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Deutsche Kurzfassung

Deutsche Kurzfassung

Viele dynamische Prozesse und Systeme, die uns täglich begegnen, zeichnen sich durch die
systemtheoretische Eigenschaft der Nichtminimalphasigkeit aus. Beispiele sind das Rückwärts-
Einparken eines Autos mit Anhänger oder das Lenken eines Fahrrads. Für viele nichtminimal-
phasige Systeme ist charakteristisch, dass die zu steuernde Größe zuerst in die Gegenrichtung
ausschlägt, in die sie gesteuert wird. Das bereits erwähnte Beispiel des Rückwärts-Einparkens
mit Anhänger demonstriert dieses Verhalten sehr anschaulich. Systemtheoretisch spricht man
von einem nichtminimalphasigen System, falls es eine instabile Nulldynamik besitzt oder -
im Linearen - Nullstellen in der offen rechten komplexen Halbebene aufweist. Das Problem
an nichtminimalphasigen Systemen ist, dass sie im Allgemeinen anspruchsvoll zu regeln sind.
Der geschlossene Regelkreis neigt zur Instabilität, was dazu führt, dass nur geringe Regler-
verstärkungen gewählt werden können. Außerdem sind nichtminimalphasige Systeme nicht
stabil invertierbar, sodass insbesondere viele nichtlineare Methoden des Reglerentwurfs nicht
anwendbar sind. Beide Eigenschaften führen zu einem schlechten Trajektorienfolgeverhalten. Aus
diesem Grund ist es notwendig, Systeme vor dem Reglerentwurf auf ihre Nichtminimalphasigkeit
hin zu überprüfen.

Wird eine Strecke modelliert, gibt es üblicherweise zwei Vorgehensweisen. Zum einen kann
ein dynamisches Modell aus den physikalischen Zusammenhängen abgeleitet werden. Zum
anderen können Messungen der Ein- und Ausgänge an der Strecke zur Systemidentifikation
genutzt werden. Im ersten Fall bekommt man ein System mit zu bestimmenden Parametern,
im zweiten Fall ein Satz numerischer Systeme. Bei vielen technischen Systemen entstehen dabei
sehr umfangreiche Modelle. Dennoch sind viele Parameter nur ungenau bekannt. Das führt dazu,
dass die Anwendung der herkömmlichen numerischen Methoden zur Analyse systemtheoretischer
Eigenschaften aufwendig ist und trotzdem keine exakten Aussagen über die Strecke liefern
kann. In diesen Fällen kann die strukturelle Analyse hilfreich sein. Diese betrachtet alleine
die Abhängigkeiten im System, also nur, ob gewisse Systemzustände, Eingänge oder Ausgänge
voneinander abhängen oder nicht. Das hat den Vorteil, dass schon frühzeitig Aussagen über
das untersuchte System getroffen werden können ohne die genauen numerischen Werte der
Parameter zu kennen. Außerdem gelten strukturelle Eigenschaften, die für ein System gefunden
wurden, für alle Systeme gleicher Struktur.
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In dieser Arbeit wird daher untersucht, ob allein anhand der Struktur eines Systems bestimmt
werden kann, ob es nichtminimalphasig ist. Dazu wird wie folgt vorgegangen. Zunächst werden
in Kapitel 2 die nötigen systemtheoretischen und mathematischen Grundlagen, wie die Reprä-
sentation eines dynamischen Systems als Graph, grundlegende Eigenschaften wie Steuerbarkeit,
Beobachtbarkeit, Invertierbarkeit und Rang, Stabilität und Nullstellen, sowie Nulldynamik
und der Begriff der (Nicht-)minimalphasigkeit eingeführt. Bode führte 1940 die Bezeichnung
nichtminimalphasig für stabile lineare Systeme mit mindestens einer Nullstelle in der rechten
komplexen Halbebene ein. In den Achtzigern wurde dieser Begriff von Isidori für Systeme mit
nicht asymptotisch stabiler Nulldynamik wiederverwendet. In Kapitel 3 wird daher untersucht,
wie diese beiden Verwendungen dieses Begriffs vereint werden können. Hierzu wird die Byrnes-
Isidori-Normalform, welche zur Bestimmung der Nulldynamik bei nichtlinearen quadratischen
Systemen verwendet wird, auf allgemeine lineare Systeme erweitert. Das Resultat ist, dass
im Wesentlichen die Definition der Nichtminimalphasigkeit nach Isidori auch auf Systeme,
welche nach Bode nichtminimalphasig sind, zutrifft. Aus diesem Grund wird im Weiteren die
Definition nach Isidori für nichtminimalphasige Systeme genutzt, das heißt, für Systeme mit
mindestens einer Nullstelle in der offenen rechten komplexen Halbebene. Die in Kapitel 2
eingeführte Darstellung dynamischer Systeme als Graph wird in Kapitel 4 genutzt, um Null-
stellen graphtheoretisch zu bestimmen. Dazu werden bekannte Methoden auf den allgemeinen
Fall nichtquadratischer und auch degenerierter MIMO-Systeme erweitert. Diese erweiterten
Methoden werden folglich in Kapitel 5 auf strukturelle Systeme angewendet. Hierfür werden
zuerst die Begriffe strukturelles System und strukturelle Eigenschaft definiert und der Bezug
zur Darstellung als Graph hergestellt. Strukturelle Eigenschaften sind dabei Eigenschaften, die
im numerischen Sinn für fast alle Systeme gleicher Struktur gelten. Durch die Nichtexistenz
bestimmter Subgraphen, den Feedback-Zyklusfamilien, im Graph eines Systems kann dann ein
hinreichendes Kriterium für die Nichtminimalphasigkeit eines strukturellen Systems angegeben
werden. Das heißt, fast alle numerischen Realisierungen eines strukturell nichtminimalphasigen
Systems sind dann auch nichtminimalphasig im numerischen Sinne. Das wirft zugleich die Frage
auf, ob es eine strukturelle Nichtminimalphasigkeit gibt, die für alle numerischen Realisierungen
gilt. Dies führt zu dem bekannten Begriff der streng strukturellen Eigenschaften, die eben für
alle numerischen Realisierungen eines strukturellen Systems gelten. In diesem Kontext werden
die streng strukturell nichtminimalphasigen Systeme definiert. Abschließend werden drei Erwei-
terungen vorgestellt. Zuerst werden die eingeführten Methoden für die Analyse der Stabilität
von strukturellen Systemen angewendet. Dies führt zu streng strukturell nicht asymptotisch
stabilen Systemen, deren numerische Realisierungen unter keiner Wahl von numerischen von
Null verschiedenen Parametern asymptotisch stabil sein können. Die nächste Erweiterung ist
die Eigenschaft der Vorzeichen-Nichtminimalphasigkeit. Oft ist neben der Existenz einer Abhän-
gigkeit im System auch die Richtung, d.h. das Vorzeichen, der Abhängigkeit bekannt. Es wird
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gezeigt, dass für Systeme bei denen strukturell keine Nichtminimalphasigkeit ermittelt werden
kann, durch Betrachtung der Vorzeichen der Abhängigkeiten eine Nichtminimalphasigkeit nach-
gewiesen werden kann. Schließlich wird die Anwendung der Methoden auf nichtlineare Systeme
diskutiert. Es stellt sich heraus, dass strukturelle Nichtminimalphasigkeit bei nichtlinearen
Systemen im Allgemeinen nicht existiert. Es lässt sich jedoch ein strukturelles Kriterium für
nicht asymptotisch stabile nichtlineare Systeme finden.
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Abstract

Abstract

Many dynamic processes and systems that we encounter regularly are characterized by the
system-theoretical property “non-minimum phase”. A system is called non-minimum phase
if it has unstable zero dynamics or, in the linear case, zeros with non-negative real parts.
Non-minimum phase systems are generally challenging to control. The closed control loop
tends to become unstable, which results in the fact that only small control gains can be chosen.
Furthermore, non-minimum phase systems do not have a stable inverse, so that in particular
many nonlinear methods of controller design are not applicable. Both properties lead to a poor
trajectory tracking behavior. For this reason, it is necessary to check a priori if a system is
non-minimum phase in order to select a suitable control method.

There are usually two approaches to model a plant. A dynamic model can be derived from
the physical relations in the system or measurements of the inputs and outputs can be used
for system identification methods. In the first case, a system with parameters, which have to
be determined, is obtained and, in the second case, a set of numerical systems is generated.
For technical systems, the obtained models are usually very complex. Nevertheless, many
parameters are known only imprecisely. This leads to the fact that the application of common
numerical methods for the analysis of system-theoretical properties is difficult. In these cases,
the structural analysis may be helpful. The structural approach only considers the dependencies
in the system, which means, whether certain system states, inputs or outputs depend on one
another.

In this thesis, it is investigated whether it is possible to determine only by the structure of a
system whether it is non-minimum phase. Therefore, the following approach is taken. The
term (non-)minimum phase was used in 1940 by Bode for stable linear systems with at least
one zero with positive real part and in the eighties by Isidori for systems with unstable zero
dynamics. It is examined how these two concepts can be unified. The result is that essentially
the definition of non-minimum phase systems according to Isidori applies also to systems that
are non-minimum phase according to Bode. Further, the representation of dynamical systems
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as a graph is used to determine the zeros by the graph-theoretic approach. For this purpose,
known methods are extended to the general case of non-square and degenerated MIMO systems.
These extended methods are then applied to structural systems. Structural properties apply to
almost all systems of the same structure in the numerical sense. By the non-existence of certain
subgraphs - the feedback cycle families - in the graph of a system, a sufficient criterion for the
non-minimum phase property of a numerical system can be given. This means that almost
all numerical realizations of a structurally non-minimum phase system are also non-minimum
phase in the numerical sense. This also raises the question whether there exists a structural
non-minimum phase property that is valid numerically for all realizations. This leads to the
well-known concept of strong-structural properties that hold numerically for all realizations
of a structural system. In this context, strong-structurally non-minimum phase systems are
defined. Finally, three extensions are presented. First, the developed methods are applied to
analyze the stability of structural systems. This leads to strong-structurally not asymptotically
stable systems, whose numerical realizations cannot be asymptotically stable under any choice
of numerical non-zero parameters. Often, in addition to the existence of a dependency in
the system, the direction, i. e. the sign, of the dependency is also known. It is shown that
for systems, for which no non-minimum phase property can be determined structurally, a
non-minimum phase property can be found by considering the signs of the dependencies in the
system. Finally, the application of the methods to nonlinear systems is discussed. It turns
out that in general the structurally non-minimum phase property does not exist for nonlinear
systems. However, a structural criterion for not asymptotically stable nonlinear systems can be
found.
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Notation

A set of numbers or field is denoted by F. More specifically, N is the set of natural numbers, Z
is the set of integers, R is the field of real numbers and C is the field of complex numbers.

Vectors are given by lowercase bold letters v. Matrices are represented by bold capital letters
M . Three types of matrices are considered. Polynomial matrices P (s) ∈ R[s]n1×n2 or rational
matrices R(s) ∈ R(s)n1×n2 are matrices whose elements are polynomials or rational functions
in a variable s. A parametrized matrix M [µ] ∈ Fn1×n2 is a matrix that has d parameters[
µ1 µ2 . . . µd

]
=: µ ∈ Fd as elements.

The identity matrix is denoted by I. The notation diag(e) represents a diagonal matrix whose
entries are given by the vector e.

The matrix M+ is the pseudo inverse of the matrix M , i. e. some matrix that fulfills the
equation

MM+ = I . (0.1)

The kernel of a matrix M ∈ Fn1×n2 is denoted by kerM := {v ∈ Fn2 |Mv = 0} and the image
of the matrix is denoted by imM := {Mv|v ∈ Fn2}.

In some cases submatrices are considered, which are represented by

Mk1,k2,...,ki
l1,l2,...,lj

(0.2)

where k1, k2, . . . , ki is a list of i rows and l1, l2, . . . , lj is a list of j columns of the matrix M of
which the submatrix is constructed.

The i× j minor of M , is given by

M
{k1,k2,...,ki}
{l1,l2,...,lj} := detMk1,k2,...,ki

l1,l2,...,lj
. (0.3)
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Notation

In some cases if it is clear the explicit time dependency x := x(t) of some variables is omitted
for better readability. The derivative by time t is marked by a dot, i. e. ẋ(t) := d

dtx(t).

Graphs

The basic structure of a graph is explained. For a complete description, see e. g. [Rei88,
Appendix A1] or [Die10].

A graph G(V, E) consists of a set of vertices V and a set of edges E . The graph exposes a structure
by connecting two vertices, vi ∈ V and vj ∈ V, with an edge ei,j ∈ E . If both end-vertices of
an edge coincide, the edge is called a self-loop. In a directed graph, the edges also assign a
direction between the two connected vertices. This can be extended to a directed weighted
graph G(V, E ,W), which additionally contains a set of weights W. In the weighted graph a
value wi,j ∈ W is assigned to every edge ei,j . Graphically, vertices are represented by circles ©
and edges by arrows → connecting the circles and revealing the direction of connection.

1

2

3

4

5

Figure 0.1: Example of a directed graph G(V, E).

Some subgraphs can be identified in a graph. A simple path in the graph G(V, E) is a sequence of
edges {ei,j , ej,k, . . .} connecting the vertices {vi, vj , vk, . . .} in forward direction, wherein every
vertex is visited only once. If the first and the last vertex of a simple path are identical, the
sequence is called a cycle. A cycle family C is the set of disjoint cycles in the graph G(V, E),
i. e. cycles that do not share vertices.

An example of a graph with cycles is drawn in Figure 0.1. This example will be used for the
following explanation of notation. In the text self-loops are described by the contained vertex,
e. g. 4. Cycles that contain two vertices are described by e. g. 4� 3. Larger cycles are described
by e. g. 1 → 2 → 5. A cycle family is marked by parentheses, e. g. (1 → 2 → 5, 4� 3).
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An adjacency matrix A of a graph G(V, E ,W) represents the relation between the vertices
vi ∈ V in matrix form. The matrix elements αi,j ∈ A are determined by the edges ei,j ∈ E in
the following way [TS11]:

αi,j =





0 if no directed edge between vi and vj exists

wi,j if a directed edge from vi to vj exists.
(0.4)

This is an extension to the classical definition, where the entries of the adjacency matrix are
only given by zeros or ones, depending on the existence of the considered edge.
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1 Introduction

1 Introduction

The terms “minimum phase” and “non-minimum phase” originate from communications engi-
neering for a certain behavior of dynamical systems and are assumed to be first used by H. W.
Bode. With a slightly different terminology, he described in [Bod40] the fact that there exist
systems that have a minimal phase shift in their frequency response compared to other systems
with the identical gain over frequency. This is, however, an abstract definition, since it involves
the system description in the frequency domain. In state space, e. g. physical coordinates,
systems that are non-minimum phase often expose a “wrong way behavior”, sometimes also
called “inverse response” or “undershoot”. This means that the step response of such systems
tends first in the opposite direction of where it will end up in steady state. This behavior is
counterintuitive but very common for many dynamical systems. Examples are the problem of
parking a car backwards, craning building materials to a specified position on a construction
plant or steering a bicycle [ÅKL05]. There are many more examples, not only in the domain of
mechanical systems. For instance the vertical dynamics of planes [SL91], vertical taking-off
and landing aircrafts [MDP94], loading bridges, the inverse pendulum, electronic circuits with
all-pass elements, water turbines and modern gasoline engines [DSS16b] can be non-minimum
phase depending on which part of the system is actuated and which variables are measured. It
cannot be said that a technical system is (non-)minimum phase by nature since the property
depends on the selection of system inputs and outputs.

1.1 Motivation

When designing a controller for a system, in many cases, it is necessary to check whether the
considered system is non-minimum phase, since systems with this property impose limitations
on control. For instance, in closed loop they tend to get unstable allowing only a small feedback
gain. Furthermore, they do not have a stable inverse, which obstructs the application of common
control schemes such as Input-Output-Linearization [Isi95], Backstepping [KKK95] and Sliding
Mode Control [SL91].
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In order to determine whether a system is non-minimum phase, two approaches can be followed
depending on the nature of the system description. Linear systems can be analyzed by the
calculation of their zeros. Roughly speaking, the zeros are frequencies with which the inputs
can be excited resulting in the outputs staying at zero. By the values of the zeros, it can be
determined whether the considered system is non-minimum phase. A similar concept like the
zeros exists for nonlinear systems called zero dynamics. The zero dynamics are the dynamics
that describe the internal behavior once a feedback and initial conditions are chosen such that
the output stays at zero. Then by investigating the stability of the zero dynamics, it is possible
to tell whether the considered system is non-minimum phase.

The determination of zeros or the zero dynamics, or in general the application of control schemes,
is often challenging for practical problems. In many cases an accurate description of the plant
or the identification of physical systems, which is mandatory for proper application of control
methods, leads to large complex models. Nonetheless, uncertainties in the model parameters
may be present. In this case, structural analysis is a helpful tool because neither accurate
numerical parameters of the model nor exact functional relations between its components are
prerequisites. This has several advantages. First, a structural analysis can be done in a very
early stage in the control design process without much information about the considered system.
This enables early design decisions, e. g. which actuators or sensors have to be used for control
and which control scheme is applicable. Furthermore, since only the structure of a system
is considered, the results obtained are also applicable to all systems with the same structure
in contrast to results gained by numerical methods, which are only valid for the investigated
system. In addition, there are already various systems described in a structural form e. g. many
types of communication networks, power grids and production processes for which structural
methods can be applied directly. Another advantage is the possibility to represent structural
systems graphically. This is often very insightful and many system theoretic properties can be
checked manually without using numerical methods.

1.2 Previous Work

The non-minimum phase property is discussed in many standard textbooks about control
engineering but the structural approach has been considered less often. Early investigations of
structural systems was conducted by [Lin74; GS76] considering structural controllability and
by [ITY71] considering structural “solvability”. The results for structural controllability and
observability, finite and infinite zeros and poles in the case of linear systems were summarized

2
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in the book [Rei88] and in the survey [DCW03]. In the book [Mur09] the topic of structural
properties is discussed rigorously. Structural properties like differential rank, infinite zeros and
invertibility for nonlinear systems are described in the book [Wey02].

Recently, structural methods have been extensively applied in the complex networks domain,
where, among others, biological, technological, social and economic networks are investigated.
Examples are information transport in the brain, distribution of goods and news spreading on
social media. In [LSB11] the structural controllability is applied to identify the set of nodes in
a complex network that can control the whole network. Analogously, in [LSB13] the structural
observability is used to find the set of sensors in a complex network to reconstruct the entire
state of the network. Structural methods are used for fault detection in [PBB12] in order to
ensure trustworthy computation in linear consensus networks. Furthermore, the structural
approach is exploited in order to check for additional system theoretical properties like stability.
For example in [Bel13] criteria are given to decide whether networks are stabilizable.

Further, subject specific references are given in the chapters where these topics are discussed in
detail.

1.3 Contributions and Structure

The contribution of this work to the topic of structural systems analysis is the investigation of
the stability of zeros or zero dynamics of systems with graph-theoretic methods. Therefore,
sufficient criteria are developed to determine if a system is structurally non-minimum phase,
meaning the considered system will be non-minimum phase for (almost) all numerical values for
its parameters. Since non-minimum phase systems are challenging to control, this property is
useful to select proper inputs and outputs in order to try to avoid non-minimum phase behavior
or to select the appropriate control scheme, without knowing the exact numerical values a
priori.

In addition to the already published work about criterions for structurally non-minimum phase
systems [DSS16a] and strong-structurally non-minimum phase systems [DSS16c] this work
generalizes these criterions for arbitrary linear systems without feed-through. That implies
also a definition of zero dynamics for these systems, which before was only possible for square
non-degenerated systems [Daa16].

3
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This work is structured as follows. In the following chapter some mathematical and system
theoretic background is presented. This implies the common mathematical representation of
dynamical systems, their representation as graph, some basic properties of linear systems, such
as controllability and observability, invertibility and rank, stability and zeros. Further, the zero
dynamics of nonlinear systems are introduced and the term non-minimum phase is specified.
In Chapter 3, the relation between the concepts zeros and zero dynamics is investigated for
arbitrary linear systems. This includes the definition of the relative degree for non-square
systems, whose existence is a precondition to determine the Byrnes-Isidori normal form, a
normal form to determine the zero dynamics of a dynamical system. With the linear version of
the Byrnes-Isidori normal form, the relationship between the zeros of a system and its zero
dynamics is investigated in the general case. In Chapter 4, the graph-theoretic approach for the
determination of the polynomials used for the analysis of the stability of the zeros and hence
of the non-minimum phase property of linear systems is presented. Known results for square
systems with one input and one output are generalized for arbitrary linear systems. In Chapter 5,
this generalization is used to find sufficient criteria to decide whether a system is non-minimum
phase only by its structure. These criteria will hold in almost all cases. Nevertheless, a concept
is developed in order to obtain sufficient criteria for a structurally non-minimum phase property
that will hold in all cases. In the end of this chapter, some extensions are presented. The
strong-structural method is used to analyze the stability of a system leading to the definition of
strong-structurally not asymptotically stable systems. Further, the extension of the structurally
non-minimum phase property to systems, where besides the structure also the signs of the
dependencies in the system are known and the extension of the structural approach to nonlinear
systems is discussed. Moreover, the complexity of determining these structural properties is
discussed. In the conclusion, a summary of the contributions of this work is given and links to
further research are pointed out.
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2 Preliminaries

2 Preliminaries

In this chapter some fundamental properties of systems and concepts used in control engineering
are introduced, which are used throughout this work. First, the representation of dynamical
systems is presented for linear systems and for nonlinear systems. Subsequently, these represen-
tations are related to the graph-theoretic representation. Further, the basic properties of linear
systems are summarized. This includes the observability and controllability, the invertibility
and the rank, the stability and the zeros. Then, a normal form and the determination of
zero dynamics are presented for nonlinear systems. Finally, the term “non-minimum phase” is
defined and its usage in literature is discussed briefly.

2.1 Representations of Dynamical Systems

For reference, first the classical representations of dynamical systems as ordinary differential
equations is given. After that, it is described, how to obtain a graph from the classical
representation.

2.1.1 Classical Representation

Linear dynamical systems are commonly represented by the ordinary differential equations

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) ,

(2.1)

where the system’s state variables are denoted by x(t) ∈ Rn, the input vector by u(t) ∈ Rm

and the output vector by y(t) ∈ Rp. The order, and hence the number of state variables, is
given by n, the number of inputs by m and the number of outputs by p. The matrices A, B,
C and D are real, constant and have appropriate dimensions. This representation is typically

5



2 Preliminaries

called state space representation. The linear space of the states is denoted by X, the space of
inputs by U and the space of outputs by Y, i. e. x(t) ∈ X, u(t) ∈ U and y(t) ∈ Y.

Since all practical systems are strictly proper [SP05, §1.3], there is no direct feedthrough and
D = 0 is assumed throughout this work. 1 Thus, usually the linear system

ΣLS :
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

. (2.2)

is regarded in this work. A system is called a single-input-single-output (SISO) system if
m = p = 1 and a multiple-input-multiple-output (MIMO) system if m > 1 and p > 1. If m = p

holds, the system is called square.

The system ΣLS can be Laplace transformed to

[
x(0)
Y (s)

]
=
[
sI −A -B
C 0

]

︸ ︷︷ ︸
=:P (s)

[
X(s)
U(s)

]
(2.3)

with s ∈ C and x(0) some initial state, where P (s) ∈ R[s](n+p)×(n+m) is called the (Rosenbrock’s)
system matrix.

From (2.3) it is furthermore possible to determine the transfer function matrix G(s) ∈ R(s)p×m

from input to output

Y (s) = C(sI −A)−1B︸ ︷︷ ︸
=:G(s)

U(s) +Cx(0) . (2.4)

Occasionally nonlinear systems are considered in this work. The linear systems specified before
can be seen as a special case of these systems. Nonlinear systems without direct feedthrough
are represented by

ẋ(t) = f(x(t)) + g(x(t))u(t)
y(t) = h(x(t))

, (2.5)

where the continuous differentiable vector fields f(x(t)), g(x(t)) ∈ Rn and h(x(t)) ∈ Rp.

1Sometimes high frequency behavior is modeled by a non-zero D.
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2 Preliminaries

2.1.2 Graph-Theoretic Representation

Especially for the investigation of structural properties, the graph-theoretic representation of
dynamical systems is beneficial, because the graph visualizes the mutual dependencies of the
state variable and the inputs and outputs. Therefore, this method is used by many authors,
e. g. [Rei88; DCW03; Che76; Wey02; LSB11].

The system ΣLS can be represented as a graph using the following definition.

Definition 2.1.1 (System Graph). The (weighted) system graph Gsys(V, E)
(Gsys(V, E ,W)) of the system (2.2) consists of m input vertices u1, . . . , um ∈ U ⊂ V ,
n states vertices x1, . . . , xn ∈ X ⊂ V and p output vertices y1, . . . , yp ∈ Y ⊂ V . The
vertices are connected by directed (and weighted) edges, generated by the following
rules:

1. There exists a directed edge ebi,j ∈ E from input vertex uj to state vertex
xi if in B the element bi,j in the i-th row and j-th column is nonzero. (The
resulting weight wbi,j ∈ W of this edge is given by bi,j .)

2. There exists a directed edge eai,j ∈ E from state vertex xj to state vertex xi
if in A the element ai,j in the i-th row and j-th column is nonzero. (The
resulting weight wai,j ∈ W of this edge is given by ai,j .)

3. There exists a directed edge eci,j ∈ E from state vertex xj to output vertex
yi if in C the element ci,j in the i-th row and j-th column is nonzero. (The
resulting weight wci,j ∈ W of this edge is given by ci,j .)

If a system ΣLS is represented as a graph as previously defined, the state vertices have a special
function. They symbolize integrators that integrate the values (multiplied by the weights) of
the state vertices to which they are connected as end-vertices of an edge. Then they share their
values to the vertices to which they are connected as start-vertices of an edge. This property of
state vertices is fundamental to this work.

Often vertices are connected in a cyclic manner, as described previously in the Notation section.
The number of state vertices in cycle families is of major interest, so a property for this value is
defined as follows.

7



2 Preliminaries

Definition 2.1.2 (Width of a Cycle Family). The width of a cycle family is
the number of state vertices it touches.

The translation from the classical to the graph-theoretic representation is demonstrated by the
next example.

Example 2.1.1. Consider the generic second order system

ẋ =
[
a1,1 a1,2

a2,1 a2,2

]
x+

[
b1,1

b2,1

]
u, y =

[
c1,1 c1,2

]
x . (2.6)

Applying Definition 2.1.1 yields its graph-theoretic representation depicted in
Figure 2.1. Note, since the width of a cycle family is important in this work, state

u x1

x2 y

b1,1

b2,1 a2,1 a1,2

a1,1

a2,2

c1,1

c1,2

Figure 2.1: Gsys of (2.6).

vertices are marked by double borders for better visibility.

As it is possible to transfer the classical representation of a dynamical system to its graph-
theoretic representation, the reverse is also possible. The adjacency matrix of a system graph
Gsys(V, E ,W) is given by

Asys =




0 C 0
0 A B

0 0 0


 . (2.7)

2.2 Some Fundamental Properties of Linear Systems

In this section, the familiar concepts of controllability and observability, invertibility and rank,
stability and zeros of linear systems are introduced for reference.
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2 Preliminaries

2.2.1 Controllability and Observability

Controllability and observability are central properties of linear systems. The controllability
of a system indicates whether all state variables of a dynamical system can be driven by the
input.

Definition 2.2.1 (Controllability [ZDG96]). A system (2.2) is called controllable
if there exists an input u(t), t ∈ [0, T ], which transfers the state x(t) from an initial
value x1 at t = 0 to a final value x2 in some finite time T . Otherwise, the system
is said to be uncontrollable.

The controllability can be checked by the following criteria, see e. g. [AM07].

Theorem 2.2.1. A system is controllable if the controllability matrix

Qc =
[
B AB . . . An−1B

]
(2.8)

has full rank, i. e.
rankQc = n . (2.9)

This is equivalent to the condition

rank
[
λiI −A B

]
= n (2.10)

for all λi ∈ C that are eigenvalues of A.

By (2.10) it is possible to determine which eigenvalues are controllable and which are not.

Definition 2.2.2 (Controllable Eigenvalue). An eigenvalue λi of A is called
controllable if it fulfills (2.10). Otherwise, it is called uncontrollable.

The dual concept of controllability is observability. It indicates whether the state variables can
be calculated from the measurement of the outputs.

Definition 2.2.3 (Observability [ZDG96]). The system (2.2) is said to be ob-
servable if, for any T > 0, the initial state x1 at t = 0 can be determined from
the time history of the input u(t) and the output y(t) in the interval of [0, T ].
Otherwise, the system is said to be unobservable.

9
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The observability of a system can be determined by the following theorem.

Theorem 2.2.2. A system is observable if the observability matrix

Qo =




C

CA
...

CAn−1




(2.11)

has full rank, i. e.
rankQo = n . (2.12)

This is equivalent to the condition

rank
[
λiI −A
C

]
= n (2.13)

for all λi ∈ C that are eigenvalues of A.

By (2.13) it is possible to determine which eigenvalues are observable and which are not.

Definition 2.2.4 (Observable Eigenvalue [TSH01]). An eigenvalue λi of A is
called observable if it fulfills (2.13). Otherwise, it is called unobservable.

Observability and controllability are dual properties. The dual system of a system (2.2) defined
by the triple (A,B,C) is constructed by

Ā := AT , B̄ := CT and C̄ := BT . (2.14)

Now, if the original system is observable, its dual system is controllable and vice versa. The
same holds for their controllable and observable eigenvalues.

2.2.2 Invertibility and Rank

The systems invertibilities are crucial for many problems considered in control engineering
[Est+07]. For instance, left invertibility is a precondition for failure detection and isolation,
and right invertibility is a precondition for reference tracking and disturbance rejection.

Common definitions of the invertibilities of dynamical systems are given by Moylan [Moy77].
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Definition 2.2.5 (Right Invertibility). A dynamical system is right invertible
if, for any [sufficiently smooth] yref (t) defined on [0,∞[, there exists an u(t) and a
choice of x(0) such that y(t) = yref (t) for all t ∈ [0,∞[.

Definition 2.2.6 (Left Invertibility). Let u1 and u2 be any two inputs of a
dynamical system and let y1 and y2 be the corresponding outputs for the same
initial condition x(0). The system is said to be left invertible if y1(t) = y2(t) for
all t > 0 implies that u1(t) = u2(t) for all t > 0.

More formally, this means that if a system is right invertible, the mapping between the input
space and the output space is surjective. Analogously, if a system is left invertible, the mapping
between the input space and the output space is injective.

This leads to the equivalent definition:

Definition 2.2.7 (Right Invertible, Left Invertible, Degenerated, Definition
3.5.1 [CLS12]). The system (2.2) is called right invertible if there exists a rational
matrix function R(s), such that

G(s)R(s) = Ip , (2.15)

with Ip, the p× p identity matrix. The system (2.2) is called left invertible if there
exists a rational matrix function L(s), such that

L(s)G(s) = Im , (2.16)

with Im, the m ×m identity matrix. If ΣLS is both left and right invertible, it
is said to be invertible. If it is neither left nor right invertible, it is said to be
degenerated.

If a system is right invertible, it is possible to calculate an input u(t) and an initial condition
x(0) such that the system follows a given reference trajectory yref (t). For left invertible systems,
the input u(t) can be determined by the signal of the output y(t) and the initial condition
x(0).

Obviously, for a right invertible system, the number of inputs has to be greater or equal to the
number of outputs, i. e. m ≥ p. In the same way for a left invertible system, the number of
inputs has to be less or equal to the number of outputs, i. e. m ≤ p. For invertible systems the
same number of inputs and outputs is necessary, i. e. m = p. Such systems are called square.

11
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Invertibility is a dual property as explained next. The system matrix of the dual system is
given by2

P̄ (s) = P (s)T (2.17)

and its transfer function by

Ḡ(s) = G(s)T . (2.18)

From linear algebra it is known, that if a matrix M is right invertible, its transposed MT is
left invertible and vice versa. Thus, left and right invertibility is also a dual property. The
duality between left and right invertible systems is discussed in detail by [Est+07].

The invertibility of a system can be checked by a rank criterion. Therefore, the rank of a
polynomial matrix M(s) is briefly discussed.

Rank of Parameterized Matrices

In linear algebra text books, the rank of a matrix is often defined in the following way:

Definition 2.2.8 (Rank, Definition 5.2.2. [Mir55]). The rank of a matrix M is
the maximum size k of a k × k submatrix of M for that the determinant does not
vanish.

The determinant detM of an n× n matrix M with the elements mi,j can be calculated by

detM :=
∑

(�)

n∏

i=1
mi,ti −

∑

(♦)

n∏

i=1
mi,ti (2.19)

where {t1, t2, . . . , tn} is a permutation of {1, 2, . . . , n} and (�) is the sum of even permutations
and (♦) the sum of odd permutations [Rei88].

In literature there are further concepts of the rank of a matrix. In addition to Definition 2.2.8
the following terms are considered: “Generic rank”, “normal rank”, “maximal rank”, “full rank”
and “term rank”. Note, to better distinguish between the enumerated terms and Definition 2.2.8,
it will sometimes be referred to this rank as “numerical rank”. First, the generic rank, refer to
[Mur09; Wou91b], is defined.

2This equality holds if the system matrix is defined by P (s) :=
[

sI −A B

C 0

]
, which is also very common.
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Definition 2.2.9 (Generic Rank). The generic rank of a parameterized matrix
M [µ] ∈ Fn×m with

[
µ1 µ2 . . . µd

]
= µ ∈ Fd is given by

g-rankM [µ] := max
µ

rankM [µ] . (2.20)

Note, generally it is not easy to evaluate the generic rank since the parameters in µ may be
dependent on each other. Therefore, it is not possible to find the generic rank by maximizing
the rank for every parameter µi independently.

A special case of parameterized matrices are polynomial and rational matrices, where the entries
are functions of a complex variable s. In the case of polynomial matrices, these functions are
polynomials in s. The elements of rational matrices are rational functions in s.

Since these types of matrices are often considered in control engineering, e. g. G(s) and P (s),
their generic rank is called “normal rank” [Kai80; CLS12; Rei88; TSH01] or “maximal rank”
[Lun13].

Definition 2.2.10 (Normal Rank). The normal rank, denoted by norm-rank, of
a polynomial matrix M(s) ∈ R[s]n1×n2 or rational matrix 3 R(s)n1×n2 with s ∈ C
is given by

norm-rankM(s) := max
s

rankM(s) . (2.21)

A polynomial or rational matrix has full rank if norm-rankM(s) = min(n1, n2) holds.

Later on, also parameterized polynomial or rational matrices are considered. Since the normal
rank is a special case of the generic rank the following equation holds by redefining the
parameters:

g-rankM [ν](s) = g-rankM [µ] , (2.22)

with M [ν](s) as a matrix with elements that are polynomial or rational functions in ν ∈ Rd

and s ∈ C and M [µ] as the same matrix with redefined parameters µ := f(ν, s). Obviously,
for fixed parameters (except s)

g-rankM(s) = norm-rankM(s) (2.23)

holds.
3In the case of rational matrices, elements may diverge for values of s that are poles of the rational function the
element consists of. Since the definition of rank of a matrix with infinite elements is commonly not given,
these values of s are excluded.
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In order to illustrate the application of the generic rank, the following example is given.

Example 2.2.1. Consider the parameterized system defined by the triple

A =
[

0 α

α 0

]
, B =

[
β

γ

]
,C =

[
-β γ

]
. (2.24)

Often the norm rank of the system matrix P (s) is investigated. The system matrix
of the considered system is given by

P (s) =




s -α -β
-α s -γ
-β γ 0


 . (2.25)

As described by Definition 2.2.8 the rank of a matrix is defined by the maximum
size of a submatrix that has a non-vanishing determinant. Now consider the largest
submatrix, the matrix itself, i. e.

detP (s) = (γ2 − β2)s 6= 0 . (2.26)

Since the normal rank Definition 2.2.10 is determined by maximizing only over s, it
is not applicable without knowing the numerical values of β and γ. So in this case
the generic rank of P (s) with the parameters µ := [α, β, γ, s] has to be considered.
Now the generic rank depends on the relations between these parameters. For
instance if they are all independent, maximizing over µ leads to a non-vanishing
determinant, i. e. detP (s) 6= 0 and thus g-rankP (s) = 3. However, in the case that
γ and β are depending on each other, e. g. β = −γ will yield g-rankP (s) < 3. This
demonstrates that the evaluation of a rank of a parameterized matrix, like P (s) or
G(s), must be carried out with care.

In contrast to the definitions of rank described above, the term rank has a combinatorial
meaning.

Definition 2.2.11 (Term Rank, Section 2.1.3 [Mur09]). The term rank of a
matrix M is the maximum size k of a k × k submatrix of M for that at least one
term m1,t1m2,t2 . . .mk,tk of its determinant (2.19) does not vanish, i. e. there occurs
no multiplication by zero in m1,t1m2,t2 . . .mk,tk .

The term rank will play an important role later when considering the graph-theoretic approach.
It is possible to calculate the term rank with the sprank function of MatLab.
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The relation between the different types of rank are given by the next lemma.

Lemma 2.2.1. It holds that

1. rankM(s) ≤ norm-rankM(s),

2. rankM(s) ≤ term-rankM(s) and

3. norm-rankM(s) ≤ term-rankM(s).

Proof. The first relation is a direct consequence of Definition 2.2.10. The second and third
relation hold because if rankM(s) = k or norm-rankM(s) = k at least some minor of M(s)
is not zero therefore at least one term m1,t1m2,t2 . . .mk,tk in (2.19) must not vanish.

To illustrate the differences between these concepts of rank an example is given.

Example 2.2.2. In this example four cases, collected in Table 2.1, are discussed
where the three concepts of rank differ.

Case M i)(s) detM i)(s) rank norm-rank g-rank term-rank

a)




s-a e d

0 s-b 0
0 c 0


 0 2 2 2 2

b)




s-a 0 e

0 s-a -d
d e 0


 (s− a)ed
−d(s− a)e

2 2 2 3

c)




s-a 0 e

0 s-a d

d e 0


 −(s− a)ed
−d(s− a)e

2 3 3 3

d)




s-a c 0
0 s-b d

e 0 0


 ecd 3 3 3 3

Table 2.1: Evaluation of the distinct types of rank for polynomial matrices.
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Consider the parameters a to e are non-zero, algebraically independent and fixed.
This leads to equivalence of the generic rank and normal rank in the given examples.
The (numerical) rank will be evaluated at s = a.

Considering case a) all terms of detMa)(s) vanish, so that Ma)(s) has rank
deficiency for all four types of rank.

In case b) some terms of the determinant do not vanish. However, if detM b)(s) is
evaluated, it becomes zero. Therefore, case b) has rank deficiency for the numerical
rank and the generic rank but not for the term rank. Note that in this case the
rank deficiency is independent of the actual values of a, d, e and s.

Case c) is very similar to case b). However, the determinant only vanishes for s = a,
so a numeric rank deficiency is present.

Comparing case b) and case c) reveals that the generic rank of a matrix may change
by numerical cancellations in contrast to the term rank.

In the last case d) the determinant is independent of s, so Md)(s) has full rank for
all three types of rank.

Rank of a Linear System

Typically, the rank of a system ΣLS is referred as

r := norm-rankG(s) . (2.27)

The system is right-invertible if r = p and left-invertible if r = m [TSH01, Sec. 8.2]. The
system is said to be of full rank or non-degenerated if r = min(m, p). Otherwise the system is
called degenerated [SS87, Def. 2.3].

The ranks of the transfer function and the system matrix are related as given by the next
lemma.

Lemma 2.2.2 (Lemma 8.9 and proof [TSH01]).

norm-rankP (s) = norm-rankG(s) + n . (2.28)
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Clearly, for non-degenerated systems the conditions

rankB = m and
rankC = p

(2.29)

must be met, meaning that there is no direct redundant actuation or measuring of the plant.
Throughout this work it is assumed that (2.29) is always met. However, these conditions are
not sufficient for non-degenerated systems, as explained in the following example.

Example 2.2.3. Consider the system defined by the matrices

A =




1 0 1
1 1 1
1 1 1


 ,B =




0 0
0 1
1 0


 ,C =

[
0 0 1
1 0 0

]
, (2.30)

with m = p = 2 inputs and outputs. Although the input matrix B and the output
matrix C has rank 2, the system matrix does not have maximal rank.

norm-rank




s− 1 0 −1 0 0
−1 s− 1 −1 0 −1
−1 −1 s− 1 −1 0
0 0 1 0 0
1 0 0 0 0




= 4 . (2.31)

Hence, the example system is degenerated.

Therefore, in addition to the conditions (2.29), the matrix A has to be considered to determine
the non-degeneracy of a system.

2.2.3 Stability

Stability is of major interest in control theory. A brief summery is given here. Stability for
dynamical systems was defined by Lyapunov [Lya92] in the following way [Kha02, Def. 4.1]:

Definition 2.2.12 (Asymptotic Stability). An equilibrium point x̄, 0 = Ax̄ or
0 = f(x̄), of system (2.1) , is called stable, if for any Ω > 0 there exists an ε > 0
such that

‖x(0)− x̄‖ < ε⇒ ‖x(t)− x̄‖ < Ω for all t > 0 . (2.32)

If additionally limt→∞ x(t) = x̄ holds, x̄ is called asymptotically stable. Otherwise,
the equilibrium point is called unstable.
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Since the stability of linear systems is uniquely determined by the eigenvalues of A, stability
can be considered as a property of the system. So for linear systems the following theorem has
been formulated, see e. g. [Gan59, V.§6 Theorem 3] or [Kha02, Theorem 4.5].

Theorem 2.2.3. A linear system ΣLS is stable if the eigenvalues of the matrix A
have non-positive real parts and for every eigenvalue λi with zero real part and
algebraic multiplicity qi ≥ 2, rank(A− λiI) = n− qi holds. If it has only negative
real parts, the system is asymptotically stable.

The eigenvalues of A are also called the (system) poles of ΣLS . They are determined by the
roots of the characteristic polynomial

χ(λ) := det(λI −A) = λn + α1λ
n−1 + . . .+ αn−1λ+ αn . (2.33)

Some of the system poles are the poles of G(s), also called transmission poles. The transmission
poles of a system are those system poles that are simultaneously observable and controllable.

It is immediately possible to give the number of roots in 0 of a polynomial as given by (2.33).
The lowest order of λ for that a coefficient αk exists, equals the number of roots in 0. This
means a polynomial can be always factorized so that it contains no roots in 0.

For the determination of stability, the position of the (remaining) roots of (2.33) is of interest.
Usually this is done by the Routh-Hurwitz criterion [LT85; Rou77; Hur95], which consists of a
necessary and a sufficient condition. The necessary condition is the well-known Theorem of
Viète on polynomial roots [Gir29] given below. 4

Lemma 2.2.3. A necessary condition that the roots σ0i of the polynomial equation

c0σ
δ + c1σ

δ−1 + . . .+ cδ−1σ + cδ = 0 (2.34)

of order δ have strictly negative real parts is, that all coefficients ci are nonzero and
of equal sign, i. e.

(ci > 0 ∀i) ∨ (ci < 0 ∀i) i = 0, 1, 2, . . . , δ (2.35)

holds.

Since the sufficient condition of the Routh-Hurwitz criterion is of no further interest in this
work, the reader is referred to any textbook about linear control systems.

4This condition is also known as Stodola condition.
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2.2.4 Zeros

Zeros of a dynamical system are the origin of the phenomenon in which outputs are identically
zero although inputs and state variables are subject to motion. They often occur due to
competing effects in the system that cancel out each other.

In literature, the term “zeros” of a system is not always used in a consistent way [Sva13]. Hence,
a short summary of the topic is given. The classifications of [MK76] are used, since these are
widely used in literature. According to these classifications, the zeros of a linear system can be
described by the four sets: transmission zeros (TZ), decoupling zeros(DZ), invariant zeros (IZ)
and system zeros (SZ).

In order to classify the zeros of ΣLS (2.2) a canonical form of a rational matrix, the Smith-
McMillan-Form [Kai80], is used. The Smith-McMillan-Form is an extension of the Smith-Form,
a canonical form of the polynomial matrix N(s) ∈ R[s]n1×n2 with normal rank ρ ≤ min(n1, n2).
The Smith-Form SN (s) of N(s) is obtained by elementary matrix operations

V (s)N(s)W (s) = SN (s) =
[
diag(ε1(s), ε2(s), . . . , ερ(s)) 0

0 0

]
, (2.36)

where the transformation matrices V (s) and W (s) are unimodular. Herein εi(s) are unique
monic polynomials where εi(s) divides εi+1(s) for i = 1, . . . , ρ− 1. The polynomials εi(s) are
called the invariant polynomials of N(s).

Consider the rational matrix M(s) ∈ R[s]n1×n2 with normal rank ρ ≤ min(n1, n2). It can be
rewritten as

M(s) = N(s)
d(s) (2.37)

and transformed to
SN (s)
d(s) (2.38)

( with N(s) being the appropriate polynomial matrix, SN (s), its Smith-Form and d(s) ∈ R[s]),
the monic least common denominator of the elements of M(s).

Reducing the elements of SN (s)
d(s) to the lowest terms yields the Smith-McMillan-Form

SM (s) =


diag( ε1(s)

ψ1(s) ,
ε2(s)
ψ2(s) , . . . ,

ερ(s)
ψρ(s)) 0

0 0


 (2.39)
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of M(s). Herein εi(s) and ψi(s) are coprime monic polynomials where εi(s) divides εi+1(s) and
ψi+1(s) divides ψi(s) for i = 1, . . . , ρ− 1 and ψ1(s) = d(s).

With the help of the Smith-Form and the Smith-McMillan-Form, the various sets of zeros of
ΣLS can be defined as follows.

Definition 2.2.13 (Zeros).

• The transmission zeros are the zeros of the set of the polynomials εi(s) of the
Smith-McMillan-Form (2.39) of the transfer function G(s).

• The input decoupling zeros (IDZ), identical with the uncontrollable eigenval-
ues, are the zeros of the invariant polynomials of

P I(s) :=
[
sI −A B

]
. (2.40)

• The output decoupling zeros (ODZ), identical with the unobservable eigenval-
ues, are the zeros of the invariant polynomials of

PO(s) :=
[
sI −A
C

]
. (2.41)

• The input output decoupling zeros (IODZ), identical with the unobserv-
able and uncontrollable eigenvalues, are those output decoupling zeros that
disappear when the input decoupling zeros are eliminated.

• The decoupling zeros are that list of values that fulfill the criterion for the
IDZ or for the ODZ, reduced by the list of values that fulfill the criterion for
the IODZ, i. e.

DZ = [IDZ] + [ODZ]− [IODZ] . (2.42)

• The system zeros are the union of the transmission zeros and the decoupling
zeros, i. e. SZ = TZ ∪DZ.

• The invariant zeros are the zeros of the invariant polynomials of the system
matrix P (s).
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Since the transformation to the Smith-Form is unimodular, which leads to the rank of N(s)
and SN (s) being identical for all s, the invariant zeros can also be determined by

IZ = {s0 ∈ C |rankP (s0) < norm-rankP (s)} (2.43)

and the decoupling zeros by

IDZ = {s0 ∈ C |rankP I(s0) < norm-rankP I(s)} (2.44)

and
ODZ = {s0 ∈ C |rankPO(s0) < norm-rankPO(s)} . (2.45)

However, in these cases the multiplicity of the zeros cannot be determined.

Furthermore, the system zeros can be directly calculated by the following lemma of [Ros74].

Lemma 2.2.4. Let r be the rank of ΣLS . Consider the minors of P (s)

P (s){1,2,...,n,n+i1,n+i2,...,n+ir}
{1,2,...,n,n+j1,n+j2,...,n+jr} (2.46)

formed by the rows {1, 2, . . . , n, n+i1, n+i2, . . . , n+ir} and columns {1, 2, . . . , n, n+
j1, n+ j2, . . . , n+ jr}, where n+ i1, n+ i2, . . . , n+ ir and n+ j1, n+ j2, . . . , n+ jr

are subsets of size r. The system zeros may now be determined by the roots of the
monic greatest common divisor pSZ(s) of all these minors that do not vanish.

The various sets of zeros are visualized in Figure 2.2.

TZ

IODZIDZ ODZ

IZ

Figure 2.2: Diagram of the described sets the system zeros consist of. The labels of the borders
refer to the sets enclosed by the border. The labels of the areas refer to the set
delimited by the border of the labeled area.
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If the system (2.2) is non-degenerated and square, the invariant zeros are the roots of the
polynomial resulting from the determinant of the system matrix (2.3),

IZ = {s ∈ C|detP (s) = 0} . (2.47)

In this case, the set of invariant zeros consists of the non-intersecting sets of the transmission
zeros and decoupling zeros, i. e. IZ = TZ ∪DZ.

Moreover, if the system ΣLS is also minimal, there are no decoupling zeros and hence SZ =
IZ = TZ.

The zeros of (A,B,C) and the dual counterpart (Ā, B̄, C̄) are related. Considering transmission
zeros the Smith-McMillan-Form (2.39) of Ḡ(s) and of G(s) is identical since it is diagonal.
Hence, the transmission zeros of a system and its dual system are identical. In the same
manner, this holds true for the invariant zeros by considering the Smith-Form of P̄ (s) and
of P (s). For the decoupling zeros the case is different since these are related to observability
and controllability. Therefore, it holds that P̄ I(s) = P T

O(s) and P̄O(s) = P T
I (s). Considering

the Smith-Form of these matrices leads to the conclusion that the input decoupling zeros of a
system are the output decoupling zeros of its dual system and vice versa.

The topic of system zeros is comprehensively covered in [Sma06].

2.3 Zero Dynamics

Many linear systems are obtained by linearization of nonlinear equations resulting from physical
modelling. These linear systems may contain zeros as described in the previous section. This
raises the question whether nonlinear systems contain something similar to “nonlinear zeros”.
Therefore, in [BI84] the concept of zero dynamics was introduced, which is a generalization of
the concept of zeros of a linear system to nonlinear square systems. According to Isidori, refer
to [Isi13], the zero dynamics can be defined as follows:

Definition 2.3.1 (Zero Dynamics). The zero dynamics of a dynamical system
are identical with the dynamical system that characterizes the internal behavior
of the system once initial conditions and inputs are chosen in such a way as to
constrain the output to be identically zero.

These dynamics can be isolated from the nonlinear system (2.5) by a special transformation.
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α(z,η) + β(z,η)u
∫

. . .
∫

η̇ = ψ(z,η)

u żδ zδ z2 z1 = y

z

η

Figure 2.3: Scheme of a nonlinear SISO system in Byrnes-Isidori normal form.

This transformation splits up the system locally into external dynamics and internal dynamics.
The result of this transformation is called the Byrnes-Isidori normal form. The procedure is
strongly related to the control approach called Input-Output-Linearization [Isi95].

The Byrnes-Isidori normal form for a nonlinear SISO system is sketched in Figure 2.3. The top
row indicates the external dynamics containing a nonlinear algebraic equation of the input and
a chain of simple integrators leading to the output. In the bottom row the internal dynamics are
depicted, which consist of a nonlinear dynamical system. In order to obtain the Byrnes-Isidori
normal form, some preconditions must be met.

Suppose the system (2.5) is square, i. e. m = p, and has an equilibrium x0 at x = 0 and Ω is a
neighbourhood around x0. Let δ1, δ2, . . . , δp be integers with δi > 0 so that ∑p

i=1 δi ≤ n holds.
These are determined subsequently.

The system (2.5) can be locally transformed to

ż =




z2,1

z3,1
...

zδ1,1

α1(z,η) + β1(z,η)u
...
z2,p

z3,p
...

zδp,p

αp(z,η) + βp(z,η)u




(2.48) and
η̇ = ψ(z,η) (2.49)
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with z ∈ Rδ and η ∈ Rn−δ if there exists a transformation
[
z

η

]
= Φ(x) (2.50)

which is diffeomorph in Ω. The Byrnes-Isidori normal form splits the transformed system up
into the internal dynamics (2.49) and the external dynamics (2.48).

In order to determine the transformation (2.50), each output yi for i = 1, 2, . . . , p is derived.
For compact description, the Lie derivative L is used here, defined as

ẏi = ∂

∂x
hi(x)T ẋ = ∂

∂x
hi(x)T (f(x) + g(x)u) = Lfhi(x) + Lghi(x)u . (2.51)

The output is derived until the first time an input appears, i. e.

ẏi = Lfhi(x) + Lghi(x)︸ ︷︷ ︸
=0

u

ÿi = L2
fhi(x) + LfLghi(x)︸ ︷︷ ︸

=0

u

...
(δi−1)
yi = Lδi−1

f hi(x) + Lδi−2
f Lghi(x)
︸ ︷︷ ︸

=0

u

(δi)
yi = Lδif hi(x) + Lδi−1

f Lghi(x)
︸ ︷︷ ︸

6=0

u .

(2.52)

The number of differentiations needed for this is denoted by δi. This means that the Lie
derivative LjfLghi(x) = 0 for j = 0, 1, . . . , δi − 1.

With

a(x) =




Lδ1f h1(x)
Lδ2f h2(x)

...
L
δp
f hp(x)




(2.53)

and

D(x) =




Lδ1−1
f Lgh1(x)

Lδ2−1
f Lgh2(x)

...
L
δp−1
f Lghp(x)




(2.54)
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the derivatives
(δ)
y=

[
(δ1)
y1 . . .

(δp)
yp

]T
can be combined to

(r)
y= a(x) +D(x)u . (2.55)

As described by (2.49) and (2.48) the integer δ gives the dimensions of the internal and external
dynamics of a system. Since this is a fundamental property of dynamical systems, δ was named
"relative degree" and the following definition, see [Kha02, §13.2] or [Isi95, §5.2], was given.

Definition 2.3.2 (Relative Degree). In Ω the relative degree δi of an output
yi, j = 1, 2, . . . , p is the number of differentiations by time of this output that
have to be carried out until the first time any input uj , j = 1, 2, . . . ,m will
appear. If furthermore the matrix D(x) is non-singular in Ω, the vector δ :=[
δ1 δ2 . . . δp

]T
is called the vector relative degree 5 of the nonlinear system (2.5)

and the overall relative degree is given by the sum δ := ∑p
i=1 δi ≤ n.

Remark 2.3.1. It may happen that a system will not have a proper relative
degree. If for instance for some output yi there is no relation to any input uj , the
differentiation (2.52) may be carried out infinite times without occurrence of an
input in the equations. If the system has a relative degree δ it is limited by the
number of states n, see [Isi95, Proposition 5.1.2], and thus for each output yi by
δi ≤ n−p+1. Exceptions are systems with feed-through. There, the relative degree
associated with an output may have the value 0 and hence the maximum relative
degree of an output is independent of the number of outputs and thus δi ≤ n.

With (2.52) the first δ rows of the transformation (2.50) are given by

z =




z1,1

z2,1
...

zδ1,1
...
z1,p

z2,p
...

zδp,p




=




y1

ẏ1
...

y
(δ1−1)
1
...
yp

ẏp
...

y
(δp−1)
p




. (2.56)

5In [Isi85] this property was also called well-defined (vector) relative degree.
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In order to complete the transformation (2.50) further n− δ coordinates have to be found that
fulfill the diffeomorphism in Ω. This is done by searching n− δ linear independent coordinates
which are orthogonal on z. Therefore, the last n− δ rows Φi(x), i ∈ [δ + 1, n], of (2.50) have
to satisfy the partial differential equations

LgΦi(x) = 0 . (2.57)

A solution to this system of partial differential equations is not always possible to find due to
difficulties in the required symbolic computations [Jag95; Röb17]. A systematic approach to
find the transformation (2.50) has been published in [Röb17] for SISO systems.

By Definition 2.3.1 the zero dynamics can be isolated by setting all outputs yi and their δi
derivatives for i = 1, 2, . . . , p to zero, i. e. z = 0 and u = -D-1(x)a(x). This yields the zero
dynamics

η̇ = ψ(0,η) . (2.58)

2.4 Non-Minimum Phase Systems

Originally the term “minimum phase” was introduced by H. W. Bode: “Poles of the transfer
immittance may occasionally be found in the right half-plane, even for passive networks.
Transfer immittances having no poles in the right half-plane, however, have the special property
of being ’minimum phase shift’ functions.” [Bod45, p. 121]. In modern terminology, this equals
to transfer functions of linear systems that have no zeros in the right complex half plane. He
called the opposite “non-minimum phase” functions, meaning transfer functions that have zeros
in the right complex half-plane. For both cases, he assumed that the poles of the transfer
function are in the left complex half plane.

As mentioned in the introduction, non-minimum phase systems impose several limitations on
control. Control limitations for linear non-minimum phase systems, i. e. systems with right half
plane zeros, are described in [SP05]. First, such systems may show inverse response behavior
and in many other control applications this behavior is disapproved. Another negative property
of linear non-minimum phase systems is high gain instability. This means, by increasing the
feedback gain for achieving faster response behavior, the closed loop system tends to get unstable
since the poles are moving in the direction of the (right half plane) zeros. Related to this are
the bandwidth limitations for the achievable control performance. The frequency where tight

26



2 Preliminaries

control is possible are approximately either half of the frequency of the slowest zero or double
of the frequency of the fastest zero. All this leads to poor trajectory tracking behavior.

The definition of Bode was later extended by [BI84] and related to the zero dynamics of
nonlinear systems: “In analogy with the case of linear systems, which are traditionally said to
be ’minimum phase’ when all their transmission zeros have negative real part, nonlinear systems
whose zero dynamics have a globally stable equilibrium at z = 0 are also called minimum phase
systems.” [Isi95, p.436]. Since this definition is more general, and in absence of a concise term
for the stability of zero dynamics, the following definition by Isidori is used.

Definition 2.4.1 ((Non-)Minimum Phase). A system that has none or asymp-
totically stable zero dynamics is called minimum phase. Otherwise, the system is
called non-minimum phase.

As will be shown in Chapter 3, generally all zeros of a linear system are included in its zero
dynamics. The result is that if a linear system has non-negative zeros, it will be non-minimum
phase according to Definition 2.4.1. It should be mentioned, that although the use of the
term non-minimum phase in this case is common, it is controversial [Zei14]. In contrast to the
original definition by Bode, this definition is independent of the position of the poles when
considering linear systems. It makes also a precise distinction between zeros on the imaginary
axis and asymptotic stable zeros. Both extensions are very reasonable if you regard minimum
phase systems as systems that do not impose limitations on control due to the location of their
zeros. The position of the poles, as long as they are not decoupling zeros, is no obstacle for
control, since they can be arbitrarily placed by feedback. That zeros in 0 may be problematic
is demonstrated by the following example.

Example 2.4.1. Consider the system

ẋ =




0 0 0
1 0 0
0 0 0


x+




0
0
1


u, y =

[
0 1 1

]
x+ d , (2.59)

where d is an output disturbance. This system has 3 eigenvalues in 0. One is a
transmission pole and the remaining two are decoupling zeros. Both of the zeros are
IDZ, one of them is also ODZ, this means it is an IODZ. Now only the input-output
behavior is regarded, which is described by

G(s) = 1
s
. (2.60)
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For any initial state x1(0) 6= 0 the output will diverge. To “stabilize” the output,
one may conclude to use the controller

u = −y . (2.61)

As shown in the simulation depicted in Figure 2.4 this controller will succeed in
stabilizing the output. However, the internal states x2 and x3 will diverge, which

0 2 4 6 8 10

−1

0

1

Input

u
d

0 2 4 6 8 10

−2

0

2

Time (s)

States

x1
x2
x3

0 2 4 6 8 10
0

0.5

1

Output

y

Figure 2.4: Simulation of system (2.59) with controller (2.61), output disturbance d and initial
states x = [0.3 0 0]T .

certainly is a non-desirable behavior for any control loop. The reason for this are
the decoupling zeros in 0.
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3 Zero Dynamics of Linear Systems

The following chapter will cover two closely related concepts in control theory: the zeros of
linear systems and the zero dynamics of dynamical systems. Originally, the zero dynamics
were introduced to obtain a concept similar to the zeros of linear systems for nonlinear systems
as described in Section 2.3. In the following sections, it will be investigated to which extend
the concept of zero dynamics is applicable for linear systems and how it can be related to the
zeros.

Since nonlinear systems (2.5) are a generalization of linear systems (2.2), the concept of zero
dynamics should be transferable to linear systems. It is known that the linear approximation
of the zero dynamics coincides with the zero dynamics of the linear approximation around
an equilibrium of a nonlinear system [Isi95, § 4.3]. In the following introductory example
the Byrnes-Isidori normal form (BIN), refer to Section 2.3, will be applied to a square non-
degenerated linear system. It will be investigated how invariant zeros and the zero dynamics of
this system are related.

Example 3.0.1. Consider the linear system given by

A =




1 0 0 0 0
0 1 0 0 0
0 0 -4 0 0
0 0 0 -1 0
0 0 0 0 3



, B =




0 -1
-1 0
0 0
0 1
-1 -1



,

C =
[
1 0 1 0 0
0 1 1 0 1

]
.

(3.1)

Calculating the invariant zeros, as described in Subsection 2.2.4, yields one trans-
mission zero at 2, an input decoupling zero at -4 and one output decoupling zero
at -1. In order to get the BIN of the system, the relative degree of it has to be
determined. This is done by deriving each output until any input occurs for the
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first time in the equation. Deriving the output vector once yields

ẏ(t) =
[
1 0 -4 0 0
0 1 -4 0 3

]
x(t) +

[
0 -1
-2 -1

]

︸ ︷︷ ︸
=D

u(t) . (3.2)

This means that each output has relative degree 1. Since the matrix D is invertible,
the overall relative degree is 2. Therefore, the order of the external dynamics is
2 and the order of the internal dynamics has to be 3 since the system order is 5.
The size of the internal dynamics corresponds to the number of the invariant zeros.
As defined in Section 2.3, the transformation matrix will be constructed by C. In
order to complete this matrix, 3 additional linearly independent rows have to be
found. Since the internal dynamics should be independent of the input, they can
be constructed from the kernel of BT , i. e. vi ∈ kerBT | vi /∈ imC. This yields

Φ =




C

v1

v2

v3




=




1 0 1 0 0
0 1 1 0 1
-1 -1 0 0 1
1 0 0 1 0
0 0 1 0 0



. (3.3)

With this matrix the system can be transformed by Â = ΦAΦ−1, B̂ = ΦB and Ĉ =
CΦ−1 resulting in

.


z1

z2

η1

η2

η3




=




1 0 0 0 -5
1 2 1 0 -7
1 1 2 0 -2
2 0 0 -1 -2
0 0 0 0 -4




︸ ︷︷ ︸
=Â




z1

z2

η1

η2

η3




+




0 -1
-2 -1
0 0
0 0
0 0




︸ ︷︷ ︸
=B̂

u ,

y =
[
1 0 0 0 0
0 1 0 0 0

]

︸ ︷︷ ︸
=Ĉ




z1

z2

η1

η2

η3



.

(3.4)

Herein are zi the coordinates of the external dynamics and ηi the coordinates of
the internal dynamics. Finally, the internal dynamics will be separated to gain the
zero dynamics. This is done by solving the “zeroing the output problem”. The aim
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is to find a control law that guarantees y = 0 for all times. The relation between
input and output is given by

ẏ =
[
1 0 0 0 -5
1 2 1 0 -7

] [
z1

z2

]
+
[

0 -1
-2 -1

]
u . (3.5)

The requirement ẏ = 0 leads to the control law

u = −
[

0 -1
-2 -1

]-1 [
1 0 0 0 -5
1 2 1 0 -7

] [
z1

z2

]
. (3.6)

Insertion in the transformed system leads to the autonomous system
.



z1

z2

η1

η2

η3




=




0 0 0 0 0
0 0 0 0 0
1 1 2 0 -2
2 0 0 -1 -2
0 0 0 0 -4







z1

z2

η1

η2

η3




(3.7)

where the external dynamics are now independent of the internal dynamics and
hence the zero dynamics are isolated. The zero dynamics of the system are identified
by the marked submatrix. This submatrix describes the dynamics of the system
once all outputs are 0. As expected, the eigenvalues of it are the invariant zeros of
the system. Note, this part of the matrix is unchanged by the feedback law and
thus the zero dynamics can be determined directly from the BIN (3.4). Since the
transmission zero is positive, the system is non-minimum phase. In the considered
case, the problem of controlling such a system is apparent by the dependence of
the internal coordinates on the external coordinates. This means, even if the zero
dynamics are in the equilibrium, they may be excited and thus diverge.

The relation between the zero dynamics and the invariant zeros of a system was already
investigated for certain systems. Square minimal and non-degenerated SISO systems were
considered in the state space by [Isi95] and in the frequency domain in [IW13]. MIMO systems
were considered in [HL12] and in the framework of the “special coordinate basis” in [GS10].
However, the relation between the zeros and zero dynamics has not yet been investigated
for arbitrary linear systems. In this chapter, the application of the BIN to non-square and
non-minimal linear systems will be investigated as an extension of [Daa16], where the square
non-degenerated case was treated. This is mainly motivated by a presentation of Isidori where
he claims zero dynamics were not yet investigated for systems with more inputs than outputs
[Isi11]. Some approaches for the non-square case were already considered by [Pol03], mainly in
the differential algebraic context.
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Apart from the investigation of zero dynamics of linear systems by the Byrnes-Isidori normal
form, other normal forms were introduced, e. g. for linear square systems by [Mül09; IK15], for
linear square time-varying systems in [BI10] and for non-square linear systems in [Kho16].

In this chapter, the zero dynamics of general linear systems will be determined by a linear
version of the Byrnes-Isidori normal form. Therefore, first the relative degree of general linear
systems will be investigated. Concluding, the relation to the zeros of the system will be shown.

3.1 Relative Degree of Linear Systems

As already described, a precondition to obtain the Byrnes-Isidori normal form is the existence
of a relative degree of the considered system. A closer look will reveal that the method used
to determine a relative degree is strongly related to the problem of decoupling linear systems
considered by [FW67] and [Gil69]. The steps of determining the relative degree and the
decoupling matrix are identical. These approaches for decoupling control have been transferred
to non-linear systems by [Por70] and [Fre75]. These publications were possibly the foundation
for the Byrnes-Isidori normal form. For decoupling control as well as for the determination
of the zero dynamics by e. g. the BIN some kind of system inverse has to exist, namely D-1.
Thus, invertibility of a system is relevant for this kind of transformations. Consider a plant
that has several outputs. In order to steer each output independently, e. g. to zero, at least
as many inputs as outputs are required. If this is possible, the system is right invertible as
explained in the next section. Decoupling control is always feasible for right invertible systems
as demonstrated by [HH83] in frequency space and in the state space by considering a special
coordinate basis in [SS87]. Left inverse systems can be partially decoupled as shown in [Dwo11].
For the general case of linear systems, decoupling control was unified in [WA86]. In the context
of decoupling control the zeroing the output problem was already considered in [SP71].

By the similarity of the methods, it is apparent that, if decoupling control is possible, also the
transformation to BIN should be possible. One major difference between decoupling control
and the transformation to Byrnes-Isidori normal form is, that for decoupling a stable controller
is desirable, whereas the transformation to BIN is mainly a tool for analysis. For decoupling
control, this requires that the considered system has to be minimum phase. For analysis this is
obviously not a requirement. Decoupling control is an extensive issue with its own terminology
which will not be introduced here. Only the basic relations to the BIN will be referenced in
this section.
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As already mentioned, a requirement to transform a system to Byrnes-Isidori normal form is
that it possesses a (vector) relative degree as defined by Definition 2.3.2. The relative degree
is not a term that was introduced in the nonlinear control domain. For linear SISO systems
it is used to indicate the difference between the largest order of s in the nominator and the
largest order of s in the denominator of the transfer function G(s), also called “relative order”
[SP05]. Generally, the relative degree defines the order of the external dynamics. The external
dynamics characterize the system part that is fully controllable and observable. Hence, the
eigenvalues associated with it are simultaneously controllable and observable [Mit77]. Since
these are relevant properties for linear systems and it is mandatory for the Byrnes-Isidori
normal form, the relative degree for arbitrary linear systems will be discussed in this section.

In the next subsection, it is shown how the relative degree can be obtained for right invertible
systems. This result will be transferred to left invertible systems in order to define the relative
degree for general linear systems. Not all systems have innately a relative degree. Therefore, a
method is given on how to extend these systems to obtain a relative degree for them. Since
linear systems are considered, it will be shown, how to determine the relative degree in the
frequency domain. With the relative degree, it is then possible to state the linear form of the
BIN and finally some illustrating examples are given.

3.1.1 Right Invertible Systems

In order to transfer a system to BIN, its relative degree, see Definition 2.3.2, has to be known.
For right invertible systems, the mapping from the inputs uj to the yi is surjective. This
means that any output has to be influenced by at least one input. Therefore, identically to the
nonlinear approach (2.52), for each output yi an integer 1 ≤ δi ≤ n can be found by deriving
the output δi times

(δi)
yi = ciA

δix+ ciAδi−1Bu (3.8)

with ciAδi−1B 6= 0 and ciAkB = 0 for k < δi − 1.

The method of determination of the relative degree (3.8) shows another interpretation of the
relative degree. For every output, it defines the minimal number of integration steps from
the input. This means the (vector) relative degree equals the minimal number of integrations
between the inputs and outputs. This will be illustrated by the following example:
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Example 3.1.1. Consider the right invertible system defined by the triple

A =




0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0



, B =




1 0 0
0 0 0
0 1 0
0 0 1
0 0 0



,

C =
[
0 1 0 0 0
0 0 0 0 1

]
.

(3.9)

Deriving the output vector yields

ẏ(t) =
[
1 0 0 0 0
0 0 0 1 0

]
x(t) +

[
0 0 0
0 0 0

]
u(t)

ÿ(t) =
[
0 0 0 0 0
0 0 1 0 0

]
x(t) +

[
1 0 0
0 0 1

]

︸ ︷︷ ︸
=D

u(t) .
(3.10)

According to (3.8), the relative degree δ1,2 for the first and second output are
identically 2. By the original definition of the relative degree, Definition 2.3.2, the
matrix D has to be non-singular. This is only possible for square matrices. For
right invertible systems with m > p D is never square. That means, in the general
case this matrix has to be of maximal rank, as required for decoupling [SS87].
Hence, the relative degree of the considered system is δ = 4. This is also visible
from the graph Gsys of the system depicted in Figure 3.1. Herein the relative degree

u1

u2

u3

x1 x2

x3

x4

x5

y1

y2

Figure 3.1: Gsys of the system (3.9).

is directly visible from the minimum count of state vertices between the outputs
and their nearest input.
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3.1.2 Left Invertible and Degenerated Systems

For left invertible systems, the issue of determining the relative degree is not as straight forward
as for right invertible systems. In general, left invertible but not right invertible systems contain
more outputs than inputs. These systems are injective, which is a problem if a relative degree
has to be determined. The injectivity involves that in general there is no unique relationship
between the outputs and the inputs. In some cases, even an output may not have any relation
to an input. This is, however, a precondition for the determination of the relative degree by
its definition for square systems. Hence, in general it is not possible to determine the (vector)
relative degree of a left inverse system in the way described before.

The problem of determination of the relative degree is demonstrated by the next example.

Example 3.1.2. The dual system of Example 3.1.1 is given by (Ā = AT , B̄ =
BT , C̄ = CT ). Its graph is shown in Figure 3.2. Deriving the outputs yields

ẏ(t) =




1 0 0 0 0
0 0 0 1 0
0 0 1 0 0


x(t) +




0 0
0 0
0 0


u(t)

ÿ(t) =




0 0 0 0 0
0 0 1 0 0
0 0 0 0 0


x(t) +




1 0
0 0
0 1


u(t)

...
y 2(t) =

[
0 0 0 0 0

]
x(t) +

[
0 1

]
u(t) .

(3.11)

This leads to δ1,3 = 2 for y1,3(t) and to δ2 = 3 for y2(t). The decoupling matrix is
then given by

D =




1 0
0 1
0 1


 . (3.12)

It has maximal rank, however, the summation of δ1, δ2, δ3 would lead to a relative
degree of δ = 7. This is not possible since r ≤ δ ≤ n and the order of the system n

is only 5.

In order to solve this problem, consider again the duality to Example 3.1.1. There, the overall
relative degree equals 4, since the minimal number of integrators is given by two paths from the
two outputs to two inputs, omitting one of the inputs, see Figure 3.1. However, in the actual
example there are three paths as seen by Figure 3.2. The difference is that in Example 3.1.1 the
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u1

u2

x1 x2

x3

x4

x5

y1

y2

y3

Figure 3.2: Gsys of the dual system of (3.9).

paths do not share any vertices, i. e. they are vertex-disjoint. As will be shown in Section 4.2,
the minimal number of vertex disjoint paths from the inputs to the outputs is directly related
to the rank of a system. In order to solve the problem of relative degree for left invertible
systems, the rank of the system can be considered. For left or right invertible systems the rank
equals the minimum count of inputs or outputs, i. e. r = min(m, p) (2.27). In general, the rank
of a system determines the maximum number of outputs that can be decoupled, see e. g. [SS87].
As it holds for the right inverse systems, where the relative degree equals the minimal number
of integrators between inputs and outputs, a similar approach is possible for left inverse systems
considering only the r outputs with the minimal relative degree δi.

With this in mind, it is possible to determine a relative degree for general linear systems. As
by (3.8) for each output yi a δi is determined by

(ki)
yi = ciA

kix+ ciAki−1Bu (3.13)

with ciAki−1B = 0 for ki < δi ≤ n and ciAδi−1B 6= 0. ki and hence δi is limited by the
systems order n because of the Cayley-Hamilton Theorem, see e. g. [Ros70]. This means that
if ciAki−1B = 0 for ki = n, also all higher derivatives ki > n of the considered output will
not be influenced by any input. These special outputs do not have a relative degree δi. Let p̃
be the number of outputs with relative degrees δ1, δ2, . . . , δp̃. By reordering the outputs, the
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input-output relation can be written as



(δ1)
y1
...

(δp̃)
yp̃

yp̃+1
...
yp




=




c1A
δ1

...
cp̃A

δp̃

cp̃+1
...
cp




x+




c1A
δ1−1

...
cp̃A

δp̃−1

0
...
0




B

︸ ︷︷ ︸
=D

u . (3.14)

The system rank r will be used for the determination of the relative degree as argued before.
Hence, the second criterion for the relative degree of a system, that the matrix D has to be of
full rank, can be changed to the precondition, that the rank of the decoupling matrix has to
be identical with the system rank. This extension of the relative degree is summarized by the
following definition.

Definition 3.1.1 (Relative Degree). A linear system ΣLS of rank r has relative
degree δ if there exists a minimal sum of the relatives degrees δi (3.13) of r outputs
such that the matrix D̃, constructed by the lines of D (3.14) that correspond to
the r selected outputs, has rank r, i. e.

δ := min
{δ1,δ2,...,δp̃}

∑

j

δj | j ∈ J ⊆ {1, 2, . . . , p̃} ∧ |J | = r ∧ rank D̃ = r . (3.15)

Herein, the reduced decoupling matrix D̃ is given by

D̃ :=




cj1A
δj1−1

...
cjrA

δjr−1


B . (3.16)

The vector relative degree δ of the system is given by the vector of the relative
degrees of the r selected outputs {yj1 , yj2 , . . . , yjr}.

If a relative degree according to this definition exists, the system can be split up in external
and internal dynamics similarly to nonlinear systems as described in Section 2.3. The external
dynamics can be decoupled by the feedback controller

u = −D̃+







cj1A
δj1

...
cjrA

δjr


x− ϑ


 (3.17)
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with D̃+ the pseudo inverse of D̃ and a new input ϑ. With this feedback controller, r outputs
can be driven independently.

Remark 3.1.1. It may happen that there is more than one possible choice of r
outputs that lead to a minimal relative degree. Since the selection of the outputs that
form the relative degree determines the external dynamics and internal dynamics,
the transformation is not unique.

Considering again Example 3.1.2, the relative degree of this system can now be determined.
The rank of the system is 2. This means, two of three outputs have to be selected. It is obvious
from the decoupling matrix that the first output has to be used. In order to minimize the
overall relative degree, the third output is also selected since δ2 > δ3. This selection leads to
a reduced decoupling matrix of rank 2 and, thus, to a relative degree δ = δ1 + δ3 = 4 of the
example system. Note, this is actually the same relative degree as the dual right invertible
system possesses.

Remark 3.1.2. In general, it would be also possible to define the relative degree
such that the external dynamics are as large as possible by finding the maximum
sum of the relative degrees of r outputs under the conditions of Definition 3.1.1.
However, this would lead to different values of the relative degree for a system and
its dual counterpart; compare the examples. By choosing always the minimum sum,
the relative degree is constant regarding duality.

Definition 3.1.1 is also valid for degenerated systems as demonstrated next.

Example 3.1.3. Consider the degenerated system (2.30) from the preliminaries.
Derivation of the outputs yields

ẏ(t) =
[
1 1 1
1 0 1

]
x(t) +

[
1 0
0 0

]
u(t)

ÿ2(t) =
[
2 1 2

]
x(t) +

[
1 0

]
u(t)

(3.18)

This means the relative degrees for the first and second output are δ1 = 1 and
δ2 = 2. Considering the decoupling matrix

D =
[
1 0
1 0

]
(3.19)

this leads to an overall relative degree of δ = δ1 = 1 by Definition 3.1.1.
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3.1.3 Systems without Relative Degree

Not every linear system has (vector) relative degree since its decoupling matrix may not have
the same rank as the system itself. In the decoupling control domain, such systems are called to
have “weak inherent coupling” [Gil69]. As it is possible to decouple these systems by dynamic
feedback, it is possible to extend a system such that it gets a relative degree. This is done by
dynamic extension [Isi95, Sec. 5.4]. In the general nonlinear case described there, this may fail
if the decoupling matrix D(x) (2.54) does not have constant rank in the neighbourhood of the
considered equilibrium. In the linear case, this is no issue since the rank of D is always constant.
Although this method is stated for square systems, only small modifications are necessary to
adapt it for the case of Definition 3.1.1. This is possible since only r inputs and r outputs have
to be considered, i. e. a square subsystem, in order to obtain a reduced decoupling matrix of rank
r. By dynamic extension, the static feedback law (3.17) is extended to a dynamical feedback
by introducing additional integrators on the inputs of the plant. This leads to additional state
variables in the system description. The aim is to adjust the individual relative degrees of the
outputs such that the (reduced) decoupling matrix gets the desired rank. This can be done
by the dynamic extension algorithm [Isi95, Sec. 5.4], which is directly applicable for linear
systems.

Algorithm 3.1.1. Suppose a linear system ΣLS of rank r has a decoupling matrix
D with rankD < r. The associated outputs have relative degrees δ1 . . . δp̃. Let,
after possibly reordering of the rows and hence the outputs, di be the i-th row of
D, bj the j-th column of B and ki some constants.

1. Find two integers i0 and j0 such that

a) for some integer 1 < l ≤ p̃

dl =
l−1∑

i=1
kidi (3.20)

holds with ki0 6= 0 and

b)

di0,j0 = ci0A
δi0−1bj0 6= 0 , (3.21)

i. e. a nonzero element in the i0-th row of D.
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Then a new system can be constructed by

ẋ = Ax+ B̃ũ+ 1
di0,j0

bj0


ξ −

m∑

j=1
j 6=j0

di0,juj




ξ̇ = ϑ ,

(3.22)

where B̃ is B without the j0-th column, ũ is u without the j0-th entry and ϑ
is a new input.

2. Determine the decoupling matrix for the new system. If it is now possible to
find a D̃ with rank D̃ = r according to Definition 3.1.1, you are done.

3. Else, repeat with the new system until the following stopping condition, [Isi95,
Prop. 5.4.3], is met. Provided that r0 = rankD < r and δ1, . . . , δr0 are the
relative degrees that belong to r0 independent rows of D. Let δ∗ := min{δj :
r0 < j ≤ p̃}. If possible, at most (n − δ1 − . . . − δr0 − δ∗)r0 iterations of
the algorithm have to be carried out to increment the rank of D. Else the
algorithm failed and it is not possible to find a relative degree for the system
by dynamic extension.1

Another algorithm for linear systems is given in [WA86].

The application of Algorithm 3.1.1 is demonstrated by the next example.

Example 3.1.4. Consider the system defined by the triple

A =




0 1 0 0
-2 -3 0 0
0 0 0 1
0 0 -2 -3



, B =




0 0
1 0
0 0
0 1



,

C =




1 3 1 0
1 3 2 0
1 3 3 0


 .

(3.23)

1Note, as described in e. g. [WA86], it is always possible to find a dynamic extension for right invertible systems,
i. e. if r = p.
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This system has rank r = 2. Deriving the output vector yields

ẏ(t) =




−6 −8 0 1
−6 −8 0 2
−6 −8 0 3


x(t) +




3 0
3 0
3 0




︸ ︷︷ ︸
=D

u(t) . (3.24)

Obviously, the decoupling matrix D is not of rank 2. Applying one iteration of
Algorithm 3.1.1 with i0 = 1 and j0 = 1 yields the new system

Â =




0 1 0 0 0
−2 −3 0 0 1

3
0 0 0 1 0
0 0 −2 −3 0
0 0 0 0 0



, B̂ =




0 0
0 0
0 0
0 1
1 0



, (3.25)

with Ĉ = C. Deriving the output vector now yields

ẏ(t) =




−6 −8 0 1 1
−6 −8 0 2 1
−6 −8 0 3 1


x(t) +




0 0
0 0
0 0


u(t)

ÿ(t) =




16 18 −2 −3 −8
3

16 18 −4 −6 −8
3

16 18 −6 −9 −8
3


x(t) +




1 1
1 2
1 3




︸ ︷︷ ︸
=D

u(t) .
(3.26)

Herein, the decoupling matrix D is of rank 2, and the system has relative degree
δ = 4 with one additional state variable.

3.1.4 Frequency Domain Approach

The relative degrees of the outputs can alternatively be determined directly fromG(s). Consider
gi(s) the i-th row of G(s) belonging to the output yi. Every row is given by a vector of rational
functions gi(s) =

[
di,1(s)
ni,1(s)

di,2(s)
ni,2(s) . . .

di,m(s)
ni,m(s)

]
where di,j(s) are the denominators and ni,j(s)

are the nominators. They are polynomials in s. The formalism deg di,j(s) or degni,j(s) gives
the degree, i. e. the highest order of s, of these polynomials. Now the relative degree of each
output yi can be determined by

δi = min
1≤j≤m

deg di,j(s)− degni,j(s) , (3.27)
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i. e. the relative degree for an output is given by the minimal difference of the denominator
and nominator degree in the entries of the corresponding row in G(s). If a row has only zero
entries, the associated output has no relative degree. This method is equivalent to (3.13).

With possibly reordering, the relative degrees of all outputs can be combined to a relative
degree matrix

Sδ = diag(sδ1 , . . . , sδp̃ , 1, . . . , 1) , (3.28)

which is a diagonal matrix of s to the power of the relative degree of each output and 1 for the
outputs that do not have a relative degree.

Now the decoupling matrix D can be directly calculated from the transfer function matrix
G(s).

Theorem 3.1.1. For the decoupling matrix of a linear system

D = lim
s→∞

SδG(s) (3.29)

holds.

This is a well-known result from decoupling control, compare e. g. [WA86], however, by consid-
ering the state space approach an alternative proof can be derived.

Proof. In order to prove this theorem, first the relation between the frequency domain repre-
sentation, G(s), and the state space relation (3.14) has to be established. Each line of (3.14)

(δi)
yi = ciA

δix+ ciAδi−1Bu (3.30)

with ciAkB = 0 for k < δi − 1 that corresponds to an output that has a relative degree is
Laplace-transformed to

sδiYi(s) = ciA
δiX(s) + ciAδi−1BU(s) . (3.31)

The Laplace state variable vector X(s) resolves to X(s) = (sI −A)−1BU(s) and thus can be
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replaced. Now the following conversions can be made:

sδiYi(s) = ciA
δi(sI −A)−1BU(s) + ciAδi−1BU(s)

= ci
(
Aδi(sI −A)−1 +Aδi−1

)
BU(s)

= ci
(
Aδi +Aδi−1(sI −A)

)
(sI −A)−1BU(s)

= ci
(
sAδi−1

)
(sI −A)−1BU(s) (3.32)

= ci
(
sAδi−1 − sδiI + sδiI

)
(sI −A)−1BU(s)

= ci
(
sAδi−1 − sδiI

)
(sI −A)−1B

︸ ︷︷ ︸
(a)
= 0

U(s) + sδici(sI −A)−1B︸ ︷︷ ︸
(b)
= sδiGi(s)

U(s) (3.33)

The equality (a) holds because it can be reformulated to

ci
(
sAδi−1 − sδiI

)
(sI −A)−1B =

sci
(
Aδi−1 − sδi−1I

)
(sI −A)−1B =

sci (A− sI)
(
Aδi−2 + sAδi−3 + . . .+ sδi−3A+ sδi−2I

)
(sI −A)−1B .

(3.34)

In the last row
(
Aδi−1 − sδi−1I

)
is factorized. Since A commutates with itself and I it follows:

sci
(
Aδi−2 + sAδi−3 + . . .+ sδi−3A+ sδi−2I

)
(A− sI) (sI −A)−1B =

sciA
δi−2B + s2ciA

δi−3B + . . .+ sδi−2ciAB + sδi−1ciB = 0
(3.35)

since ciAkB = 0 for k < δi − 1.

The second equality (b) holds because

Yi(s) = Gi(s)U(s) = ci(sI −A)−1BU(s) . (3.36)
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By combining the rows of (3.33) for all outputs, the following relation for (3.14) is given:

SδY (s) =




c1A
δ1

...
cp̃A

δp̃

cp̃+1
...
cp




X(s) +




c1A
δ1−1

...
cp̃A

δp̃−1

0
...
0




B

︸ ︷︷ ︸
=D

U(s)

=




c1A
δ1−1

...
cp̃A

δp̃−1

0
...
0




sI(sI −A)−1B

︸ ︷︷ ︸
=Γ(s)

U(s) = SδG(s)U(s)

(3.37)

with Γ(s) from (3.32) and proper reordering the outputs. Finally

lim
s→∞

Γ(s) = D (3.38)

since lims→∞ sI(sI −A)−1 = I.

3.1.5 Byrnes-Isidori Normal Form for Linear Systems

By Definition 3.1.1, if present, a relative degree for general linear systems can be determined.
With this, it is possible to state a linear version of the Byrnes-Isidori normal form, refer to
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Section 2.3. This yields the external dynamics of the form

ż =




z2,1

z3,1
...

zδj1 ,1

α1z + κ1η + β1u
...
z2,r

z3,r
...

zδjr ,r

αrz + κrη + βru




(3.39)

and the internal dynamics of the form

η̇ = Ψz + Λη(+Θ̃u) . (3.40)

The vectors αi, κi and βi are of size 1× δ, 1× n− δ and 1×m respectively, and the matrices
Ψ, Λ and Θ̃ are respectively of dimensions n − δ × δ, n − δ × n − δ and n − δ ×m . The
term in parentheses, (+Θ̃u), is sometimes present when there exists no transformation, or no
such transformation is chosen, that makes the internal dynamics independent of the input as
described next.

The transformation to the linear Byrnes-Isidori normal form is achieved by the linear form of
the transformation (2.50) [

z

η

]
= Φx . (3.41)

The first δ rows of the transformation matrix Φ are constructed by

Φ1 =




cj1
cj1A
...

cj1A
δj1−1

...
cjr
cjrA
...

cjrA
δjr−1




. (3.42)
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The remaining n− δ rows of Φ have to be chosen such that the coordinate transformation is
complete.

Remark 3.1.3. In order to make the internal dynamics (3.40) independent of
the inputs, the remaining n− δ rows of Φ should be constructed by further n− δ
linearly independent row vectors that are part of kernel of BT , i. e.

Φ2 =




v1

v2
...

vn−δ




with vi ∈ kerBT | vi /∈ im Φ1 , (3.43)

since then Φ2B = 0. However, this is not always possible because Φ1 is of dimension
δ × n and δ ≥ r. By construction δ − r rows of Φ1 are element of kerBT . It is
dim kerBT = n−m since rankB = m was given as a precondition. That means,
for systems with r < m, there are m − r rows of the internal dynamics that are
dependent on u. This is always true for non-square right inverse systems since
r = p < m. Hence, if necessary to complete the transformation, the third part of Φ
is given by m− r linearly independent row vectors

Φ3 =




w1

w2
...

wm−r




with wi ∈ ker
[
ΦT

1 ΦT
2
]

(3.44)

and finally

Φ =




Φ1

(Φ3)
Φ2


 . (3.45)

This order is chosen such that the lower part is independent of the inputs.

With

Ξ =




α1

α2
...
αr



, K =




κ1

κ2
...
κr




and Θ =




β1
β2
...
βr




(3.46)

the derivatives
(δ)
y=

[
(δj1 )
yj1 . . .

(δjr )
yjr

]T
can be combined to

(δ)
y= Ξz +Kη + Θu . (3.47)
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Finally, by setting z = 0 the linear zero dynamics is given by

η̇ = Λη . (3.48)

In the case where it is not possible to make the internal dynamics independent of the inputs,
the zero dynamics is given by

η̇ = Λη − Θ̃Θ+Kη = Λ̃η , (3.49)

by inserting the feedback law
uz = −Θ+Kη . (3.50)

where Θ+ is a pseudo inverse of Θ.

Remark 3.1.4. What actually happens by the state feedback in transformed
coordinates (3.50) or in original coordinates (3.17), is that as many poles as possible
are moved to the positions of the zeros of the system. Hence, the system is made
maximal unobservable [Sas99, p.398][Isi95, p.166].

However, the zero dynamics of a right inverse system and the dual zero dynamics of a left
inverse system do not have the same properties. Definition 2.3.1 says that initial conditions and
inputs have to be determined such that the output is identically zero in order to obtain the zero
dynamics. In general, this is not possible for left inverse systems that have more outputs than
inputs. Nevertheless, it is possible to minimize the dimensions of the output space, i. e. under
suitable control dim Y = p −m holds. This is obvious from the linear algebra since for left
inverse systems dim imG(s) = m applies. So only m directions of the outputs y(t) can be
influenced by the inputs u(t) leaving p−m dimensions uncontrolled. This is analogously valid
for degenerated systems.

A definition that incorporates this issue is the also common definition by Schwarz.

Definition 3.1.2 (Zero Dynamics [Sch91]). The dynamics of a system (2.5) that
(additionally) can be made unobservable by state feedback are called zero dynamics.

In the case of right inverse systems, this definition is equivalent to Definition 2.3.1.

3.1.6 Examples

In order to illustrate the BIN for linear systems some examples are given next.
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Example 3.1.5. Consider the left invertible system

A =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 3 0 0 0
0 0 0 -4 0 0
0 0 0 0 -1 0
0 0 0 0 0 3




, B =




0 -1
-1 0
1 -1
0 0
0 1
-1 -1




,

C =




1 0 0 1 0 0
0 1 0 1 0 1
0 0 1 0 0 1


 .

(3.51)

The derivation of the outputs

ẏ = CAx+CBu =




1 0 0 −4 0 0
0 1 0 −4 0 3
0 0 3 0 0 3


x+




0 −1
−2 −1
0 −2


u (3.52)

yields a relative degree of δ = 2 considering the first two outputs. The feedback
law to decouple the system is given by

uz = −
[ 1

2 −1
2

−1 0

] [
1 0 0 −4 0 0
0 1 0 −4 0 3

]
x (3.53)

and the transformation to BIN is

Φ =




C

v1

v2

v3




=




1 0 0 1 0 0
0 1 0 1 0 1
0 0 1 0 0 1
−1 −1 0 0 0 1
1 0 0 0 1 0
0 0 0 1 0 0




. (3.54)

This leads to internal dynamics

η̇ =




3 0 0 10
0 2 0 −2
0 0 −1 −2
0 0 0 −4



η , (3.55)

which are independent of u and thus are identical with the zero dynamics of the
system.
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In order to show the differences in the zero dynamics the dual system of this example is
considered.

Example 3.1.6. The dual system of Example 3.1.5 is given by the triple (Ā =
AT , B̄ = CT , C̄ = BT ). Hence, the system is right invertible. The derivation of
the outputs

ẏ = C̄Āx+ C̄B̄u =
[

0 −1 3 0 0 −3
−1 0 −3 0 −1 −3

]
x+

[
0 −2 0
−1 −1 −2

]
u . (3.56)

Here, all outputs are used to determine the relative degree. It is identical to that
of the right invertible system, i. e. δ = 2. The feedback that keeps the outputs at
zero is

uz = −




1
10 −1

5
−1

2 0
1
5 −2

5




[
0 −1 3 0 0 −3
−1 0 −3 0 −1 −3

]
x . (3.57)

The transformation to BIN is given by

Φ =




C̄

w1

v1

v2




=




0 −1 1 0 0 −1
−1 0 −1 0 1 −1
1 0 0 0 0 0
0 −1 −1 0 0 1
0 0 0 0 1 0
−1 −1 0 1 0 0




. (3.58)

Note, in this case it is not possible to make the internal dynamics independent of
the input because n− δ = 4 but dim kerBT = 3. Therefore, the third row of Φ is
given by w1 and thus the first coordinate of the internal dynamics is influenced by
u. Hence for the isolation of the zero dynamics

η̇ =




7
5

1
10 −4

5 0
0 2 0 0
0 0 −1 0
−5 5

2 0 −4



η (3.59)

the feedback law uz has to be inserted.

Finally, an example for a degenerated system is given.
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Example 3.1.7. Consider the system given by the triple

A =




1 0 1 0 0
1 1 0 0 0
1 1 1 0 0
0 0 0 7 0
0 0 0 0 8



, B =




0 0
0 1
1 0
1 0
0 0



,

C =
[
0 0 1 0 1
1 0 0 0 0

]
.

(3.60)

Derivation of the outputs yields

ẏ(t) =
[
1 1 1 0 8
1 0 1 0 0

]
x(t) +

[
1 0
0 0

]
u(t)

ÿ2(t) =
[
2 1 2 0 0

]
x(t) +

[
1 0

]
u(t) .

(3.61)

The system has rank r = 1. Thus the output with the least relative degree is
selected, i. e. the first output. This leads to the system relative degree of δ = δ1 = 1.
The feedback law is given by

uz = −
[
1 1 1 0 8
0 0 0 0 0

]
x (3.62)

and the transformation to BIN is

Φ =




C1

w1

v1

v2

v3




=




0 0 1 0 1
0 1 0 0 0
0 0 0 0 1
0 0 −1 1 0
1 0 0 0 0



. (3.63)

This leads to internal dynamics

η̇ =




1 0 0 1
0 8 0 0
−1 −6 7 −1
0 −1 0 1



η , (3.64)

which are independent of u since the second line of uz vanishes and thus the internal
dynamics are identical with the zero dynamics of the system.
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3.2 Zeros and Zero dynamics

A property of (invariant) zeros is that if s0 is a zero of a linear system, the input

u(t) = u0e
s0t (3.65)

for certain initial conditions, u0 and x0, will not produce any output [MK76]. This is very
similar to the definition of the zero dynamics (Definition 2.3.1), where a feedback and initial
conditions have to be found such that the output stays at zero. The question of how these two
issues are related will be answered for arbitrary linear systems in this section. First the relation
to the invariant zeros is studied. Then, the relation to the decoupling zeros is considered.
Finally, the results are combined to state the relation to the system zeros.

3.2.1 Relation to Invariant Zeros

The relation to the zero dynamics for invariant zeros of square non-degenerated systems is
shown by [HL12]. In this subsection, the method used there will be generalized to non-square
and degenerated systems. This is done by proving the following lemma.

Lemma 3.2.1. The invariant zeros of a linear system with relative degree are
contained in the set of eigenvalues of its zero dynamics.

Proof. Suppose, a system (2.2) is of vector relative degree δ < n and has invariant zeros, which
are, according to (2.43), the solutions to s for

rank
[
sI −A -B
C 0

]
< norm-rankP (s) ≤ n+ r . (3.66)

With the BIN (3.39),(3.40) and (3.46), a feedback law

u = Fx = Θ+(−Ξz −Kη) (3.67)

is defined. Next, each component of the system is transformed by (3.41) to

Â = ΦAΦ−1, F̂ = FΦ−1, B̂ = ΦB and Ĉ = CΦ−1 (3.68)
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with

B̂ =
[
B1

B2

]
(3.69)

and
Ĉ =

[
C1 C2

]
. (3.70)

For square invertible systems
B2 = 0, C2 = 0 (3.71)

holds. For non-square systems right invertible systems

B2 =
[

0
Θ̃

]
, C2 = 0 , (3.72)

and for non-square systems left invertible systems

B2 = 0, C2 =
[
C̃ 0

]
, C̃ ∈ Rp×p−m (3.73)

holds, see Remark 3.1.3.

Inserting the feedback law (3.67) yields the transformed system
[
H 0
Ψ̃ Λ̃

]
= Â+ B̂F̂ . (3.74)

with Ψ̃ = Ψ in the left invertible case and Ψ̃ = Ψ − Θ̃Θ+Ξ in the general case. Note that
the triple (B1,H,C1) is observable as well as controllable, since it represents the external
dynamics. Due to the structure of the transformed system, the sole solutions to s for

rank
[
sI − Â− B̂F̂ -B̂

Ĉ 0

]
= rank




sI −H 0 -B1

−Ψ̃ sI − Λ̃ -B2

C1 C2 0


 < n+ r (3.75)

are in a subset of the eigenvalues of Λ̃ which are the eigenvalues of the zero dynamics of the
considered system. By the equivalence

[
sI − Â− B̂F̂ -B̂

Ĉ 0

]
=
[
Φ 0
0 I

] [
sI −A -B
C 0

] [
I 0
F I

] [
Φ−1 0

0 I

]
(3.76)

these solutions for s coincide with the invariant zeros of the system (3.66).
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In the case of non-square or degenerated systems, the number of eigenvalues of Λ̃ is generally
larger than the number of zeros. The reason is that the number of inputs or outputs is larger
than the system rank. The eigenvalues of Λ̃ that are not invariant zeros are those values for s
where

rank
[
−Ψ̃ sI − Λ̃ -B2

]
= norm-rank

[
−Ψ̃ sI − Λ̃ -B2

]
(3.77)

or

rank
[
sI − Λ̃
C2

]
= norm-rank

[
sI − Λ̃
C2

]
. (3.78)

The lemma is demonstrated by the next example.

Example 3.2.1. Consider again Example 3.1.5. This system has one transmission
zero at 2, one input decoupling zero at -4, and one output decoupling zero at -1.
The zeros at 2 and -1 are also invariant zeros. The eigenvalues of its zero dynamics
are s1 = 3, s2 = 2, s3 = −1 and s4 = −4. Hence, the invariant zeros are included.
The eigenvalues s1 and s4 are not in the set of invariant zeros because they do not
cause a drop in the column rank of (3.75), i. e. they are no solution of

rank
[
sI − Λ̃
C2

]
= rank




s− 3 0 0 −10
0 s− 2 0 2
0 0 s+ 1 2
0 0 0 s+ 4
0 0 0 0
0 0 0 0
1 0 0 0




< 4 (3.79)

with

CΦ−1 =
[
C1 C2

]
=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


 . (3.80)

In the square non-degenerated case, the set of system zeros consists of the invariant zeros. In
the non-square case the set of system zeros is larger than the set of invariant zeros because there
are additional decoupling zeros [MK76]. The here discussed method can be easily extended
to show that input decoupling zeros are always part of the zero dynamics by considering the
equivalence transformation

[
sI − Â− B̂F̂ -B̂

]
=
[
Φ
] [
sI −A -B

] [I 0
F I

] [
Φ−1 0

0 I

]
. (3.81)
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However, it is not possible to formulate a similar equivalence transformation for output
decoupling zeros because, to find the zero dynamics, feedback through the input is necessary.
A method that shows that the decoupling zeros are generally part of the zero dynamics is
described in the next subsection.

3.2.2 Relation to Decoupling Zeros and System Zeros

In order to complete the set of system zeros, the coincidence of the decoupling zeros and the
eigenvalues of the zero dynamics of systems with unobservable or uncontrollable eigenvalues is
shown.

Lemma 3.2.2. The decoupling zeros of a linear system with relative degree are
contained in the set of eigenvalues of its zero dynamics.

Proof. Assume system (2.2) is of order n = ncō + nco + nc̄o + nc̄ō and has only decoupling zeros.
Applying the Kalman decomposition [Kal62] yields

.


xcō

xco

xc̄o

xc̄ō




=




Acō A12 A13 A14

0 Aco A23 0
0 0 Ac̄o 0
0 0 A43 Ac̄ō







xcō

xco

xc̄o

xc̄ō




+




Bcō

Bco

0
0



u (3.82a)

y =
[
0 Cco C c̄o 0

] [
xcō xco xc̄o xc̄ō

]T
(3.82b)

with xcō ∈ Rncō , xco ∈ Rnco , xc̄o ∈ Rnc̄o , xc̄ō ∈ Rnc̄ō and u ∈ Rm,y ∈ Rp. The pair (Acō,Bcō)
is only controllable so the eigenvalues of Acō are ODZ. The pair (Ac̄o,C c̄o) is only observable
so the eigenvalues of Ac̄o are IDZ. The subsystem Ac̄ō is neither controllable nor observable
so its eigenvalues are IODZ and the triple (Aco,Bco,Cco) is both observable and controllable.
Furthermore, since the triple (Aco,Bco,Cco) has no transmission zeros its vector relative degree
is δco = nco = δ.

The differentiation of the outputs y until the first occurrence of any component of the input
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vector u yields

y = Ccoxco +C c̄oxc̄o

(1)
y = CcoAcoxco +CcoBco︸ ︷︷ ︸

=0

u+


Cco A23︸︷︷︸

=Λ(1)

+C c̄oAc̄o


 xc̄o

...
(δ−1)
y = CcoA

[δ−1]
co xco +CcoA

[δ−2]
co Bco︸ ︷︷ ︸
=0

u+
(
CcoΛ(δ−1) +C c̄oA

[δ−1]
c̄o

)
xc̄o

(δ)
y = CcoA

[δ]
coxco +CcoA

[δ−1]
co Bco︸ ︷︷ ︸
6=0

u+
(
CcoΛ(δ) +C c̄oA

[δ]
c̄o

)
xc̄o

(3.83)

where
Λ(δ) =

(
A[δ]
coA23 +A[δ−1]

co A23A
[1]
c̄o + . . .+A[1]

coA23A
[δ−1]
c̄o +A23A

[δ]
c̄o

)
, (3.84)

(δ)
y=

[
(δ1)
y1 . . .

(δr)
yr

]T
and the abbreviation C∗A[δ]

∗ =




c∗,1A
δ1
∗

...
c∗,rA

δr
∗


 is a collocation of the row

vectors belonging to each output y1 . . . yr. From (3.83) the first δ rows for the transformation
matrix Φ are determined and to complete the coordinate transformation the remaining n− δ
rows are constructed as simple as possible, resulting in

Φ =




0 Cco C c̄o 0
0 CcoA

[1]
co

(
CcoΛ(1) +C c̄oA

[1]
c̄o

)
0

...
...

...
...

0 CcoA
[δ−1]
co

(
CcoΛ(δ−1) +C c̄oA

[δ−1]
c̄o

)
0

I 0 0 0
0 0 I 0
0 0 0 I




. (3.85)

Transforming the system (3.82) with (3.85) and setting z = 0 the internal dynamics (3.40)
results in the zero dynamics

η̇ =




Acō A# A14

0 Ac̄o 0
0 A43 Ac̄ō


η , (3.86)

with A# being a mixed matrix, which has no influence on the eigenvalues of (3.86) due to the
block matrix structure of (3.86). Comparing (3.86) with (3.82) shows that the eigenvalues of
the zero dynamics are exactly the decoupling zeros.
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Finally, an example is given, which also incorporates transmission zeros.

Example 3.2.2. Consider the following system in Kalman normal form (3.82)

A =




−4 1 2 3 4 5 6
0 1 0 0 0 4 0
0 0 1 0 0 3 0
0 0 0 3 0 2 0
0 0 0 0 3 1 0
0 0 0 0 0 −1 0
0 0 0 0 0 1 7




, B =




0 0 1
0 −1 0
−1 0 0
1 −1 0
−1 −1 0
0 0 0
0 0 0




,

C =




0 1 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 0



,

(3.87)

with p = 4 outputs and m = 3 inputs. It possesses the unobservable eigenvalue
−4, the uncontrollable eigenvalue −1 and the simultaneously unobservable and
uncontrollable eigenvalue 7. Additionally, this system has one transmission zero at
2.

The transformation to BIN can be determined to

Φ =




0 1 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 1 0 0
0 −1 1 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




. (3.88)

Transforming the system leads to internal dynamics, which are independent of u

η̇ =




3 0 0 −5 0
1 2 0 1 0
5
2

1
2 −4 5 6

0 0 0 −1 0
0 0 0 1 7



η . (3.89)

Hence, these dynamics are identical with the zero dynamics. Due to its block
triangular form, its eigenvalues can be read from the diagonal. It contains the
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3 Zero Dynamics of Linear Systems

IODZ at 7, the IDZ at −1, the ODZ at −4 and the TZ at 2. Additionally, there is
one eigenvalue at 3 due to the asymmetric number of inputs and outputs.

Remark 3.2.1. The additional eigenvalues, which appear in the zero dynamics
for non-square systems, are well-known from decoupling control, refer to [SS87, §4],
[KM76, §5] or [Var80]. For systems with different number of inputs and outputs,
they appear in the “squaring up” or “squaring down” problem. These additional
“zeros” are not invariant, since their value can be assigned by the feedback law.

As indicated by the example, both sets, the set of transmission zeros and the set of decoupling
zeros, are contained in the zero dynamics. Since these sets are non-intersecting, it is possible to
correlate the following from Lemma 3.2.1 and Lemma 3.2.2.

Corollary 3.2.1. The system zeros of a linear system with relative degree are
contained in the set of eigenvalues of its zero dynamics.

Further, in the case of square non-degenerated systems with relative degree, the eigenvalues of
the zero dynamics and invariant zeros are coincident as investigated in [Daa16].

Theorem 3.2.1. The invariant zeros of a linear square non-degenerated system
(2.2) (with relative degree) coincide with the eigenvalues of its zero dynamics.

Considering Corollary 3.2.1 and Definition 2.4.1 the following definition seems reasonable.

Definition 3.2.1 (Non-Minimum Phase). A linear systems is non-minimum
phase if it has at least one non-negative zero.

By the isolation of the zero dynamics, it is possible to determine all zeros of a square non-
degenerated system. Thus, besides the Smith-McMillan-Form Definition 2.2.13, the rank criteria
(2.43) or the characteristic polynomial of P (s) (2.47), a further method is available to determine
the zeros of the system. All these methods are based on matrix calculations. In the next
chapter a method for the graph-theoretic determination of zeros and poles of linear systems is
introduced.

57



4 Graph-Theoretic Determination of Zeros and Poles

4 Graph-Theoretic Determination of Zeros and
Poles

The poles and zeros of a linear system ΣLS can be determined by certain polynomials as
introduced in the preliminaries. The poles are given by the roots of the characteristic polyno-
mial (2.33). Since square non-degenerated systems only contain invariant zeros, they can be
determined by (2.47). In all other cases, Lemma 2.2.4 yields polynomials for the determination
of the system zeros. By graph-theoretic tools, it is possible to obtain these polynomials as
well.

4.1 Characteristic Polynomial

The characteristic polynomial of a matrix can be determined from its associated graph. This
was first investigated by [Kön16] and much later reformulated by [Che67; Pon66]. Similar to
[Che76, Theorem 3.21] a theorem for the determination of the characteristic polynomial of a
linear system ΣLS can be specified.

Consider a linear system ΣLS and its corresponding system graph Gsys(V, E ,W).

Theorem 4.1.1. The coefficient αk of (2.33) is determined by the cycle families
of width k within the weighted system graph Gsys(V, E ,W).

1. If no such cycle family of width k exists, the coefficient αk is equal to zero.

2. If only one cycle family of width k exists, αk equals the product of the weights
of their edges multiplied by (-1)d, where d is the number of cycles the family
consists of.

3. If there is more than one cycle family of width k, αk equals the sum of the
corresponding weight products of the cycle families.
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4 Graph-Theoretic Determination of Zeros and Poles

In order to prove this the following two lemmas are necessary. The coefficients αk of χ(λ) (2.33)
can be calculated by the following lemma [Mir55, Theorem 7.1.2]:

Lemma 4.1.1. For 0 ≤ k < n, the coefficient αk of χ(λ) (2.33) is equal to (-1)k

times the sum of all k-rowed principal minors of A, i. e.

αk = (-1)k
∑

|`|=k
A`
` , (4.1)

where ` := {i1, i2, . . . , ik} are all subsets of the row or column indices [1, n] of size
|`| = k and A`

` is a (principal) minor of A considering its ` rows and columns.

By [Che76] it is possible to obtain the determinant of a square matrix (adjacency matrix) A by
the cycle families of its related graph.

Lemma 4.1.2 (See Theorem A2.1 in [Rei88] or originally Theorem 3.1 in [Che76]).
If M ∈ Rn×n is the adjacency matrix of a graph G(V, E ,W), each summand
m1,t1m2,t2 . . .mn,tn of (2.19) corresponds to a cycle family touching all vertices of
G(V, E ,W). The value of the summand is given by the product of the weights of
the edges in the cycle family. If the cycle family consists of d disjoint cycles, the
sign factor of the summand is given by (-1)n−d.

Proof of Theorem 4.1.1. By Lemma 4.1.2, each determinant of a k× k submatrix of M having
same row and column indices and containing the diagonal elements of M , i. e. each principal
minor, can be determined by cycle families of size k. By Lemma 4.1.1, the value of αk is given
by the sum of the principal minors. This means, no specific cycle families have to be considered
but the sum of the product of the weights of cycle families of same size k. The sign factors of
both lemmas combine to

(-1)k−d(-1)k = (-1)d . (4.2)

Since the input vertices ui ∈ U are only start-vertices of edges and the output vertices yi ∈ Y
are only end-vertices of edges, they will not be contained in any cycle family of Gsys(V, E ,W).
Thus, the input and output vertices can be removed from Gsys(V, E ,W) yielding a graph whose
adjacency matrix is A.

The application of this theorem will be demonstrated by an example.
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4 Graph-Theoretic Determination of Zeros and Poles

Example 4.1.1. Consider the system

ẋ =




a1,1 0 a1,3

a2,1 a2,2 0
a3,1 0 a3,3


x+




b1

0
0


u, y =

[
c1 0 c3

]
x (4.3)

and its corresponding system graph depicted in Figure 4.1. Applying Theorem 4.1.1

u

x1

x2 x3

y

b1

a1,1

a2,2 a3,3

a1,3

a3,1
a2,3

c1

c3

Figure 4.1: Gsys(V, E ,W) of the system (4.3).

on the graph in Figure 4.1 yields Table 4.1. From this table the characteristic

cycle families Ci
∑∏W ∈ Ci

α1 (x1), (x2), (x3) −a1,1 − a2,2 − a3,3

α2 (x1 � x3), (x1, x2) −a1,3a3,1 + a1,1a2,2

(x2, x3), (x3, x1) +a2,2a3,3 + a3,3a1,1

α3 (x1 � x3, x2), (x1, x2, x3) a1,3a3,1a2,2 − a1,1a2,2a3,3

Table 4.1: Cycle families and their corresponding values for the coefficients of (2.33).

polynomial of its A-matrix

λ3 − (a1,1 + a2,2 + a3,3)λ2

+ (a1,1a2,2 + a2,2a3,3 + a3,3a1,1 − a1,3a3,1)λ
+ a1,3a3,1a2,2 − a1,1a2,2a3,3 = det (λI −A) (4.4)

is obtained.
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4 Graph-Theoretic Determination of Zeros and Poles

4.2 Structural System Rank

For the graph-theoretic determination of the zeros, the first step is to decide whether a system
is square and non-degenerated. In this case, the determination of the zeros is much simpler
compared to the other cases as will be seen in the subsequent sections. The squareness of a
system is obvious by the number of inputs and outputs, respectively, the number of input vertices
and output vertices. In order to examine whether a system is degenerated, the rank criterion
(2.27) has to be checked. Therefore, a property from the structural analysis is anticipated.
There are some approaches to determine the rank of a system by graph-theoretic methods. By
[Rei88, Definition 32.9] the “structural norm rank” is defined as follows.

Definition 4.2.1 (Structural Norm Rank). The structural norm rank of the
transfer matrix G(s) for a class of systems given by the set of numerical realizations
(A,B,C) of Σ~1 is defined as

max
(A,B,C)∈Σ~

max
s∈C

G(s) . (4.5)

This rank can be determined by [Rei88, Theorem 32.7] using a concept called “feedback families”,
which for this work will be defined more narrowly as described in the next section. In order to
determine the rank of a system graph-theoretically without using feedback families or structural
systems Σ~, a tailored version of the rank criterion in [Mur09, Remark 2.1.13] is given.

Definition 4.2.2 (Structural System Rank). The structural system rank of a
linear system, denoted by s-rank ΣLS , is given by the maximal number of vertex
disjoint simple paths between the input vertices and output vertices, called input-
output paths, in its system graph Gsys.

The structural rank of a linear system is related to its rank (2.27) as given by the next theorem.

Theorem 4.2.1. The structural system rank of a system ΣLS is an upper bound
of the normal rank of its transfer matrix, i. e.

norm-rankG(s) ≤ s-rank ΣLS . (4.6)
1See Definition 5.1.1.
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Proof. Consider the submatrix

P ik
jk

:= P (s)1,2,...,n,n+i1,n+i2,...,n+ik
1,2,...,n,n+j1,n+j2,...,n+jk (4.7)

of P (s) where ik := n + i1, n + i2, . . . , n + ik and jk := n + j1, n + j2, . . . , n + jk are some
subsets of size k of, respectively, the row and the column indices greater n of P (s). Let G

P
ik
jk

be the corresponding graph for which P ik
jk

is the adjacency matrix.

The equality term-rankP i0
j0

= n always holds. Therefore, with Lemma 4.1.2 the term rank of
P (s) is given by the largest k, denoted by k̃, for that a cycle family in G

P
i
k̃

j
k̃

exists that touches

all vertices plus n, i. e. term-rankP (s) = k̃ + n. This cycle family touches exactly k̃ vertices
that each relates to a combination of an input ui and an output yj , to which are referred as
input-output vertices.

The system graph Gsys can be transformed to the graph G
P

i
k̃

j
k̃

by merging the i1, i2, . . . , ik̃ input

vertices and j1, j2, . . . , jk̃ output vertices, deleting the remaining input and output vertices and
their connecting edges, changing the signs of the weights belonging to A and B and adding
self-loops of weight s to the state vertices. Hence, the cycles which touch the input-output
vertices in G

P
i
k̃

j
k̃

become in Gsys to k̃ vertex disjoint simple paths from the input vertices to the

output vertices. Since P ik̃
jk̃

is the largest submatrix with a cycle family touching all vertices,
there will be no further simple paths from the input vertices to the output vertices in Gsys.
Hence, the structural rank of ΣLS equals k̃.

Since norm-rankP (s) = norm-rankG(s) + n and norm-rankP (s) ≤ term-rankP (s) by
Lemma 2.2.2 and Lemma 2.2.1, respectively, the proof is complete.

Parts of this proof are taken from [CDP90; CDP91]. An alternative proof is provided in [Wey02,
Bew. 5.5].

Remark 4.2.1. In cases where the structural system rank rs of ΣLS is greater than
its normal rank r, numerical cancellations in some minors of size rs of P (s) occur.
The reason is that the rank of a system is given by norm-rankG(s) whereas the
cycle families, as shown in the proof, are related to the term-rankP (s). However,
as will be shown in Subsection 5.4.1, in almost all cases the structural system rank
rs equals the rank of the system r. The relationship between the structural system
rank and the structural norm rank will also be explained there.

62



4 Graph-Theoretic Determination of Zeros and Poles

4.3 Invariant Zeros Polynomial

Consider a system ΣLS with the restriction that the number of outputs equals the number
of inputs and it has full rank, i. e. m = p = r. According to (2.47) the invariant zeros of this
system can be determined by the roots of the invariant zeros polynomial

pIZ(s) : = detP (s)

= pms
n−m + pm+1s

n−m−1 + . . .+ pn−1s+ pn =
n∑

k=m
pks

n−k . (4.8)

In [Rei88, Chapter 31] a method is introduced, on how to obtain the coefficients of the
polynomial (4.8) from the graph-theoretic representation of a SISO minimal system. This
is done by introducing a feedback in the system graph Gsys, which then yields the feedback
graph of a system Gfb. The following definition applies for (square non-degenerated) MIMO
systems.

Definition 4.3.1 (Feedback Graph, Feedback Cycle Family). The feedback
graph Gfb(V, E ,W) is constructed by inserting feedback edges in the system graph
Gsys(V, E ,W) of ΣLS . The feedback edges connect the inputs ui to the outputs yi
by the feedback law

u = -Iy , (4.9)

with I an r × r identity matrix. A feedback cycle family is a cycle family that
contains exactly r feedback edges.

Remark 4.3.1. Since invariant zeros, as the name indicates, are invariant in
respect to feedback [MK76], the feedback law for the generation of a feedback graph
may be chosen nearly arbitrary. The only condition that must be met for a feedback
law u = Ky is

detK 6= 0 , (4.10)

i. e.K is non-singular. This guarantees that the system is not altered by information
loss due to a non-injective mapping from y to u.

With feedback cycle families, it is possible to determine the coefficients of (4.8) by the next
theorem.
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4 Graph-Theoretic Determination of Zeros and Poles

Theorem 4.3.1. The coefficient pk of (4.8) is determined by the feedback cycle
families of width k within the feedback graph Gfb(V, E ,W).

1. If no such cycle family of width k exists, the coefficient pk is equal to zero.

2. Otherwise, if only one cycle family of width k exists, pk equals the product of
the weights of their edges multiplied by (-1)d, where d is the number of cycles
the family consists of.

3. If there is more than one cycle family of width k, pk equals the sum of the
corresponding weight products of the cycle families.

Proof. Similar to Lemma 4.1.1 it is possible to expand the determinant of P (s) to

det
[
sI −A -B
C 0

]
=

sn−m
∑

im

∑

...<im

. . .
∑

i2<...

∑

i1<i2

[
-A -B
C 0

]{i1,i2,...,imn+1,n+2,...,n+m}

{i1,i2,...,imn+1,n+2,...,n+m}
+

sn−m−1 ∑

im+1

∑

im<im+1

. . .
∑

i2<...

∑

i1<i2

[
-A -B
C 0

]{i1,i2,...,im,im+1,n+1,n+2,...,n+m}

{i1,i2,...,im,im+1,n+1,n+2,...,n+m}
+

. . .+

s
∑

in−1

∑

...<in−1

. . .
∑

i2<...

∑

i1<i2

[
-A -B
C 0

]{i1,i2,...,im,...,in−1,n+1,n+2,...,n+m}

{i1,i2,...,im,...,in−1,n+1,n+2,...,n+m}
+

det
[
-A -B
C 0

]
(4.11)

with ij ∈ [1, n] and j = 1, 2, . . . ,m, . . . , n− 1. Herein ∑i1<i2 is the sum over all i1 under the
condition that i1 has lower value than i2. Comparison of (4.11) with (4.8) and reordering yields
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pk =
∑

ik

. . .
∑

i1<i2

[
-A -B
C 0

]{i1,...,ik,n+1,...,n+m}

{i1,...,ik,n+1,...,n+m}

=
∑

ik

. . .
∑

i1<i2




I 0 0
0 -A -B
0 C 0




{1,...m,i1,...,ik,n+m+1,...,n+2m}

{1,...,m,i1,...,ik,n+m+1,...,n+2m}

=
∑

ik

. . .
∑

i1<i2




0 -C 0
0 -A -B
I 0 0




{1,...,m,i1,...,ik,n+m+1,...,n+2m}

{1,...,m,i1,...,ik,n+m+1,...,n+2m}

=
∑

ik

. . .
∑

i1<i2

(−1)k+2m




0 C 0
0 A B

-I 0 0




{1,...,m,i1,...,ik,n+m+1,...,n+2m}

{1,...,m,i1,...,ik,n+m+1,...,n+2m}

.

(4.12)

Since 


0 C 0
0 A B

-I 0 0


 (4.13)

is the adjacency matrix of the feedback graph Gfb(V, E ,W), by Lemma 4.1.2 it is now possible
to calculate the minors




0 C 0
0 A B

-I 0 0




{1,...,m,i1,...,ik,n+m+1,...,n+2m}

{1,...,m,i1,...,ik,n+m+1,...,n+2m}

(4.14)

from the weights of the feedback cycle families in Gfb(V, E ,W) of width k. Assuming the cycle
families consist of d disjoint cycles, the sign factor is (-1)k+2m−d. Hence the overall sign factor
becomes

(-1)k+2m(-1)k+2m−d = (-1)d . (4.15)

The application of Theorem 4.3.1 is demonstrated by the following example.

Example 4.3.1. As an example system a loading bridge is considered, see Fig-
ure 4.2. The plant consist of three parts. A cart that runs on rails in the roof of a
factory hall. A rod for attaching a load is connected to it by a pivot joint. At the
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bottom of the rod, the load is mounted. The rod is considered massless and rigid.
All masses are considered as point masses. The cart is driven by a controllable
force F and has mass m2. Its horizontal position on the rail is given by s2. The rod
has the length l and its deviation is given by the angle θ. The load has mass m1

and its horizontal position is measured by s1. The system is subject to gravity g.

l

m1
s1

m2
F

s2

θ g

Figure 4.2: Sketch of the loading bridge.

The plant can be modelled by the equations

(m1 +m2)s̈2 +m1l(θ̈ cos θ − θ̇2 sin θ) = F

s̈2 cos θ + lθ̈ − g sin θ = 0
s1 = s2 − sin θl .

(4.16)

This system has four state variables x =
[
s2 ṡ2 θ θ̇

]T
, the force on the cart

as input, i. e. u = F , and the horizontal position of the load as output, i. e. y =
s1. A linearization around the equilibrium x̄ =

[
0 0 0 0

]T
yields the linear
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parameterized system

ẋ =




0 1 0 0
0 0 m1

m2
g 0

0 0 0 1
0 0 m1+m2

−m2
g
l 0



x+




0
1
m2

0
−1
m2l



u (4.17)

y =
[
1 0 1 0

]
x . (4.18)

The feedback graph of (4.18) is depicted in Figure 4.3. Herein is a1 = m1
m2
g,

u

x1 x2 x3 x4

y

b1 b2

a2

1
a11

1 1

-1

Figure 4.3: Gfb of the loading bridge.

a2 = m1+m2
−m2

g
l , b1 = 1

m2
and b2 = − 1

m2l
. Applying Theorem 4.3.1 on the Gfb in in

Figure 4.3 yields Table 4.2. From this table the invariant zeros polynomial

cycle families Ci
∑∏W ∈ Ci

p1 − −

p2 (u → x2 → x1 → y), (u → x4 → x3 → y) b1 + b2

p3 − −

p4 (u → x4 → x3 → x2 → x1 → y), b2a1 − b1a2

(u → x2 → x1 → y, x3 � x4)

Table 4.2: Cycle families and their corresponding values for the coefficients of (4.8).

pIZ(s) = (b1 + b2)s2 + b2a1 − b1a2 (4.19)

is obtained.
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4.4 System Zeros Polynomials

If the considered system is non-square or degenerated, Theorem 4.3.1 is not directly applicable.
However, it is still possible to determine the system zeros of such a system by graph-theoretic
methods.

Suppose now that the system ΣLS has rank r = norm-rankG(s) and consider its graph
Gsys(V, E ,W).

Theorem 4.4.1. For each distinct unordered combination ωi of r input and r

output vertices, which are contained in r vertex disjoint simple paths from input to
output in Gsys(V, E ,W), a polynomial

pωi(s) := prs
n−r + pr+1s

n−r−1 + . . .+ pn−1s+ pn =
n∑

k=r
pks

n−k (4.20)

can be obtained by constructing a feedback graph Gωifb(V, E ,W) and applying
Theorem 4.3.1 on it. The system zeros and their multiplicity are determined by the
roots of the monic greatest common divisor pSZ(s) of the polynomials (4.20) of all
combinations ωi.

Proof. Each distinct unordered combination ωi of r input and r output vertices yields, by
deleting all other input and output vertices and their connecting edges that are not part of the
considered combination, a square non-degenerated system. Hence Theorem 4.3.1 can be used
to obtain the polynomials pωi(s). As shown by the proof of Theorem 4.2.1 each combination ωi
refers to a minor

pωi(s) = P (s){1,2,...,n,n+i1,n+i2,...,n+ir}
{1,2,...,n,n+j1,n+j2,...,n+jr} . (4.21)

Thus by Lemma 2.2.4, the system zeros of ΣLS can be determined by the roots of the monic
greatest common divisor pSZ(s) of the polynomials of all combinations ωi.

Remark 4.4.1. For Theorem 4.4.1 the knowledge of the rank of ΣLS is a precon-
dition. However, r can be estimated by the structural system rank of ΣLS , which is
an upper bound. In the case that s-rank ΣLS > g-rankG(s), all polynomials pωi(s)
are identical zero. By reducing the estimated rank r̃i+1 := r̃i − 1, r̃0 := s-rank ΣLS ,
until at least one of the polynomials pωi(s) doesn’t vanish, the rank of ΣLS r and
the system zeros can be determined.
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The application of Theorem 4.4.1 is shown by the next example.

Example 4.4.1. Consider the system

ẋ =




0 0 0 0
4 −1 5 3
0 0 −3 0
0 0 0 1



x+




0
−1
−1
2



u, y =

[
1 0 0 −1
0 0 2 1

]
x (4.22)

and its feedback graphs depicted in Figure 4.4. In this graph the output y1 is

u x1x2

x3

x4

y1 y2-1

-1

2

-1

-3

1

4

5

3

1

-1

2

1

-1

-1

Gω1
fb

Gω2
fb

Figure 4.4: Gω1
fb and Gω2

fb of (4.22).

reachable by one simple path and the output y2 is reachable by two simple paths
from the input u. However, since there is only one input vertex, the maximal number
of vertex disjoint simple paths from input to output is one, i. e. its structural system
rank equals one, which is also the rank of the system r = 1. Since both outputs
are contained in a simple path there are two possible combinations for the inputs
and the outputs: (u, y1) and (u, y2). By Theorem 4.4.1, this means that there will
be two polynomials, pω1(s) and pω2(s), for the determination of the system zeros.
The results for the first combination ω1 are given in Table 4.3. The corresponding
polynomial is

pω1(s) = −2s3 − 8s2 − 6s . (4.23)
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cycle families Ci
∑∏W ∈ Ci

p1 (u → x4 → y1) -2

p2 (u → x4 → y1, x2), (u → x4 → y1, x3) -8

p3 (u → x4 → y1, x2, x3) -6

p4 − −

Table 4.3: Coefficients of pω1(s) obtained from Gω1
fb .

For the second combination ω1 the results are collected in Table 4.4. This yields

cycle families Ci
∑∏W ∈ Ci

p1 (u → x4 → y2), (u → x3 → y2) 0

p2 (u → x3 → y2, x2), (u → x3 → y2, x4) -8
(u → x4 → y2, x2), (u → x4 → y2, x3)

p3 (u → x3 → y2, x2, x4), (u → x4 → y2, x2, x3) -8

p4 − −

Table 4.4: Coefficients of pω2(s) obtained from Gω2
fb .

pω2(s) = −8s2 − 8s (4.24)

for the second polynomial. The monic greatest common divisor polynomial of pω1(s)
and pω2(s) is

pSZ(s) = s2 + s , (4.25)

which has the roots s1 = 0 and s2 = −1. These are the system zeros of the system
(4.22).
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5 Structural Approach to Non-Minimum
Phase Systems

In this chapter, the methods for the determination of zeros and poles developed in the previous
chapter will be used to analyze systems by their structure. The structure of a system is given
by the mutual dependency between the state variables, the inputs and the outputs. This means
the connections and effects in a system are considered only by their quality and not by their
quantity. For instance, it is only considered if the parts in a mechanical system are connected
or that acceleration, speed and distance of these parts are related. The structure that describes
a dynamical system is sometimes called a “structural system” or “structured system”.

Many system properties that can be investigated structurally are well-known from numerical
analysis. Some information about a system is lost if only its structure is considered. Therefore, it
is not always possible to give a precise answer whether the considered property holds numerically.
However, the advantage of the structural analysis is that if a property holds structurally, it
holds for almost all systems of the same structure.

There are several publications considering zeros of structural systems. First, the number of
zeros a system possesses was investigated. In [Söt79] and [Rei82] it was shown that the number
of transmission zeros and decoupling zeros is given by the structure of a system. In [Sva86]
this was extended to the number of invariant zeros for non-degenerated square systems. Much
later, in [Wou99] criteria were given to determine the number of invariant zeros for non-square
systems. Furthermore, it was investigated if the position of zeros and poles is determined by the
structure of a system. In [HCD99] it was shown that for structural systems the transmission
zeros are either fixed at 0 or arbitrary located dependent on the numerical values. This was
extended to the invariant zeros in [WCD03]. It is well-known, that the position of the zeros and
poles determines the stability of the system and the zero dynamics. Indirectly, this relation
was used to determine by its structure if a system can be stable provided that specific numeric
values are chosen [Bel13].
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A similar approach will be followed in this chapter. The results of Chapter 4 are transferred
to structural systems. This leads to sufficient conditions to determine if a system is not
asymptotically stable or non-minimum phase by only considering its structure. Parts of the
presented results were published in [DSS16a] and [DSS16c].

First, the terms “structural system” and “structural property” are defined. With these, it
will be possible to state a theorem on structurally non-minimum phase systems. This will
give a sufficient condition for the numerical realization of a system with this structure being
non-minimum phase in almost all cases. Subsequently, it is investigated how this property can
be modified so that it holds in all cases numerically. This will lead to properties, known as
strong-structural, which will hold in all cases of a numerical realization of a structural system. In
this context, the property “strong-structurally non-minimum phase” will be stated. Concluding,
some extensions are discussed. First, a criterion for “strong-structurally not asymptotically
stable” is given. In cases where the structural approach fails, an extension to signed systems
is developed, where, besides the structure, also the signs of the dependencies between the
state variables, inputs and outputs are considered. Finally, the applicability of the structural
properties to nonlinear systems is discussed.

5.1 Structural Properties

The structure of a system is described by the mutual dependency of the state variables xi, the
inputs ui and the outputs yi. That means, it is a “yes or no” criterion if e. g. a state variable
xi depends on another state variable xk or an input uj . The two subsequent definitions are
adopted from [Rei88, Definition 12.1 and 12.2].

Definition 5.1.1 (Structural System). For a set of linear systems ẋi = Aixi +
Biui, yi = Cixi with the same number of state variables, inputs and outputs, their
common structure can be defined by the structural system, Σ~ : ẋ = A~x+B~u,
y = C~x. An element in the structure matrices, A~,B~ and C~ is zero, denoted
by 0, if the element at the same position is identically zero respectively for all
Ai,Bi and Ci. Otherwise, this element is nonzero, denoted by ~, if the element
at the same position is nonzero and independent respectively for almost all Ai,Bi

and Ci. Systems have an identical structure, if their states, inputs and outputs
have identical dependencies of each other. Such systems are called structurally
equivalent.
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The terms “nonzero” and “independent” will be explained in detail by an example in Section 5.3.
“Almost all” means all except of a set of measure zero, see “almost everywhere” in [Hal74].

In control engineering two types of ΣLS appear regularly. If the model of the plant, which
should be controlled, is generated by system identification methods using measurements, the
result is one or a set of numerical matrices (Ai,Bi,Ci). If, in contrast, the model of the plant is
derived from physical equations, the result is a parametrized system (A[µ],B[µ],C[µ]). Both
types can be transferred to a structural system Σ~ as described by Definition 5.1.1.

This structural system can be investigated by structural methods as mentioned before. The
properties that can be found using these methods are common to all numerical realizations
of the structural system. Such properties are called structural properties and the following
definition is given.

Definition 5.1.2 (Structural Property). A structural property of a system is a
property of a class of systems that are structurally equivalent. For this class the
property under investigation holds numerically for almost all admissible numerical
realizations.

According to [Rei88, Def. 12.1], ”a numerically given [system (A,B,C)] is called an admissible
numerical realization with respect to [(A~,B~,C~)], if it can be obtained by fixing all nonzero
entries of [(A~,B~,C~)] at some particular values.”

In order to construct a structural graph G~fb of a system or a class of systems, the first step is
to create a structural system Σ~ according to Definition 5.1.1. Then by Definition 2.1.1 the
structural graph G~fb is generated. The connection to the graph-theoretic approach is immediate.
The unweighted graph Gsys(V, E) of system ΣLS reveals the structure of the system, since the
edges in the graph coincide with the nonzero entries in the matrices A, B and C. Thus, if the
unweighted graph Gsys(V, E) complies with Definition 5.1.1,

G~sys = Gsys(V, E) (5.1)

holds. From this point of view it is easy to conclude that systems that are structurally equivalent
have the same unweighted graph Gsys(V, E). Hence, structural properties can be analyzed using
the unweighted graph Gsys(V, E) and a structural property is valid for all systems that have the
same unweighted graph.
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5.2 Structurally Non-Minimum Phase Systems

The determination of the invariant zeros for non-degenerated square systems is generally less
complex compared to the case of non-square or degenerated systems. As explained in Chapter 4
for non-degenerated square systems the invariant zeros polynomial is given by a determinant
whereas in the general case several minors have to be considered. This is also the case for
the structural approach. Thus, it is an advantage to check structurally the squareness and
degeneracy of a system. The squareness of a system is obvious since it depends only on the
number of input vertices and output vertices in Gsys. In order to determine the degeneracy of a
system its rank has to be known. In Section 4.2 a rank criterion, the structural system rank,
was already introduced. Since this criterion is independent of the actual value of the edges
in Gsys or respectively entries in the matrices of ΣLS , but relies on the structure of system,
it is actually a structural property. This will be investigated in detail in Subsection 5.4.1.
Nevertheless, the following corollary of Theorem 5.4.1 is anticipated to decide whether a system
is structurally degenerated.

Corollary 5.2.1. A system ΣLS is structurally non-degenerated if s-rank Σ~ =
min(m, p) holds. Otherwise, it is structurally degenerated.

5.2.1 Square Structurally Non-Degenerated Systems

The stability of a polynomial, i. e. the position of its roots, is usually checked by the Routh-
Hurwitz criterion as explained in Subsection 2.2.3. Therefore, the plan is to find a criterion to
check the stability of the invariant zeros polynomial (4.8) without knowing numeric values. The
necessary condition for stability is given by Lemma 2.2.3. By the structural approach it is not
possible to determine the numerical values of the coefficients but their existence can be checked.
That means, if some coefficient of a polynomial misses, it is at least not asymptotically stable.
Hence, in order to determine if a system is structurally non-minimum phase the following
theorem can be applied considering its structural feedback graph G~fb.

Theorem 5.2.1. A square structurally non-degenerated system of order n with
m inputs and outputs is structurally non-minimum phase if for its corresponding
feedback graph G~fb the following conditions hold:

1. There is a smallest feedback cycle family of width kl with m ≤ kl < n, which
is the feedback cycle family with the lowest number of state vertices.
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2. There is at least one k with kl < k ≤ n so that G~fb contains no feedback cycle
family of width k.

Proof. The property is structural since for the general absence or presence of a coefficient pk in
(4.8) only the absence or presence of cycle families of width k in G~fb is relevant, regardless of
the numerical values of the system.

If a smallest cycle family of width kl < n exists, it maps to the coefficient pkl . If there is a cycle
family of width k ∈ ]kl, n] missing in G~fb, the corresponding pk in (4.8) is also missing. Thus,
by Lemma 2.2.3 not all invariant zeros have strictly negative real parts. By Definition 3.2.1 a
system with this property is non-minimum phase.

In some cases it is possible to determine the position of some invariant zeros by structural
investigation.

Corollary 5.2.2. If there exists a ku < n that is the width of the feedback cycle
family in G~fb with the highest number of state vertices, i. e. the largest feedback
cycle family, the considered system has n− ku invariant zeros in 0.

A similar result for transmission zeros was found by [HCD99].

Remark 5.2.1. Theorem 5.2.1 is only a sufficient condition for the non-minimum
phase property of a numerical realization of a system as reasoned next. Even if
all cycle families of width k ∈ [kl, n] exist, it is not possible to conclude that the
system of interest is minimum phase. Since the exact values of pk have not been
calculated they may be positive or negative. This opposes Lemma 2.2.3 and hence
it is not possible to conclude a structural minimum phase property of a system.
This can be easily shown by the following example.

Example 5.2.1. In Figure 5.1 an example of a system, which is structurally not
non-minimum phase but its numerical realization is non-minimum phase, is depicted.

However, there is an exception, where it is possible to conclude a structural minimum phase
property.
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u x3

x2x1 y

8

-1

11

-4

1

-3

-1

Figure 5.1: System with positive zeros that is not structurally non-minimum phase.

Corollary 5.2.3. If the feedback graph G~fb of a system contains only feedback
cycle families of width k = n, then the system is structurally minimum phase.

This is obvious, since in the mentioned case only the coefficient pn in (4.8) exists and hence the
polynomial has no roots. Almost all systems, which fulfill this condition, have a full relative
degree or are flat.

5.2.2 Non-Square or Structurally Degenerated Systems

If the considered system is non-square or structurally degenerated, it is in many cases not
possible to tell if it is structurally non-minimum phase. The reason is that the zeros polynomial
is not given directly by a determinant (4.8) but by the greatest common divisor of several
minors (Lemma 2.2.4), which by structural methods is not possible to find. However, it is
still possible to detect structural zeros in 0 and thus conclude that a system is structurally
non-minimum phase.

Theorem 5.2.2. Suppose a non-square or degenerated system ΣLS of order n has
structural rank rs. Consider all feedback graphs G~ωifb of this system, where ωi
is a distinct unordered combination of rs input and rs output vertices that are
contained in rs vertex disjoint simple paths from input to output in G~sys. If there
is no feedback cycle family of width n in any of the graphs G~ωifb the considered
system is structurally non-minimum phase.
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Proof. For every graph G~ωifb the feedback cycle family of width n refers to the coefficient pn of
pωi(s). If these feedback cycle families are missing the coefficient pn is missing in every pωi(s).
This implies that in the monic greatest common divisor pSZ(s) of all these polynomials the
coefficient that precedes the zero order of s does not exist. This means that at least one system
zero of the considered system is located at 0. By Definition 3.2.1 a system with this property is
non-minimum phase.

Note, Theorem 5.2.2 is weaker than Theorem 5.2.1 since only systems with zeros in 0 can be
considered. Systems with positive zeros cannot be detected by this method.

5.2.3 Example: Vertical Take Off and Landing Aircraft

As an example a simple PVTOL (Planar Vertical Take Off and Landing) aircraft, see Figure 5.2,
will be analyzed, which was presented in [HSM92] and whose non-minimum phase behavior was
well examined in [MDP94]. The position of the plane is given by the coordinates x and z of its

θ

C

y

a
b

l

T

Fα

Fα

z

x

mg

Figure 5.2: Planar Vertical Take Off and Landing aircraft.

center of mass C and its angle θ with respect to an inertial frame. The motion of the system
is caused by the following forces. The buoyancy generated by the wings due to the relative

77



5 Structural Approach to Non-Minimum Phase Systems

forward speed is denoted by T . The variable F represents the force produced in equal amounts
by the vertical thrusters, which are mounted rotated by fixed α with respect to the vertical
axis of the plane. The gravity force is denoted by mg. Considering that the forward speed and
the force of the vertical thrusters can be manipulated, the inputs can be defined as

u1 := T

m
, u2 := 2F

m
cosα . (5.2)

With that the system dynamics can be described by

θ̈ =λu2

ẍ =− u1 sin θ + εu2 cos θ
z̈ =u1 cos θ + εu2 sin θ − g ,

(5.3)

with ε = tanα, λ = ml
J , where J is the inertia with respect to C and l the distance from C to

the thrusters. An inertial position sensor is placed somewhere on the body of the aircraft. Its
position y is given in the coordinates (a, b) with respect to the body fixed frame originated in
the center of mass. Using the sensor as output yields

y1 = x+ a cos θ − b sin θ
y2 = z + a sin θ + b cos θ

(5.4)

for its position in inertial coordinates.

Hence, the system has n = 6 states x =
[
θ θ̇ x ẋ z ż

]T
and m = 2 inputs u =

[
u1 u2

]T

and p = 2 outputs y =
[
y1 y2

]T
. Linearization around the equilibrium (x = 0,u =

[
g 0

]T
)

yields the system

ẋ =




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
-g 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0




x+




0 0
0 λ

0 0
0 ε

0 0
1 0




u

y =
[
-b 0 1 0 0 0
a 0 0 0 1 0

]
x .

(5.5)

The corresponding unweighted feedback graph G~fb is drawn in Figure 5.3. Analyzing the graph
and applying Theorem 5.2.1 on it yields the following values:
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u1
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ż

θ̇

ẋ

z

θ

x

y1

y2

Figure 5.3: G~fb of the linearized PVTOL.

• The smallest width of a feedback cycle family is kl = 4,
e. g. (u1 → ż → z → y2 → u2 → θ̇ → θ → y1).

• The largest width of a feedback cycle family is ku = 6 = n,
e. g. (u2 → θ̇ → θ → ẋ → x → y1 → u1 → ż → z → y2).

• There is no cycle family of width k = 5.

Thus, it is possible to conclude that the PVTOL is structurally non-minimum phase.

Indeed, the invariant zeros of (5.5) are given by

s1,2 = ±
√

λg

ε− λb , (5.6)

which are under no circumstance simultaneously negative and consequently the zero dynamics
are not asymptotically stable.
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5.3 Strong-Structural Properties

The properties considered until now are valid for almost all numerical realizations. The natural
question that arise is whether there exist structural properties that hold for all numerical
realizations of a system. This kind of properties were introduced by the strong-structural
controllability [MY79].

Definition 5.3.1 (Strong-Structural Property). A strong-structural property
of a system is a property of a class of systems that are structurally equivalent.
For this class the property under investigation holds numerically for all admissible
numerical realizations.

This definition implies that the considered property holds generically for all structurally
equivalent systems.

Some former results about strong-structural controllability were reinvestigated by [JSA11] and
shown to be wrong. This lead to a new graph-theoretic characterization of strong-structural
controllability [SJA11]. Recently [HRS13; RHS14] have extended the results about strong-
structural controllability of [MY79] to the time-variant case. In addition, the works [TD13;
TD14; TD15] have to be considered.

Definition 5.1.2 states that a structural property holds for almost all numerical realizations.
This raises the question, under which conditions a system possesses a specific (non-strong)
structural property but does not have it in the numerical sense. Consider again Example 4.3.1
and its parametrized feedback graph, depicted in Figure 5.4. From that its parametrized
characteristic polynomial

p(s) = (µ1µ3µ7 + µ2µ5µ8)︸ ︷︷ ︸
p2

s2 + µ2µ5µ4µ3µ7 − µ1µ3µ7µ5µ6︸ ︷︷ ︸
p4

(5.7)

can be derived. As a result of Lemma 2.2.3 the system is (structurally) non-minimum phase
because the coefficient p3 in (5.7) is missing. However, for certain values for the parameters
µi the system might be minimum phase. This problem is the background of the statement in
Definition 5.1.1, that the entries ~ should be “nonzero and independent”. The origin of these
two requirements will be investigated now.

First, consider the term “nonzero” in Definition 5.1.1. According to [Rei88; DCW03; RHS14]
for numerical realizations entries in R are allowed for the nonzero entries ~ in the structural

80



5 Structural Approach to Non-Minimum Phase Systems

u

x1 x2 x3 x4

y

µ1 µ2

µ6

µ5
µ4µ3

µ7 µ8

-1

Figure 5.4: Gfb(V, E ,W) of the loading bridge with µi ∈ W.

system. In that case, the conditions under which a numeric zero 0 value is allowed for a nonzero
entry ~ are the following:

1. If the structural system is given by a set of structural equivalent numerical realizations
(Ai,Bi,Ci), the considered entry has to be different from 0 for almost all of them.

2. If the structural system is given by a parametrized system (A[µ],B[µ],C[µ]), the
corresponding parameter µi has to be different from 0 almost everywhere.

Suppose now that only the parameter µ3 in Figure 5.4 is zero in a specific numerical realization.
This leads to the coefficient p4 of (5.7) being also zero. Nevertheless, this particular numerical
realization will also be non-minimum phase, since the conditions of Lemma 2.2.3 are not met.
Further, consider only the parameters µ1 and µ8 to be zero. From this follows that the coefficient
p2 is zero. Now the numerical realization is minimum phase since it has no zeros. However,
the structural property is still valid, since only a particular numerical realization is considered
and in almost all cases µ1 6= 0 and µ8 6= 0 is required. Nevertheless, for strong-structural
properties all numerical realizations have to be non-minimum phase. So the discussed case
must be avoided by forbidding the value 0 in the numerical realizations for a nonzero entry.

Further, according to Definition 5.1.1 the nonzero entries ~ should be “independent” in the
corresponding numerical realization of Σ~. In the literature [Rei88] “assumes [the entries] to be
independent of one another” and in [Mur09; Wou91b] the parameter values have to lie outside
of some proper algebraic variety in the parameter space. To explain the problem, consider
again the polynomial (5.7). The coefficient p2 consists of a sum. That means that under certain
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conditions a (numerical) cancellation µ1µ3µ7 + µ2µ5µ8 = 0 may occur. As described above this
will render the system minimum phase. In order to avoid these numerical cancellations the
following three approaches can be taken.

The first one is to demand that all nonzero entries ~ in Σ~ have to be algebraically independent,
see [Mur09, p.32]. That means no entry ~ can be expressed by an algebraic combination of the
other nonzero entries. Considering the example this implies that the equation µ1µ3µ7+µ2µ5µ8 =
0 will have no solution, and thus no cancellation occurs. In general algebraic independence
of the nonzero entries leads to avoidance of cancellations in the minors or determinants of
numerical realizations. With that many structural properties, including the ones proposed in
this work, will hold also in the strong sense. However, the demand of algebraic independence of
the nonzero entries is in many cases not desirable. For instance, it would be not possible to
investigate Example 4.3.1 by structural methods since the elements in (4.18) may be algebraic
dependent 1.

The second approach, followed by e. g. [Wou91b; HCD99; DCW03], is to exclude some proper
algebraic varieties 2 in the parameter space. Basically this means, that in contrast to the
algebraic independence approach, only some algebraic combination of the parameters are
not allowed. Namely, exactly these which lead to numerical cancellations in determinants or
minors.

For almost all choices of numerical values ∈ R for the nonzero entries ~, these will be algebraic
independent and will not form a proper algebraic variety. Also, for almost all parameterized
systems, the parameters will lie outside of a proper algebraic variety that leads to numerical
cancellations in the considered determinants or minors. Nevertheless, in some cases the
parameters of a system are dependent such that a structural property may not hold for any
numerical realization, compare e. g. [JSA11]. Therefore, independence of the nonzero entries ~
is required in Definition 5.1.1.

However, both mentioned approaches require more information about the considered system
for avoiding cancellations than just the zero/nonzero pattern. This means, for the investigation
of strong-structural properties the relation between the nonzero entries has to be considered a
priori, which has no benefit compared to applying numerical methods directly. Therefore, the
approach taken in this work is to avoid sums in the critical terms in the determinants or minors.
This also makes the here discussed strong-structural properties independent of dependencies
between the nonzero entries ~ of Σ~.

1Let be g = 1 then a2 = b2(a1
b1

+ 1
b1

).
2See [Won79].
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Hence, for the investigation of strong-structural properties a less strict version of Definition 5.1.1
is used.

Definition 5.3.2 (Strong-Structural System). For a set of linear systems
ẋi = Aixi + Biui, yi = Cixi with the same number of state variables, inputs
and outputs, their common structure can be defined by the (strong-)structural
system, Σ∗ : ẋ = A∗x + B∗u, y = C∗x. An element in the (strong-)structure
matrices, A∗,B∗ and C∗ is zero, denoted by 0, if the element at the same position
is identically zero respectively for all Ai,Bi and Ci. Otherwise, this element is
nonzero, denoted by ∗, if the element at the same position is nonzero respectively
for all Ai,Bi and Ci. Systems have an identical structure, if their states, inputs
and outputs have identical dependencies of each other. Such systems are called
strong-structurally equivalent.

Similar to the description in Section 5.1, a graph can be generated for strong-structurally
equivalent systems i. e. a strong-structural graph G∗sys. Thus, if an unweighted system graph
Gsys(V, E) complies with Definition 5.3.2,

G∗sys = Gsys(V, E) (5.8)

holds.

5.4 Strong-Structurally Non-Minimum Phase Systems

In order to investigate the strong version of the already discussed structural properties a new
type of cycle family will be introduced. The reason is that sums in the coefficients of the
considered polynomials have to be avoided as discussed in Section 5.3. Each summand of
a coefficient in these polynomials is given by distinct cycle families of identical width. The
method to avoid sums in the coefficient will make use of unique cycle families, which are defined
as follows.

Definition 5.4.1 (Unique Cycle Family). A cycle family in a graph is unique
if there exists no other cycle family of same width in this graph.

With unique cycle families it is possible to determine the strong-structural properties as will be
explained subsequently.
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5.4.1 Generic Rank of a Structural System

As mentioned in Section 4.2 and Section 5.2 the structural rank of a system Definition 4.2.2 is
a structural property. Applied to the structural system Σ~, it is coincident with the structural
norm rank Definition 4.2.1 by [Rei88, Theorem 32.7]. Furthermore, it will be a strong-structural
property if s-rank Σ∗ equals the system rank for any numerical realization of Σ∗. Speaking in
terms of matrices this is the case when the term rank of P [µ](s) equals the generic rank of
P [µ](s) considering the nonzero entries as parameters µ and thus equals the norm-rankG(s)+n
for any numerical realization of Σ∗. This is achieved by the following theorem.

Theorem 5.4.1. The structural system rank s-rank Σ∗ equals the system rank of
all numerical realizations ΣLS , if at least one of the corresponding feedback graphs
G∗ωifb , defined in Theorem 4.4.1, contains at least one unique cycle feedback family.
In this case, it is a strong-structural property.

Proof. Consider a system of rank r and its system matrix P (s). Then it exists at least one
minor (2.46) of P (s) that does not vanish. These minors are polynomials in s and can be
obtained by applying Theorem 4.4.1. The coefficients of (4.20) are created from the feedback
cycle families in G∗ωifb . If there is at least one unique feedback cycle family of some width k,
the corresponding coefficient pk is not given by a sum. Thus, no numerical cancellation may
occur and the corresponding minor does not vanish generically. In this case the structural rank
equals the normal rank of the transfer function, i. e.

s-rank ΣLS = norm-rankG(s) , (5.9)

and thus the rank of the system. This holds for all strong-structurally equivalent numerical
realizations and hence this property is generic.

With this property, it is now possible to safely determine structurally if a system is degenerated.

Remark 5.4.1. The generic rank of a structural system is also described in
[Wou91b; Wou91a]. The structural normal rank Definition 4.2.1 is identical to this
generic rank, if, for the independence of the entries in Σ~, the condition is met that
the entries lie outside of some proper algebraic variety.
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5.4.2 Square Non-Degenerated Systems

In order to determine if a system is strong-structurally non-minimum phase Theorem 5.2.1 can
be adapted as follows.

Theorem 5.4.2. A square system of order n with m inputs and outputs is strong-
structurally non-minimum phase if for its corresponding feedback graph G∗fb the
following properties hold:

1. There is a smallest unique feedback cycle family of width kl with m ≤ kl < n,
which is the unique feedback cycle family with the lowest number of state
vertices.

2. There is at least one k with kl < k ≤ n so that G∗fb contains no feedback cycle
family of width k.

Proof. In addition to Theorem 5.2.1 it has to be shown that this is a strong-structural property.
Since the cycle family of width kl has to be unique, the numerical value of the coefficient pkl of
(4.8) is given only by the product of the weights of this cycle family. By Definition 5.3.2 there
is no weight of value 0, hence the coefficient pkl cannot be zero. Thus, all numerical realizations
are non-minimum phase.

In the same manner Corollary 5.2.3 can be extended.

Corollary 5.4.1. If the feedback graph G∗fb of a system contains only one feedback
cycle family and this feedback cycle family is of width k = n then the system is
also strong-structurally minimum phase.

5.4.3 Non-Square or Degenerated Systems

As it was the case in Subsection 5.2.2 for non-square or degenerated systems only zeros in 0
can be found structurally. With a small addition to Theorem 5.2.2, the following corollary can
be stated.
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Corollary 5.4.2. If a system ΣLS has rank r and if Theorem 5.2.2 applies with
rs := r on G∗fb, then the system is strong-structurally non-minimum phase.

This means, if it is possible to determine the rank of a system with Theorem 5.4.1, Theorem 5.2.2
can be applied directly to get the strong-structural property.

Remark 5.4.2. Note, the considered strong-structural properties are not coordi-
nate free. Consider a system with two numerical representations with different
coordinate base. If these two representations are transferred to a structural system
one may be strong-structurally non-minimum phase and the other not. However, if
a system is strong-structurally non-minimum phase all its numerical realizations
are non-minimum phase regardless in which coordinate base they are transformed.
The reason is that the (numerical) non-minimum phase property is coordinate free
since it is determined by the invariant zeros polynomial which is invariant under
coordinate transformations. Nevertheless, the sum of products the coefficients of
the polynomial are generally formed of, refer to (2.19) and Lemma 4.1.1, is not
coordinate free. This means, it depends on the selected coordinate basis if a certain
coefficient is formed by only one product, i. e. a unique cycle family, or by a sum of
products, i. e. more than one cycle family of identical width. Hence, the structural
non-minimum phase property is coordinate free but not the strong-structurally
non-minimum phase property.

5.4.4 Example: ECP-Pendulum

As an example the ECP Inverted Pendulum, see [Edu95], is considered. It is a mechanical model
of the lateral movement that a tightrope walker has to perform to balance on the rope. The
pendulum consists of two rods, one pole and one crossbar, see Figure 5.5. The pole is mounted
by a pivot bearing on the bottom plate, which allows rotation around one axis measured by θ(t).
On top of the pole the crossbar, which has two weights at its ends, is mounted. The crossbar
can be moved orthogonal to the pole in its rotational plane by a linear motor. The position
between the tip of the pole and the center of gravity of the crossbar is measured by s(t). The
poles overall length is denoted by l0, its mass is m1 and its center of gravity is located lc from
the bottom joint. The crossbar has the mass m2 and its center of gravity is in its geometric
center. The system is actuated by the force F applied by the linear motor on the rods. The
whole system is affected by gravity g. Because the masses are considered to be concentrated
at the center of gravity of the rods, the inertias can be neglected. Hence, the system can be
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m1
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Figure 5.5: The ECP Inverted Pendulum.

modelled by the differential equations

m1s̈+m1l0θ̈ −m1sθ̇
2 −m1g sin θ = F

m1l0s̈+
(
m1

(
l20 + s2

)
+m2l

2
c

)
θ̈ + 2m1sṡθ̇

− (m1l0 +m2lc) g sin θ −m1gs cos θ = 0 .

(5.10)

The system has n = 4 state variables x =
[
θ θ̇ s ṡ

]T
, the input u = F and the output

y = θ. Linearization around the equilibrium (s = 0, θ = 0, F = 0) yields the system

ẋ =




0 1 0 0
g
lc

0 gm1
l2cm2

0
0 0 0 1

g − gl0
lc

0 −gl0m1
l2cm2

0



x+




0
−l0
l2cm2

0
1
m1

l20
l2cm2



u

y =
[
1 0 0 0

]
x .

(5.11)

The corresponding feedback graph G∗fb is drawn in Figure 5.6.

Applying Theorem 5.4.2 on G∗fb yields the following:

87



5 Structural Approach to Non-Minimum Phase Systems

u θ̇

ṡ θ

s

y

Figure 5.6: Strong structural feedback graph G∗fb of the inverted pendulum.

• The smallest width of a feedback cycle family is kl = 2,
u → θ̇ → θ → y, which is the only one with width 2.

• The largest width of a feedback cycle family is ku = 4 = n,
e. g. u → ṡ → s → θ̇ → θ → y.

• There is no cycle family of width k = 3.

This leads to the conclusion that the inverted pendulum is strong-structurally non-minimum
phase.

Indeed, if the nonlinear system (5.10) is analyzed, it is possible to isolate the zero dynamics

s̈ = g

l0
s , (5.12)

which are linear. This dynamical system is not asymptotically stable, regardless which numerical
nonzero values are chosen for the parameters g and l0. Thus, the example system is non-minimum
phase for all numerical realizations.

5.5 Extensions

In this section three extensions of the considered structural properties will be discussed. First,
the strong-structural approach is used to decide whether a system is strong-structurally not
asymptotically stable. Further, the case is considered, where only by structural methods, it
is not possible to determine the stability or non-minimum phase property of a system but
by considering the signs of the relations between the state variables, inputs and outputs.
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Finally, the applicability of the introduced structural properties to nonlinear systems (2.5) is
investigated.

5.5.1 Strong-Structurally Not Asymptotically Stable Systems

The idea is fundamentally identical to the one presented in Subsection 5.2.1. The structural
approach is used to determine whether not all coefficients of the characteristic polynomial (2.33)
are present. By the Routh-Hurwitz criterion, this is a precondition for stability of the system.
Hence, in order to determine if a system is strong-structurally not asymptotically stable the
following theorem can be applied considering its graph G∗sys.

Theorem 5.5.1. A system ΣLS of order n is strong-structurally not asymptotically
stable if there is at least one k with 1 ≤ k ≤ n so that its system graph G∗sys contains
no cycle family of width k.

Proof. If there is a cycle family of the width k ∈ [1, n] missing in G∗sys the corresponding αk
in (2.33) is also missing for all numerical realizations. Thus, by Lemma 2.2.3 not all poles
have strictly negative real parts. Hence, the system with this property is not asymptotically
stable.

This is basically an inversion of [Bel13, Theorem 2].

Again, it is also possible to determine the number of eigenvalues in 0.

Corollary 5.5.1. Let ku with 0 ≤ ku ≤ n be the width of the cycle family in G∗sys
with the highest number of state vertices, i. e. the largest cycle family. Then the
system has n− ku eigenvalues in 0.

The following example shows the applicability of Theorem 5.5.1.

Example 5.5.1. Consider the system graph depicted in Figure 5.7. Counting the
cycle families of the widths k ∈ [1, n] yields Table 5.1. Since there is no cycle family
of width k = 4 the considered system is strong-structurally not asymptotically
stable. This means there does not exist any numerical realization of the system
that is asymptotically stable.
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Figure 5.7: Structural graph G∗sys of a strong-structurally not asymptotically stable system.

cycle families Ci |Ci|
α1 (x4) 1

α2 (x1 � x2) 1

α3 (x1 � x2, x4), (x3 → x4 → x5) 2

α4 − 0

α5 (x3 → x4 → x5, x1 � x2), 2
(x1 → x4 → x5 → x3 → x2)

Table 5.1: Cycle families in G∗sys(Figure 5.7) and their counts.

5.5.2 Sign Non-Minimum Phase Systems

Often not only the dependencies in a system are known, but also the sign of directions and
parameters and therefore the sign of the dependencies. For example in a parametrized system
like the loading bridge, refer to Example 4.3.1, many parameters are masses or dimensions,
which are naturally positive. Further, it is known in which direction a part moves applying a
force in a specific direction on it. The question is, may this additional information be used to
investigate further properties that cannot be determined structurally.

This is actually strongly related to the term “sign stability” introduced in [QR65]. There the
issue of concluding the stability of linear systems only knowing the signs of the parameters
is investigated. This was originally considered by [Sam47]. A graph-theoretic method for
determination of the sign stability was given by [Jef74]. A survey about this topic is presented
in [Qui80]. Recently, this was extended to “unsafe signed systems” in [Har16] and “sign
stabilizability” in [HS14].
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Since the structural non-minimum phase property is only sufficient, there are cases where it
does not apply. Consider for instance the next example.

Example 5.5.2. Depicted in Figure 5.8 is a lift truck as seen from above. The

v

α

c
l

z2

z1θ

Figure 5.8: Sketch of a lift truck from above.

task is to place the center c of the truck at a specified position in the plain. The
position in the plane is measured by the coordinates z1 and z2 and the orientation
is measured by the angle θ. The truck can be steered by its rear wheel changing the
angle α and moved in forward direction by the velocity v. The distance between
the axle of the front wheels and the hub of the rear wheel is l, where c is right in
the middle. The dynamics of the system are given by

ż1 = v sin θ − l

2 cos θθ̇ (5.13)

ż2 = v cos θ + l

2 sin θθ̇ (5.14)

θ̇ = v

l
sinα . (5.15)

This system has 3 state variables x = [z1 z2 θ]T two inputs u = [v α]T and two
outputs y = [z1 z2]T . Linearization around x0 = [0 0 0]T and u0 = [1 0]T leads to
the system

ẋ =




0 0 1
0 0 0
0 0 0


x+




0 −1
2

1 0
0 1

l


u ,y =

[
1 0 0
0 1 0

]
x . (5.16)
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This system has one transmission zero s0 = 2
l hence it is non-minimum phase

for every positive wheelbase l. For structural analysis the graph G∗fb is shown in
Figure 5.9. Since the systems contains n = 3 state variables and m = p = 2 inputs

v

α

z1

z2

θ

y1

y2

Figure 5.9: G∗fb of the system (5.16).

and outputs, the maximal order of the invariant zero polynomial is one. Hence, the
graph in Figure 5.9 may only contain feedback cycle families of width k = 2 and
k = 3. Investigation of the graph yields one feedback cycle family of width k = 2,
i. e. (α → z1 → y1 → v → z2 → y2), and one feedback cycle family of width k = 3,

i. e. (α → θ → z1 → y1 → v → z2 → y2). Since both cycle families exist, neither
Theorem 5.4.2 nor Theorem 5.2.1 is applicable. Thus, the system is not structurally
non-minimum phase.

However, if the signs of the nonzero elements of the system (5.16) are considered
it is possible to create a signed graph as given by Figure 5.10. The cycle families
in this graph are identical with these of the graph in Figure 5.9. Now for each
feedback cycle family a sign can be determined by multiplying the signs of its edges
weights as shown in Table 5.2. As can be seen by this table, in (4.8) p2 will be

cycle families Ci
∏ signW ∈ Ci sign Ci

p2 (α → z1 → y1 → v → z2 → y2) (−1)(+1)(−1)(+1)(+1)(−1) −

p3 (α → θ → z1 → y1 → v → z2 → y2) (+1)(+1)(+1)(−1)(+1)(+1)(−1) +

Table 5.2: Feedback cycle families in G±fb (Figure 5.7) and their counts.

negative and p3 will be positive. Thus, by Lemma 2.2.3 this system will not have a
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Figure 5.10: G±fb of the system (5.16).

negative zero and hence it is non-minimum phase by its signs.

In order to formalize the methods sketched in this example some terms have to be defined first.

Definition 5.5.1 (Signed System). A set of linear systems ẋi = Aixi +Biui,
yi = Cixi with the same number of state variables, inputs and outputs, has common
sign structure, given by the signed system Σ± : ẋ = A±x+B±u, y = C±x if the
following holds. In all matrices Ai,Bi and Ci of the set, the elements at the same
position are either 0, positive or negative. Then an element in the signed matrices,
A±,B± and C± at this position is either zero, denoted by 0, positive, denoted by
+ or negative, denoted by −.

Again, it is possible to transfer a signed system into a graph as introduced for structural systems.

Definition 5.5.2 (Signed System Graph). The signed system graph G±sys of a
system ΣLS is determined by its weighted system graph Gsys(V, E ,W). The weight
of an edge in G±sys is +1, denoted by +, if the corresponding weight in Gsys(V, E ,W)
is positive. Otherwise, the weight in G±sys is −1, denoted by −. In G±sys the sign of
a cycle family is given by the sign of the product of the weights of the edges the
cycle family contains multiplied by (−1)d, where d is the number of cycles of which
the cycle family consists.
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With these definitions, it is now possible to state a theorem for a sign non-minimum phase
property.

Theorem 5.5.2. A square non-degenerated system of order n with m inputs and
outputs is sign non-minimum phase, meaning all systems with same sign structure
are non-minimum phase in the numerical sense, if for its corresponding signed
feedback graph G±fb the following properties hold:

1. Let kl with m ≤ kl < n be the width of the feedback cycle family with the
lowest number of state vertices, i. e. the smallest feedback cycle family.

2. For each k ∈ ]kl, n] there exists a feedback cycle family.

3. All feedback cycle families of same width k ∈ [kl, n] have identical sign.

4. There is at least one k ∈ [kl, n] for that the sign of a feedback cycle family of
width k differs from the sign of a feedback cycle family of width k̄ ∈ [kl, n]\{k}.

Proof. If a smallest feedback cycle family of width kl < n exists, it maps to the coefficient pkl
in (4.8). If all feedback cycle families of width k ∈ ]kl, n] exist, all corresponding coefficients
pk in (4.8) are present. The sign of every pk is uniquely determined, because in the case that
there are more than one feedback cycle family of identical width, these must have identical
signs. If, furthermore, not all feedback cycle families in G±fb have the same sign, at least one
coefficient will differ in its sign from another coefficient in (4.8). Thus, by Lemma 2.2.3 not
all invariant zeros have strictly negative real parts. By Definition 3.2.1, a system with this
property is non-minimum phase.

Furthermore, this method can also be used to identify sign not asymptotically stable systems.

Corollary 5.5.2. A linear system of order n is sign not asymptotically stable,
meaning all systems with same sign structure are not asymptotically stable in the
numerical sense, if for its corresponding signed system graph G±sys the following
properties hold:

1. For each k ∈ [1, n] exists a cycle family.
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2. All cycle families of same width k ∈ [1, n] have identical sign.

3. There is at least one k ∈ [1, n] for that the sign of a cycle family of width k
differs from the sign of a cycle family of width k̄ ∈ [1, n] \ {k}.

This corollary is the inversion of the theorem in [Jef74] or [Har16, Satz 3.18].

5.5.3 Applicability to Nonlinear Systems

Many plants considered in control engineering are modelled by physical equations, compare to
Example 4.3.1, Subsection 5.2.3 and Subsection 5.4.4. Usually the obtained differential equations
can be brought in the form of the nonlinear system (2.5). The question is, may the introduced
graph-theoretic methods be directly applied to nonlinear systems, i. e. without determining
the equilibria and linearization? For several other system-theoretic properties, graph-theoretic
criteria were established. For instance in [Wey02], observability, rank, invertibility, zeros at
infinity and disturbance decoupling were considered. In this section, it will be discussed if the
criterions for structurally non-minimum phase systems are directly applicable for nonlinear
systems of form (2.5).

In order to investigate nonlinear systems structurally a system graph is required. The following
method for its generation is proposed.

Definition 5.5.3 (Graph of a Nonlinear System). Similar to Definition 2.1.1
the (weighted) system graph Gsys(V, E) (Gsys(V, E ,W)) of the nonlinear system
(2.5) can be generated by following rules considering its Jacobians ∂

∂u ẋ,
∂
∂x ẋ and

∂
∂xh:

1. There exists a directed edge ek,l ∈ E from input vertex uj to state vertex xi if
in ∂

∂u ẋ the element bi,j in the i-th row and j-th column is nonzero. (Then the
weight wk,l ∈ W of this edge is given by bi,j .)

2. There exists a directed edge ek,l ∈ E from state vertex xj to state vertex xi if
in ∂

∂x ẋ the element ai,j in the i-th row and j-th column is nonzero. (Then the
weight wk,l ∈ W of this edge is given by ai,j .)

3. There exists a directed edge ek,l ∈ E from state vertex xj to output vertex yi
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if in ∂
∂xh the element ci,j in the i-th row and j-th column is nonzero. (Then

the weight wk,l ∈ W of this edge is given by ci,j .)

As introduced for linear systems, the (strong-)structural graph is incident with the unweighted
system graph if the entries of the Jacobians comply with Definition 5.1.1 or Definition 5.3.2.
Similarly, for the system graph of a nonlinear system (2.5) G~sys = Gsys(V, E) or respectively
G∗sys = Gsys(V, E) holds.

Remark 5.5.1. Since the Jacobians ∂
∂u ẋ,

∂
∂x ẋ and ∂

∂xh have zero entries whenever
there is no dependency of a state variable on another or an input, or an output on
a state variable, the structural graph, G~sys or G∗sys, might be constructed without
determining the Jacobians. It is sufficient to consider the dependencies between
the state variables, the inputs and the outputs to draw the edges in the graph.

Now reconsider the example of Subsection 5.2.3. The weighted feedback graph Gsys(V, E ,W) of
the nonlinear system (5.3,5.4) can be created as described above. The result of this is given in
Figure 5.11. In this graph the feedback cycle families of every admissible width are counted

u1

u2

ż

θ̇

ẋ

z

θ

x

y1

y2

λ

ε sin θ

ε cos θ

cos θ

sin θ

1

1

1

-u1 cos θ
-εu2 sin θ

-u1 sin θ
+εu2 cos θ

1

-a sin θ
-b cos θ

1

a cos θ
-b sin θ

-1

-1

Figure 5.11: Gfb(V, E ,W) of the PVTOL.
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in Table 5.3. Applying Theorem 5.2.1 on this table yields that systems with a graph G~sys as

cycle families Ci |Ci|
p2 − 0

p3 − 0

p4 (u1 → ẋ → x → y1, u2 → ż → z → y2), 4
(u1 → ẋ → x → y1, u2 → θ̇ → θ → y2),
(u1 → ż → z → y2 → u2 → ẋ → x → y1),

(u1 → ż → z → y2 → u2 → θ̇ → θ → y1)

p5 − 0

p6 (u2 → θ̇ → θ → ẋ → x → y1 → u1 → ż → z → y2), 2

(u1 → ẋ → x → y1, u2 → θ̇ → θ → ż → z → y2)

Table 5.3: Cycle families in G~sys(Figure 5.11) and their counts.

depicted in Figure 5.11, i. e. without weights and feedback edges, are structurally non-minimum
phase.

Indeed, if the nonlinear system (5.3,5.4) is analyzed by the methods described in Section 2.3, it
is possible to isolate the zero dynamics

θ̈ = λ

ε− λb
(
g sin θ + aθ̇2

)
. (5.17)

It can be shown that this nonlinear differential equation is unstable i. e. not asymptotically
stable ([MDP94]). Thus, the example system is non-minimum phase in the nonlinear sense.

The result of this structural analysis is consistent with the analysis of the linearized system
(5.5). However, the (structural) graph of the nonlinear system Figure 5.11 is distinct from
the graph of the linearized system Figure 5.3. In the linearized graph, the edges that are
marked by a dashed border around the weights in Figure 5.11 are missing. Hence, also the cycle
families containing these edges are missing. This originates from the fact that some entries in
the Jacobians, ∂

∂u ẋ,
∂
∂x ẋ and ∂

∂xh, become zero in the considered equilibrium of the system
(5.3,5.4). In the graph this leads to the fact that the weights of the marked edges become zero.
This can be seen easily since these weights contain sines of the variable θ, which is 0 in the
considered equilibrium.
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Comparing the graph of a nonlinear system with the graphs of the (at the equilibria) linearized
system, it can be observed that some edges vanish in the equilibria but new edges will never
appear. The reason is that the Jacobians ∂

∂u ẋ,
∂
∂x ẋ and ∂

∂xh have zeros only there, where
no dependency between the variables of x, u and y exist. In the other case, the entries may
contain functions of the state variables or the inputs. Thus, in certain points of the state space
or input space they will vanish. However, a zero entry will never turn into a nonzero entry.

Despite the result above, the theorems Theorem 5.2.1 or Theorem 5.4.2 can not be applied to
the graph of the nonlinear system from Definition 5.5.3. The following example demonstrates
the case when the application on the graph of the nonlinear system and on the graph of the
linearized system in an equilibrium is contradicting.

Example 5.5.3. Consider the system

ẋ =




x2
1
2 sin(2x3)

−6x1 − 11x2 − 3 sin(2x3)


+




0
0
1


u

y = x1 + sin x3 ,

(5.18)

and its Jacobians

∂

∂x
ẋ =




0 1 0
0 0 cos(2x3)
-6 -11 -6 cos(2x3)


 ,

∂

∂u
ẋ =




0
0
1


 ,

∂

∂x
h =

[
1 0 cosx3

]
. (5.19)

This system has two equilibria for u = 0, x̄1 = [0 0 kπ]T and x̄2 = [0 0 π
2 + kπ]T

with k ∈ Z.

The feedback graph resulting form the Jacobians is depicted in Figure 5.12. The
feedback graph of the system linearized at x̄2 is shown in Figure 5.13. Application
of Theorem 5.4.2 to both graphs yields that a system with the first graph is strong-
structurally non-minimum phase but a system with the second graph not. In the
first graph the feedback cycle family of width 2 is missing whereas the feedback
cycle families of width 1 and 3 are present. The second graph has only one feedback
cycle family of width 3, since the edge that is connecting the vertex x3 to the output
is missing. In fact, it is strong-structurally minimum phase by Corollary 5.4.1.

In conclusion that means, that in general, the theorems Theorem 5.4.2 and Theorem 5.4.2
are not applicable to graphs of nonlinear systems generated by their Jacobians according to
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u x1

x2

x3

y

Figure 5.12: Gfb(V, E) of (5.18) identical with G∗fb at x̄1.

u x1

x2

x3

y

Figure 5.13: G∗fb at x̄2.

Definition 5.5.3. As shown, the reason is that the graph generated by the Jacobians differs
from the graph of the linearized system. Furthermore, nonlinear systems can have an arbitrary
number of equilibria and for nonlinear systems the investigated properties are only valid within
a region around these equilibria. However, the graph created by Definition 5.5.3 is constant
across the whole state space. Therefore, if a property is determined by one of the theorems on
this graph, it should be also valid in any at the equilibrium linearized system which is very
unlikely.

Interestingly, there is a possibility to determine a property by the graph given by Definition 5.5.3.
As discussed before, the difference between this graph and the graph of the system linearized
at the equilibrium is that the latter might have fewer edges. That leads to the fact that it
has less cycle families. For the structurally non-minimum phase property Theorem 5.2.1 and
Theorem 5.4.2 this is a problem, since these cycle families might be the smallest ones and hence
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the results of the analysis of the two graphs may be contradicting. The source of the problem
is that these smallest cycle families are related to coefficients of the highest order in the zero
polynomial, compare to the proof of Theorem 5.2.1. However, if the characteristic polynomial
(4.8) is considered, the coefficient that is in front of the highest order is always one. In that case,
the discussed differences in the graphs are not a problem to determine the structural stability
properties, introduced by Theorem 5.5.1, of the nonlinear system. The following theorem can
be given for structurally not asymptotically stable systems.

Theorem 5.5.3. A nonlinear system (2.5) of order n has only strong-structurally
not asymptotically stable equilibria, if there is at least one k with 1 ≤ k ≤ n so
that its system graph G∗sys contains no cycle family of width k.

Proof. Since the structural system graph G∗sys of a nonlinear system is generated by its Jacobians
∂
∂u ẋ,

∂
∂x ẋ and ∂

∂xh it has the maximum count ẽ of edges across all points of its state and input
space. Only at some distinct points ui and xi entries of the Jacobians will vanish. At these
points a system graph G∗sys|ui,xi of the linearized system will have fewer edges than ẽ. Since
the cycle families in a graph are made of edges at the points ui and xi, the structural graph
G∗sys|ui,xi may have less cycle families than G∗sys. So if G∗sys contains no cycle family of width k,
also any G∗sys|ui,xi will not contain a cycle family of width k. Thus, if the numerical realization
of G∗sys is strong-structurally not asymptotically stable, also the numerical realization of G∗sys|ū,x̄
at any equilibrium (ū, x̄) will be strong-structurally not asymptotically stable according to
Theorem 5.5.1.

5.6 Complexity of the Determination of Structural Non-Minimum
Phase Systems

In this section an algorithm for the determination whether a system is structural non-minimum
phase is presented and its complexity is analyzed. In order to determine the introduced
properties of a system, the (non-)existence of cycle families in the corresponding graph has to
be checked. For the analysis of the complexity, the case of a square non-degenerated system
is considered. The following algorithm checks the conditions of Theorem 5.2.1 for a given
structural feedback graph.

In the first line, a flag is initialized that indicates whether a smallest cycle family is already
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Input: structural feedback graph of a system G~fb, order of the system n and number of
inputs and outputs m.

Output: true if the considered system is structural non-minimum phase else false.

1 smallestFBFamily = false;
2 c[] = FindAllCycles(G~fb);
3 for k ∈ [m,n] do
4 Ck[] = ∅;
5 CombineFBCycleFamilyOfWidth(∅,c[],k, Ck[]);
6 if smallestFBFamily = false & |Ck[]| > 0 then
7 smallestFBFamily = true;
8 else if smallestFBFamily & |Ck[]| = 0 then
9 return true;

10 end
11 end
12 return false;

13 define CombineFBCycleFamilyOfWidth(Ci, cr[], k, Ck[])
14 cp[] = ∅;
15 for z ∈ cr[] do
16 Ci+1 = Ci

⋃ z;
17 cp[] = cp[]

⋃ z;
18 if |Ci+1| < k then
19 cd[] = GetVertexDisjointCycles(Ci+1, c[]-cp[]);
20 CombineFBCycleFamilyOfWidth(Ci+1, cd[], k, Ck[]);
21 else if |Ci+1| = k then
22 if NumberOfFeedbackEdges(Ci+1) = m then
23 Ck[] = Ck[]

⋃ Ci+1;
24 end
25 end
26 end
27 end

Algorithm 1: Checking of the conditions of Theorem 5.2.1.
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found. In the second line, a list is initialized by the function FindAllCycles. This function
receives a structural feedback graph as argument and returns all cycles in this graph. An
implementation of this function is given by [Joh75]. The for-loop from line 3 to line 11
iterates over an interval from m to n corresponding to the coefficients pk in the invariant zeros
polynomial (4.8). In every loop, first an empty list of cycle families is initialized. The function
CombineFBCycleFamilyOfWidth then finds all feedback cycle families of the width k and saves
them in the list Ck[]. This function is defined in line 13 and will be described in the next
paragraph. In order to find the smallest feedback cycle family, as required by the first condition
of Theorem 5.2.1, in line 6 and 7, the flag smallestFBFamily is set to true when the list Ck[] is
non-empty for the first time. In line 8, both conditions of Theorem 5.2.1 are checked and if
they are met, the result true is returned in line 9. If the conditions are not met during the
evaluation of the for-loop, the considered system is not structurally non-minimum phase and
false is returned in line 12.

The function CombineFBCycleFamilyOfWidth defined in line 13ff. works recursively. As ar-
guments, it takes a feedback cycle family Ci to which it appends cycles from a list cr[] until
the width of the cycle family equals k. When this condition is met, it appends the found
feedback cycle family to the list Ck[], which is given as last argument. In line 14, an empty list
is initialized. In this list, the already considered cycles from the input cycle list cr[] will be
put during execution. Then over the list cr[] is iterated. In every loop, one cycle z is taken
from this list and appended to the cycle family Ci and to the list of used cycles cp[]. In line
18, it is checked whether the width of this extended cycle family is still smaller than k. If
this is true, a new list of cycles cd[] that is vertex disjoint to the extended cycle family Ci+1 is
generated from the list of cycles c[] reduced by the list of already used cp[]. This cycle family,
the new list of cycles cd[] and two arguments, k and Ck[], are then passed to a recursive call of
CombineFBCycleFamilyOfWidth. In line 21, the case that the extended cycle family has the
desired width k is checked. Since the function should only find valid feedback cycle families,
the number of feedback edges has to be counted. If this number equals m, the considered cycle
family is valid and it is added to the list of feedback cycle families Ck[].

In order to determine the complexity of the whole algorithm the complexity of the functions
FindAllCycles and CombineFBCycleFamilyOfWidth will be analyzed. The problem of finding
all possible cycles in a graph can be solved by a depth-first search algorithm. The algorithm
provided in [Joh75] solves this problem in O ((|V|+ |E|)(|c|+ 1)) time, i. e. it scales with the
sum of the vertices and edges multiplied by the number of cycles |c| in the graph. The number

102



5 Structural Approach to Non-Minimum Phase Systems

of cycles of width k, k ∈ [1, n], in a fully connected graph is given by

|ck| =
(
n

k

)
(k − 1)! (5.20)

For the worst case of a fully connected graph of a system of order n with m inputs and outputs
this yields |V| = n+ 2m plus |E| = n2 + 2mn+m2 and hence O ((n+m)2∑

k

(n
k

)
(k − 1)!

)
.

The function CombineFBCycleFamilyOfWidth combines these cycles to cycle families. It scales
proportionally with the number of feedback cycle families in the graph. Considering the
fully connected graph the number of cycle families of width k = n is |Cn| = n!. There are n
possibilities to get a fully connected subgraph with n− 1 vertices. That means that the number
of cycle families of width k < n can be determined by counting the number of cycle families in
the subgraphs. This yields the recursive formula

|C(n)| = n! + n|C(n− 1)| (5.21)

for the number of cycle families of all possible widths. In a fully connected system graph every
edge has a parallel feedback path xi → yj → uj → xl. This means that for every cycle family
of width k there are

( k
m

)
feedback cycle families. Thus, (5.21) becomes to

|C(n)| =
(
n

m

)
n! + n|C(n− 1)| . (5.22)

Consequently, the number of feedback cycle families grows at least with the lower boundary
O ((n+ 1)!).

Hence, solving this problem with the above algorithm is clearly NP-hard supposing N 6= NP .
However, in general there is at least some sparsity in the considered graphs reducing the
evaluation time of the algorithm significantly.

103



6 Conclusion and Further Research

6 Conclusion and Further Research

In this work sufficient conditions for the determination whether a structural system is non-
minimum phase were developed. With these conditions, it is possible to check whether an
arbitrary linear system, from which only the dependencies between its inputs, state variables
and outputs are known but not the numerical values, is non-minimum phase by its structure.
This means, if the considered system is structurally non-minimum phase, there is almost no
combination of numerical values for which it is minimum phase in the numerical sense. An
application for the developed method is early system analysis in the control design process, when
only the structure of the system to control is known. If the considered system is structurally
non-minimum phase, the inputs and outputs can be reselected to get a minimum phase system,
or an appropriate method of control can be chosen.

In order to obtain these conditions, the following approach was taken. Commonly the term
non-minimum phase is used for (stable) linear systems that possess zeros with non-negative real
parts or for nonlinear systems with not asymptotically stable zero dynamics. In order to unify
this term, the relation between zeros and zero dynamics of linear systems was investigated in
Chapter 3. For the determination of the zero dynamics by the Byrnes-Isidori normal form the
relative degree of a system has to be obtained. Since the relative degree has only been defined
for square systems, the definition was extended to non-square right invertible, left invertible
and degenerated systems. This was achieved using results from linear decoupling control. With
the generalized definition of the relative degree, it was possible to state the Byrnes-Isidori
normal form for all linear systems with relative degree. For systems without relative degree,
the dynamic extension algorithm for nonlinear systems was simplified for the linear case. It was
then possible to show that all zeros of a linear system are contained in its zero dynamics. The
conclusion is that, at least for systems that have relative degree or that can be made to have one
by the dynamic extension algorithm, the non-minimum phase property, as defined by Isidori,
applies, provided that these systems have non-negative real parts in their zeros. In Chapter 4
the graph-theoretic approach for the determination of the characteristic polynomial and of the
zeros polynomials by cycle families in the graph was introduced. The known results for SISO
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systems were generalized to arbitrary linear systems. With the developed method, it is possible
to determine the invariant zeros polynomial of square MIMO systems or the systems zero
polynomial of non-square or degenerated systems. Further, the introduced graph-theoretic tools
were used to investigate structural systems in Chapter 5. Sufficient conditions for structural
systems to be non-minimum phase for almost all numerical realizations, i. e. a structurally
non-minimum phase system, were given. By investigating under which cases this property does
not hold numerically, a method using unique cycle families was developed to avoid numerical
cancellations in the coefficients of the considered polynomials. With the unique cycle families,
it was possible to state the strong-structurally non-minimum phase property, i. e. all numerical
realizations of a structural system with this property are non-minimum phase in the numerical
sense. Furthermore, the introduced approach was extended in three ways. First, it was applied
to stability leading to a sufficient property for numerical systems to be not asymptotically stable,
i. e. strong-structurally not asymptotically stable. Second, in cases where the pure structural
approach fails, i. e. it cannot be determined by structural analysis if a certain property holds,
the signs of the mutual dependencies in the system were considered. This lead to the sign
non-minimum phase property and to the sign not asymptotically stable property. Finally,
the extension to nonlinear systems was discussed. It was not possible to find a structural
non-minimum phase property for nonlinear systems but conditions for a nonlinear system to be
not asymptotically stable could be given.

The different sets of non-minimum phase systems are related as depicted in Figure 6.1. Since

numerically

sign

structurally

strong-structurally

Figure 6.1: Relation between the different types of the non-minimum phase property.

the structurally non-minimum phase, the strong-structurally non-minimum phase and the sign
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non-minimum phase property are sufficient conditions for the numerical non-minimum phase
property, their sets lie all in the set of numerical non-minimum phase systems. The set of
structurally non-minimum phase systems touches the border of the numerical non-minimum
phase systems because it holds only for almost all numerical realizations. It is remarkable
that the set of strong-structurally non-minimum phase systems is not completely inside the
set of structurally non-minimum phase systems. This results from the different definitions of
the structural systems, Definition 5.1.1 and Definition 5.3.2, on which the considered property
is based on. This means that there may exist some systems whose nonzero entries are not
independent and thus they cannot be structurally non-minimum phase. Nevertheless, since
independence of the nonzero entries is not a precondition for the strong-structural properties
these systems may be strong-structurally non-minimum phase.

Investigations of several systems showed that for many of them the non-minimum phase property
is determined by their structure. Examples are, steering a bicycle [ÅKL05], the vertical take-off
and landing aircraft Subsection 5.2.3 [MDP94], the ECP Pendulum Subsection 5.4.4 [Edu95],
the loading bridge Example 4.3.1 and the inverse pendulum with cart [SL91, p. II.2]. Two
further examples, the lift truck Example 5.5.2 and all-pass filters [Bod45, Ch. 11], were sign
non-minimum phase. There were also two systems, the turbo charged engine [DSS16b] and the
vertical dynamics of an airplane [SL91, Ch. 6], where the non-minimum phase property could
only be determined numerically, i. e. the property was related to certain value ranges of the
parameters.

Further Research

The following issues are starting points for further investigations. The relative degree has
relationships to the structure at infinity [PR79], the number of invariant zeros and system zeros
[MK76] and the Morse indices [Mor73]. To the author’s knowledge, there is no publication
available that shows the links between these named properties in the general case. It would
be convenient to have these terms linked in the geometric control approach [Won79] to the
dimensions of appropriate subspaces, as for instance described in [AS84], to obtain a coordinate
free description. Moreover, in Chapter 3 the zero dynamics for non-square linear systems were
defined. In reference to [Isi11], an extension to nonlinear systems (2.5) may be considered.

Since this work is a discourse of the theoretical basis of structurally non-minimum phase systems
and structurally not asymptotically stable systems, application to non-academic examples would
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be interesting. Examples are the stability of electrical power grids [AAN04], the polarization in
social networks [Sla07] or several forms of stability in supply chains [PTC13].

Often it is possible to define the structure of a system not only by nonzero entries and zeros but
also by ones. This is, for instance, the case in the relation between state variables that represent
acceleration, speed and distance. This approach is introduced by [Mur09] as “mixed matrices”.
The properties presented in this work could be extended to this kind of structural systems.
Finally, the use of the considered properties in an algorithm, to identify automatically inputs
and outputs that render a system structurally non-minimum phase, may be considered.
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