA. 

Webb, D. and van den Berg, J. (2013) ‘Kinodynamic RRT*: Asymptotically Optimal 

Motion Planning for Robots with Linear Dynamics’, IEEE International 

Conference on Robotics and Automation (ICRA), Karlsruhe, Germany. 

Wolek, A. (2015) ‘Optimal Paths in Gliding Flight’, Virginia Polytechnic Institute 

and State University. 

Wu, G., Say, B. and Sanner, S. (Eds.), (2017) Scalable Planning with Tensorflow for 

Hybrid Nonlinear Domains. 

Yang, Z. and Cohen, F.S. (1999) ‘Image registration and object recognition using 

affine invariants and convex hulls - Image Processing, IEEE Transactions on’, 

IEEE Transactions on Image Processing, 8-7, pp.934–946. 

Younes, H.L.S. and Littman, M.L. (2004) ‘PPDDL1.0: An Extension to PDDL for 

Expressing Planning Domains with Probabilistic Effects’, School of Computer 

Science, Carnegie Mellon University. 

Zhou, B., Schwarting, W., Rus, D. and Alonso-Mora, J. (2018) ‘Joint Multi-Policy 

Behavior Estimation and Receding-Horizon Trajectory Planning for Automated 

Urban Driving’, IEEE International Conference on Robotics and Automation 

(ICRA), Brisbane, Australia. 


	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Typical HAPS Platform and its Challenges
	1.2 Hazardous Weather for HAPS
	1.2.1 Cumulonimbus clouds
	1.2.2 Turbulences
	1.2.3 Precipitation/Hail
	1.2.4 Wind gusts/Strong wind

	1.3 Weather Data
	1.3.1.1 Third-Party Meteorological Data
	1.3.1.2 In-Flight Weather Data

	1.4 Airspace Regulations
	1.5 Goal, Contributions and Outline of this Work

	2 Mission Planning Problem for HAPS
	2.1 Mission Scenario of a HAPS
	2.1.1 Platform Specifications
	2.1.2 Mission Payload
	2.1.3 Deployment of HAPS in Monitoring Missions
	2.1.3.1 Mission Scenario for HAPS


	2.2 System Analysis of the HAPS Mission Planning
	2.2.1 Mission Management System (MMS)
	2.2.2 Top-Level Role Description of the HAPS MMS
	2.2.3 Functional Block Diagram of the MMS
	2.2.4 Temporal Analysis of Work Process WProc: HAPS SYS
	2.2.4.1 Extended Notations of the Temporal Sequence Diagram
	2.2.4.2 Temporal Sequence Diagram for WProc: HAPS SYS


	2.3 Formal Mission Planning Problem Statement
	2.3.1 Solution
	2.3.2 Abstraction of the Planning Problem

	2.4 Related Works
	2.4.1 Model-Based Planning Methods
	2.4.1.1 Optimization Methods
	2.4.1.2 Planning/Scheduling Paradigms
	2.4.1.3 A Quick View of Planning Tools/Frameworks for Complex Real-World Systems
	FAPE
	Interfacing of Task+Motion Planning
	ROSPlan




	3 Path Planning in Vector Field
	3.1 Path Planning Problem for HAPS
	3.2 Control-Based Motion Planning for HAPS
	3.2.1 Formal Point-to-Point Flight Path Planning Problem Statement
	3.2.2 Suitable Path Search/ Planning Methods
	3.2.3 Geometric Constraints of the State Space Configuration
	3.2.3.1 Checking for Interior Point

	3.2.4 Existing Planner: OMPL

	3.3 Domain-Independent Planners and the Standardized Problem Domain Definition Language (PDDL)
	3.3.1 Background of PDDL Planners
	3.3.1.1 Basic Planning Techniques

	3.3.2 Modelling the HAPS Flight Path Planning Problem in PDDL+
	3.3.3 HAPS Flight Path Planning Problem Using an Automated AI Planner
	3.3.3.1 Systematic Performance Tests and Benchmarking
	Performance Tests in Wide Operation Areas
	Performance Tests in Narrow Operation Areas
	Performance Tests in the Presence of Obstacles
	Benchmarking with RRT from OMPL

	3.3.3.2 Fine Tuning for More Performance

	3.3.4 Task Planning Problem
	3.3.4.1 Can PDDL+ be Used for Task+Motion Planning?



	4 Hierarchical Task Planning for HAPS
	4.1 Strategic and Tactical Planning for HAPS
	4.2 HTN for the HAPS Task Planner
	4.3  Hierarchical Task Network for HAPS
	4.3.1 Task Decomposition
	4.3.2 Estimation of the Duration of a Task

	4.4 Combinatorial Problem in Selecting the Best Decomposition(s)
	4.4.1 Evaluation of the Task Quality
	4.4.1.1 Criterion 1: Expected Cumulative Rewards per Hour
	4.4.1.2 Criterion 2: Effort
	4.4.1.3 Criterion 3: Diversity


	4.5 Performance Analysis (Complexity, Memory, etc.)

	5 Extension of the Mission Planner to Multiple HAPS
	5.1 Fundamentals of GA
	5.2 Extension of Objective Criteria for Multiple HAPS
	5.3 Implementation of GA for the Search of Optimal Decomposition
	5.3.1 Encoding of the Decision Variables
	5.3.2 Initialization
	5.3.3 Fitness Evaluation and Constraints Handling
	5.3.4 Generation of New Population

	5.4 Configuration of the GA

	6 Plan Repair via Reactive Avoidance
	6.1 Model of Reactive Avoidance Strategy
	6.2 Markov Decision Process
	6.2.1 Modelling the HFAS
	6.2.2 Solution to MDP

	6.3 Implementation and Results
	6.3.1 Single Static Obstacle
	6.3.2 Two Static Obstacles
	6.3.3 Moving Obstacle(s)


	7 Implementation and Validation
	7.1 Implementation of the Mission Planner
	7.1.1 User Interface of the Mission Planner

	7.2 Validation of the Planning Functions
	7.2.1 Validation: Executability of the Flight Path Planner
	7.2.1.1 External 6-DoF HAPS Simulator
	7.2.1.2 Validation of the Flight Dynamics Model

	7.2.2 Validation: Ability of the Task Planner to Cope with the Versatile Environment
	7.2.2.1 Planner Configurations
	7.2.2.2 Results and Analysis



	8 Conclusion
	8.1 Future Improvements on the Mission Planning for HAPS
	8.2 Lessons Learnt in AI Planning for Real-World Applications
	8.3  Reusability of the Mission Planning Methods on Other Applications

	Appendix 1: Monocular Camera
	Appendix 2: Coefficients of a Line Segment
	Appendix 3: Formulation in PDDL+
	Appendix 4: A Preliminary Case Study for XAIP
	Robot & Frank
	Planning
	MIP


	Appendix 5: Time-Dependent Markov Decision Process (TiMDP)
	Appendix 6: Constrained Optimization Problem
	Abbreviations
	Symbols
	List of Figures
	List of Tables
	9 References

