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The representative directions method is a continuum mechanical based practical approach to transfer 1D
material models to 3D. The selection of the directional energy and the corresponding directional stress is
generally based on the standard uniaxial tension (UT) solution of hyperelastic models. However, this
approach results in a somewhat different model than hyperelastic models in the context of elasticity
and inelasticity. For instance, enrichment of the UT based directional stress with the non-affine stretch
does not provide close results unless huge p-root values are considered. Hence, the main objective of this
contribution is to determine the directional stresses, which can provide equivalent or close results to first
and second invariant based hyperelastic models. Accordingly, the directionalisation concept in the frame-
work of affine representative directions method is introduced. Directional stresses are obtained with a
top-down approach from the first and second invariant based hyperelastic models. The standard
Mooney-Rivlin model is directionalised to obtain the corresponding 1D energies and stresses using the
micro-stretch and the macro-area-stretch. The approach is then utilised to directionalise several
hyperelastic-like models as alternatives for statistical-thermomechanics based chain models.
Moreover, a new optimisation strategy is proposed to improve the material asymmetry resulting from
numerical integration schemes. Optimisation results demonstrate that the material symmetry of the
standard Bažant points can be improved. Finally, two nonhomogenous finite-element (FE) simulations
demonstrate that the directionalisation approach presented here contributes a good step towards numer-
ically robust inelastic extensions.
� 2021 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rubbery, biological and metallic materials generally depict pro-
cess induced anisotropies when subjected to mechanical and ther-
mal loadings. To capture initial anisotropy and deformation
induced anisotropies, typical and plausible methods to consider
are the so-called microplane, affine and non-affine microsphere,
and representative directions model depending on the application
area. Historically, the microplane model dates back to the works of
Bažant (1984), Bažant and Gambarova (1984), Bažant and Oh
(1985) in connection to capture inelastic effects in concrete and
rocks. One of the first thermodynamically consistent approaches
in this field in a small-strain framework was introduced by the
authors (Carol et al., 2001; Kuhl et al., 2001). Further on, Carol
et al. (2004) has extended the microplane modelling to the large
strain framework with an emphasis on hyperelasticity. To the best
of authors’ knowledge, one of the first contribution to the micro-
sphere approach is the work of Pawelski (1998) in the context of
elastomers. Later on, the so-called microsphere approaches were
further developed for modelling the viscoelasticity and the Mullins
effect observed in rubbery polymers with three consecutive contri-
butions by Miehe et al. (2004), Miehe and Göktepe (2005), Göktepe
and Miehe (2005). To clarify, as described in Freund and Ihlemann
(2010), the difference between the microsphere and the represen-
tative direction method is solely based on the consideration of the
statistical mechanics with a proper homogenisation technique and
a continuum mechanical approach, respectively. As a matter of
fact, all three modelling approaches are similar, but the physical
reasoning of 1D models and their application fields are somewhat
different. In any case, the most obvious advantage of both
approaches is that a proper 1D constitutive model can be trans-
ferred to 3D effortlessly, as developing a 1D model is relatively
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simpler than tensor invariant based 3D models. In general, except
for modelling concrete, rock and soil materials, the microsphere
models are more popular; therefore, there exist numerous contri-
butions for the last 20 years. For example, for modelling rubber-
like materials, Dal and Kaliske (2009), Dal et al. (2018a), Dal
et al. (2018b) applied this approach in the context of ageing and
viscoplasticity of uncured green rubber. Furthermore, recent treat-
ment of Berger and Kaliske (2020) for rubber curing is also
referred. Another important application area is strain-induced
crystallisation in elastomers. The reader is referred to works of
Mistry and Govindjee (2014), Guilié et al. (2015), Nateghi et al.
(2018) and representative directions approach of Loos et al.
(2020), Loos et al. (2020). In analogy to rubbery materials, biolog-
ical materials experience deformation-induced anisotropies due to
their collagen microstructure, for instance, numerous contribu-
tions were published by Menzel and Waffenschmidt (2009),
Waffenschmidt et al. (2014) and Thylander et al. (2017) for biologic
materials. In the context of metallic materials, more recently, the
microsphere approach was also considered for modelling the ani-
sotropic behaviour of metallic foams by Bleistein et al. (2020).

In the context of the representative directions method, the fun-
damental question to answer is the selection of the 1D strain
energy density and the stress-stretch relationship. In the contribu-
tion of Lion et al. (2013), the homogeneous UT form of the 2
parameter Mooney-Rivlin model was employed in each direction
and was analytically integrated. The analytical results demon-
strated that the stress response of the directional approach is con-
siderably softer than the corresponding UT solution. Based on this
observation, the p-root averaging technique of Miehe et al. (2004)
has been further included and compared with the original solu-
tions of Lion et al. (2013). Except for high p values, the approach
does not provide close results. Therefore, the main purpose of this
contribution is the introduction of the directionalisation concept.
The term directionalisation means that the directional stress is
defined along each direction vector in the unit-sphere, yet the
sum over all these directions should return the original stress ten-
sor of the selected hyperelastic model. The directionalisation
approach is quite significant in three aspects. First, when analyti-
cally integrated, it should provide exactly the same stress response
with its own 3D invariant based form, thus eliminating the numer-
ical integration. Second, it provides a phenomenological one-to-
one alternative to statistical physics based micromechanical con-
stitutive laws of the microsphere model. Third, the directionalisa-
tion will hold the numerical properties of the original
hyperelastic model, as further inelastic extensions could make
the convergence matters worse in FE analyses. Within this per-
spective, the reader is referred to Dal et al. (2018b) for discussions
about the so-called strong ellipticity and the convexity of the
microsphere models. For a detailed introdution for the strong ellip-
ticity, the reader is referred to the works of Marsden and Hughes
(1994), Antman (1995) and Walton and Wilber (2003).

In the context of large strains and microplane approach, Carol
et al. (2004) introduced a directional model for the compressible
Mooney-Rivlin model. To do this, in addition to the microplane
stretch, the so-called microplane thickening were utilised for the
directional version of the second invariant of the right Cauchy-
Green deformation tensor. Furthermore, the Jacobian were also
included in the directional form of the Mooney-Rivlin strain energy
density by Carol et al. (2004). In the work of Verron (2015), the
directional potential of the Mooney-Rivlin model was obtained in
terms of the microplane stretch only. In this study, two different
stretch measures will be used to directionalise the second invari-
ant of the unimodular right Cauchy-Green deformation tensor.

Another important aspect of the directional models is the ana-
lytical or numerical integration of 1D constitutive laws on the
unit-sphere. In general, analytical integration is not possible.
2

Accordingly, the mostly employed integration points in the litera-
ture are based on the integration directions and weights of Bažant
and Oh (1986), particularly the scheme using 21 integration points.
These integration directions and weights are of Gauss type with an
optimal distribution on the sphere rather than the rectangular
domain. For instance, there are also several different sets of inte-
gration points computed, such as Fliege and Maier (1999). For a
detailed comparison of different strategies, a reference is made to
Itskov (2016) and Verron (2015) for further discussions about the
efficiency of the integration points of Bažant and Oh (1986). In
numerical integration schemes, the material symmetry must be
ensured. This particularly means that when the same load is
applied in each direction of the unit-sphere, no artificial material
asymmetry should arise in the case of initial isotropy. In the work
of Ehret et al. (2010), arbitrary rigid rotations were applied on
many different integration schemes and their performance were
compared with the so-called Akaike information criterion. Based
on this observations, we attempt to provide an ad hoc algorithm
to improve the artificial material asymmetry arising due to integra-
tion schemes. In detail, any UT, equibiaxial tension (ET), or pure
shear (PS) experimental data; or even the solutions of hyperelastic
models for these experiments could be used as a basis to improve
the symmetry issues related to any numerical integration scheme.
The algorithm is based on a rotational scheme, which rotates all
integration directions on the choosen coordinate system of the
UT, ET, or PS case. In simple words, for n number of directions, n
number of rotations should be done. Eventually, the aim is to load
the unit-sphere in all discrete directions possible and compute an
error function to minimise. As an example, the widely used 21
point integration scheme of Bažant (1984) is employed and
investigated.

The organisation of the paper is as follows: the thermodynami-
cally consistent continuum mechanical framework for the affine
and non-affine representative directions approach is formulated
in Section 2. Furthermore, the directionalisation concept and ad
hoc algorithm for the optimisation of the integration weights are
introduced. Section 3 illustrates the comparisons between the
numerical and exact solutions of Lion et al. (2013) for the UT and
the ET, the parameter identification of themodels and improvement
of the material symmetry of Bažant and Oh (1986)’s 21 integration
points. Moreover, two FE benchmarks are considered to compare
several directional stresses described in Section 2. Finally, Section 4
summarises the study with an overview and concluding remarks.
2. The mathematical model

In this section, the continuum mechanical framework based on
the hybrid free energy approach published by Lion et al. (2014) will
be followed. For the continuum mechanical basics, the reader is
referred to Haupt (2000). Herein, a multiplicative decomposition
of the deformation gradient into isochoric and volumetric parts
in the sense of Flory (1961) is considered.

2.1. Kinematics

The deformation gradient F is multiplicatively split into two

parts: an isochoric F̂ ¼ J�1=3 F and a volumetric �F ¼ J1=3 I part such
that

F ¼ F̂ � �F with J ¼ det F: ð1Þ
The isochoric deformation gradient F̂ has the property of

det F̂ ¼ 1. Consequently, the isochoric right Cauchy-Green defor-
mation tensor based on Eq. (1) can be expressed as

Ĉ ¼ F̂T � F̂ ¼ J�
2
3FT � F ¼ J�

2
3 C: ð2Þ
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Furthermore, the time rate of Ĉ is given as

_̂C ¼ P
4
: _C; ð3Þ

where P
4
¼ J�

2
3 I� 1

3 C� C�1
� �

is the fourth order projection tensor.

2.2. Affine and non-affine representative directions method

In parallel with the study of Lion et al. (2013), the direction vec-
tor is given as

ea ¼ sin# cosue1 þ sin# sinue2 þ cos#e3: ð4Þ
Fig. 1 illustrates the spherical coordinates and the direction vec-

tor ea given in Eq. (4). For the affine model, see Miehe et al. (2004)
and Lion et al. (2013), the isochoric micro-stretch reads as

k̂a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ea � Ĉ � ea

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ea � ea : Ĉ

q
: ð5Þ

The isochoric micro-stretch k̂a or any other thermodynamical
quantity has to be integrated on the unit-sphere by the given
relationship

f avg tð Þ ¼ A f a ea; tð Þ½ � ¼ 1
4p

Z 2p

0

Z p

0
f a ea; tð ÞdX; ð6Þ

where dX ¼ sin#d#du. The operator A in Eq. (6) is a shorthand
notation for the exact integration. Next, based on Miehe et al.
(2004), the p-root averaging operator is defined as

f savg tð Þ ¼ A f a ea; tð Þs� �� �1=s
: ð7Þ

The main motivation behind the non-affine model of Miehe
et al. (2004) is that the polymer chains have deformation capabil-
ities up to some physical limit. Therefore, p-root averaging (here
denoted as s to avoid notational confusion with the pressure p)
implies additional stiffness in comparison with the affine model.
Consequently, the micro-stretch for the non-affine model follows
as

k̂ ¼ A k̂sa

h i� �1=s
: ð8Þ

Due to thermomechanical considerations, the rates of micro-
stretches are needed. First, the rate of the affine isochoric stretch
k̂a in Eq. (5) is given by

_̂ka ¼ 1
k̂a

ea � ea :
1
2

_̂C: ð9Þ
Fig. 1. Representative directions and the coordinates.

3

Likewise, the rate of the non-affine isochoric micro-stretch can
be computed as

_̂k ¼ A k̂1�s k̂s�2
a ea � ea

h i
:
1
2

_̂C: ð10Þ

The rates of stretches in Eq. (9) and Eq. (10) will be taken into
account when acquiring the 2nd Piola–Kirchhoff (2nd PK) stress
tensor S from the Clausius–Duhem inequality (CDI).

2.3. Thermodynamical consistency

In this study, the standard procedure of Noll and Coleman
(1974) is applied in order to ensure thermodynamical consistency.
To begin with, for the affine model, the specific hybrid free energy
U is defined as

U ¼ Uvol pð Þ þ A Uiso
a k̂a
� �h i

: ð11Þ

Similarly, for the non-affine case, it is expressed as

U ¼ Uvol pð Þ þUiso k̂
� �

: ð12Þ

By making use of the time derivative of Eq. (11), the following
form of the CDI for the affine case is written as

S :
1
2

_Cþ p _J � A r̂a
_̂ka

h i
P 0 with ð13Þ

evol ¼ qR
@Uvol

@p
; ð14Þ

where the directional stress is r̂a ¼ qR
@Uiso

@k̂a
. Based on the considera-

tions of Lion et al. (2013), the volumetric hybrid free energy density

Uvol can be defined as

qRU
vol ¼ � p2

2K
; ð15Þ

where K is the compression modulus. Using Eq. (3), the time rate of

the Jacobian _J ¼ 1
2 JC

�1 : _C and the rate of the affine isochoric micro-
stretch in Eq. (9), the 2nd PK stress tensor from CDI Eq. (13) yields to

S ¼ �pJC�1 þ A Ŝa
h i

; ð16Þ

and the directional isochoric stress tensor Ŝa is

Ŝa ¼ J�
2
3
r̂a

k̂a
ea � ea � 1

3
r̂a k̂a Ĉ�1

	 

: ð17Þ

In the case of non-affinity, since the volumetric parts for both
the affine and the non-affine cases are equal, the directional part
of the 2nd PK stress tensor for the non-affine approach reads as

Ŝa ¼ J�
2
3
r̂k̂sa
k̂s�1

k̂�2
a ea � ea � 1

3
Ĉ�1

	 

; ð18Þ

where the implicitly directional stress is r̂ ¼ qR
@Uiso

@k̂
.

2.4. Numerical integration of the representative directions

The affine isochoric micro-stretch k̂a or any other directional
quantity has to be integrated along each direction of the unit-
sphere illustrated in Fig. 1. In general, analytical integration of
the directional stresses r̂a is not possible. To this end, numerical
integration on the unit-sphere has to be employed. In a straightfor-
ward sense, these numerical integrations are weighted evaluations
for the given number of directions:

A f a½ � � AD f a½ � ¼
Xndir
a¼1

wa f a; ð19Þ
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where AD � � �½ � is the discrete sum operator. Thus, the 2nd PK stress
tensor can be expressed in a discrete form

S ¼ �pJC�1 þ
Xndir
a¼1

wa Ŝa: ð20Þ

Subsequently, the Cauchy stress tensor T can be obtained with
the push-forward operation T ¼ 1

J F � S � FT . Finally, the material

tangent moduli C have to be computed. The relation to calculate
the moduli C is given as

C ¼ 2
@S
@C

¼ �Cþ A Ĉa

h i
; ð21Þ

where �C and Ĉa are the volumetric and the isochoric directional
parts, respectively. Then, for the affine and non-affine case, the
material tangent moduli are shown in Table 1. Table 1 demonstrates
that both models have the same structure with the only difference
between the isochoric material tangent modulus terms f 1; f 2; f 3 and
f 4. The pressure p can be calculated from the mixed u-p approach
described in Section 3.4.

2.5. Directional stresses for the Mooney-Rivlin type elasticity

For simple deformation cases such as the UT, the unidirectional
(single direction) stress can be computed as

Put ¼ 2l1 k� 1
k2

	 

þ 2l2 1� 1

k3

	 

: ð22Þ

Similarly, for the ET case, it reads as

Pet ¼ 2l1 k� 1
k5

	 

þ 2l2 k3 � 1

k3

	 

: ð23Þ

Based on the unidirectional solution of the UT in Eq. (22), Lion
et al. (2013) considered the directional stresses for the affine case
as

r̂a ¼ 2l1 k̂a � 1
k̂2a

 !
þ 2l2 1� 1

k̂3a

 !
: ð24Þ

Similarly, the non-affine stress r̂ can be defined as

r̂ ¼ 2l1 k̂� 1
k̂2

	 

þ 2l2 1� 1

k̂3

	 

; ð25Þ

which is implicitly directional via k̂ in Eq. (8). Eq. (24) has to be
computed for each representative direction. On the other hand,
Table 1
The material moduli for the affine and non-affine representative directions approach
without internal variables.

i. Isochoric part:bCa ¼ � 1
3 J

�2
3 f 1 C

�1 � ea � eaþea � ea � C�1

þ J�
4
3 f 2 ea � ea � ea � ea þ 1

9 f 3 C
�1 � C�1 � 2

3 f 4
@C�1

@C

ii. Volumetric part:
�C ¼ �pJC�1 � C�1 � 2pJ @C�1

@C

iii. Affine, non-affine:

f 1 ¼ r̂a
k̂a

þ @r̂a
@k̂a

; bk 1�s bk s�1
a g1

f 2 ¼ 1
k̂2a

@r̂a
@k̂a

� r̂a
k̂3a

;
bk 1�sbk 3�s

a

g1 � 2 r
^bk a

	 

f 3 ¼ k̂2a

@r̂a
@k̂a

þ r̂a k̂a ; bk 1�s bk sþ1
a g1

f 4 ¼ r̂a k̂a ; r
^ bk 1�s bk s

a
iiii. Extra terms related to non-affine:
g1 ¼ @r̂

@k̂
d1 þ 1� sð Þ r̂

k̂
d1 þ s r̂

k̂a

d1 ¼ k̂1�s A k̂s�1
a

h i

4

the non-affine stress in Eq. (25) is computed only once. The exact
solutions of the 1st PK stress tensor resulting from Eq. (24) for
the UT and the ET are not restated here as they are rather lengthy;
therefore, the reader is referred to Lion et al. (2013).
2.6. Directionalisation of the isotropic hyperelastic models

As illustrated in the previous Section 2.5, the unidirectional
solution Put were considered as a directional stress r̂a for the rep-
resentative directions. Notwithstanding, there exists another
approach to obtain the directional stress r̂a. In general, it is
straightforward to directionalise the invariant based isotropic
hyperelastic models. To this end, firstly, the first isochoric invariantbI1 can be directionalised without effort by the relation of the
constraint

A ea � ea½ � ¼ 1
3
I; ð26Þ

which can be obtained by analytical integration. The constraint in
Eq. (26) has the advantage of being exactly satisfied when inte-
grated with the Bažant and Oh (1986)’s integration points. Then,

using Eq. (5), the first isochoric invariant bI1 takes the form

bI1 ¼ I : Ĉ ¼ A 3ea � ea : Ĉ
h i

¼ A 3 k̂2a
h i

: ð27Þ

In Kearsley (1989), the non-isochoric version of Eq. (27) was
computed by the analytical integration of the squares of line seg-
ment stretch ratios k2a ¼ F � ea � F � ea. Now, the following Neo–Hoo-
kean isochoric energy density function is considered

qRU
iso ¼ l bI1 � 3

� �
: ð28Þ

Then, insertion of Eq. (27) into the Neo–Hookean strain density
function in Eq. (28), it yields to

qRU
iso ¼ A 3l k̂2a � 1

� �h i
: ð29Þ

Eq. (29) reflects the principal stretch based representation of
the Neo–Hookean model by Rivlin and Taylor (1948). Conse-

quently, the directional free energy qRU
iso
a is defined as

qRU
iso
a ¼ 3l k̂2a � 1

� �
: ð30Þ

In comparison to the directional stress r̂a in Eq. (24), Eq. (30)
leads to a non-negative directional stress

r̂a ¼ 6l1 k̂a: ð31Þ
The directional stress r̂a in Eq. (31) is not zero for k̂a ¼ 1, but

after inserting it into Eqs. (16) and (17), the undeformed reference
configuration is stress-free. Furthermore, it results in non-negative
f 1; f 2; f 3 and f 4 values in Table 1. The non-negativity of the term f 2
arising from the so-called strong-ellipticity requirements, see
Marsden and Hughes (1994), was discussed by Dal et al. (2018b).
Only focusing on the isochoric response, based on Antman (1995)
and Walton and Wilber (2003), the strong-ellipticity requirement
is here postulated as

A a� b :
@ F � Ŝa
� �
@F

: a� b

24 35 > 0 ð32Þ

with c ¼ J Fð Þ � 1 � 0; ð33Þ
where a and b are non-zero unit vectors, and c is the incompress-
ibility constraint. According to Walton and Wilber (2003), for a
small perturbation of the constraint c, it must hold:
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d
d�

����
�¼0

J Fþ �a� bð Þ ¼ JF�T : a� b � 0: ð34Þ

Using Eqs. (5) and (17) together with the strong-ellipticity
requirements in Eqs. (32)–(34), after a lengthy calculation, the nec-
essary constraint can be obtained as

A J�
2
3
r̂a

k̂a
b � eað Þ2 þ J�

4
3f 2 a � F � eað Þ2 b � eað Þ2

� 

> 0; ð35Þ

where the term f 2 is given in Table 1. Therefore, if the following
relations hold in each representative direction, the strong-
ellipticity is ensured:

r̂a > 0 and
@r̂a

@k̂a
P

r̂a

k̂a
> 0: ð36Þ

Based on the constraint in Eq. (36), it could be stated that the
directional isochoric tangent modulus Ĉa arising from any direc-
tional stress r̂a should satisfy non-negative f 1; f 2; f 3 and f 4 values.
For this reason, care should be taken with the directional stress r̂a

in Eq. (24) in FE simulations.
Carol et al. (2004) (see also Verron, 2015) utilised the so-called

solid angle dx

dx ¼ k̂�3
a dX ¼ k̂�3

a sin#d#du ð37Þ
to obtain the trace of the inverse Ĉ�1 and the isochoric second

invariant bI2. Thus, the directional energy of the Mooney-Rivlin
model yields to

qRU
iso
a ¼ 3l1 k̂2a � 1

� �
þ 3l2

1
k̂5a

� 1

 !
; ð38Þ

which was considered by Verron (2015). The corresponding direc-
tional stress r̂a follows as

r̂a ¼ 6l1 k̂a �
15l2

k̂6a
: ð39Þ

Eq. (39) is conditionally stable similar to Eq. (24). To elaborate,
depending on a deformation state, Eq. (35) may or may not be sat-
isfied due the violation of the directional constraint given in Eq.
(36). Hence, instead of Eq. (38), two alternative approaches are

considered. Firstly, an auxillary stretch ^̂ka can be defined as

^̂k4a ¼ ea � ea : Ĉ � Ĉ: ð40Þ

With Eqs. (5) and (40), the isochoric second invariant bI2 yields
to

bI2 ¼ 1
2
bI21 � Ĉ � Ĉ : I
� �

¼ A
9
2
A k̂2a

h i
k̂2a �

3
2
^̂k4a

� 

: ð41Þ

Secondly, the so-called isochoric macro-area-stretch of Miehe
et al. (2004) m̂a, which is inverse of the distortional microplane
thickening stretch �kD ¼ 1

m̂a
, can be considered:

m̂2a ¼ ea � ea : Ĉ�1: ð42Þ

Then, with the help of Eq. (49), the isochoric second invariant bI2
follows asbI2 ¼ A 3 m̂2a

� �
: ð43Þ

Similar to Eq. (27), Eq. (43) is in parallel with the result of
Kearsley (1989). Thus, from Eqs. (41) and (43), the following rela-
tion holds
5

m̂2a ¼ 3
2
A k̂2a

h i
k̂2a �

1
2
^̂k4a: ð44Þ

Analogous to the derivation of Eq. (30), the Mooney-Rivlin iso-
choric free energy qRU

iso
a can be expressed as

qRU
iso
a ¼ 3l1 k̂2a � 1

� �
þ 3l2

3
2
A k̂2a

h i
k̂2a �

1
2
^̂k4a � 1

	 

: ð45Þ

Alternatively, by making use of Eq. (43), Eq. (45) takes a much
simpler form

qRU
iso
a ¼ 3l1 k̂2a � 1

� �
þ 3l2 m̂2a � 1

� �
: ð46Þ

Consequently, in combination to r̂a given in Eq. (31), the addi-

tional isochoric directional stress ^̂ra due to the Mooney-Rivlin
model is given as

^̂ra ¼ qR
@Uiso

a

@
^̂ka

¼ 6l2
3
2

A k̂a
h i

k̂2a þ A k̂2a

h i
k̂a

� �
� ^̂k3a

	 

: ð47Þ

To obtain Eq. (47), the mathematical property

A k̂2a

h i� �2
¼ A A k̂2a

h i
k̂2a

h i
is used. Moreover, considering the direc-

tional free energy in Eq. (46), the additional isochoric directional
stress r̂m

a can be represented as

r̂m
a ¼ qR

@Uiso
a

@m̂a
¼ 6l2 m̂a: ð48Þ

The directional stresses ^̂ra in Eq. (47) or r̂m
a in Eq. (48) together

with r̂a given in Eq. (31) provide the representation of the
Mooney-Rivlin model exactly, when integrated with any set of
integration points satisfying the constraintX
a¼1

ea � eawa ¼ 1
3
I: ð49Þ

The stretch definitions ^̂ka and m̂a entail the modification of Eqs.

(13) and (17). For this purpose, the time derivatives of ^̂ka and m̂a are
required:

_̂
k̂a ¼ 1

^̂k3a

ea � ea � Ĉ :
1
2

_̂C; ð50Þ

_̂ma ¼ � 1
m̂a

Ĉ�1 � ea � ea � Ĉ�1 :
1
2

_̂C: ð51Þ

Thus, the additional 2nd PK stress tensors are formulated as

^̂Sa ¼ J�
2
3

^̂ra

^̂k3a

ea � ea � Ĉ� 1
3
^̂ra

^̂ka Ĉ�1

0@ 1A; ð52Þ

Ŝma ¼ �J�
2
3
r̂m
a

m̂a
Ĉ�1 � ea � ea � Ĉ�1 � 1

3
r̂m
a m̂a Ĉ

�1
	 


: ð53Þ

With the additional stress contribution from Eqs. (52) and (53),
the isochoric part of the 2nd PK stress tensor in Eq. (16) is remod-
ified as

Ŝ ¼ A Ŝa þ A
h i

; ð54Þ

where the additional stress contribution A can be considered as Ŝma.

The additional tangent modulus Ĉm
a ¼ 2 @Ŝma

@C for Eq. (21) is



Fig. 2. Each representative direction is rotated around the basis ea � e3 by the
amount of h, then around ea by the amount of b to provide more rotational effects.
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Ĉm
a ¼ � 1

3
J
2
3 f m1 C�1 � ea � ea � C�1 � C�1 � C�1 � ea � ea :

@C�1

@C

 !

� J
4
3 f m2 C�1 � ea � ea � C�1 � ea � ea :

@C�1

@C

 !
þ 2 J

2
3

� r̂m
a

m̂a
sym C�1 � C�1 � ea � ea � C�1 þ C�1 � ea � ea � C�1 � C�1

� �
þ 1
9
f m3C

�1 � C�1 þ 2
3
f m4

@C�1

@C
;

ð55Þ

where f m1 ¼ r̂ma
m̂a
þ @r̂ma

@m̂a
, f m2 ¼ 1

m̂2a

@r̂ma
@m̂a

� r̂ma
m̂3a
, f m3 ¼ m̂2

a
@r̂m

a
@m̂a

þ r̂m
a m̂a; f

m
4 ¼ r̂m

a m̂a

and sym �ð Þ ¼ 1
2 �ð Þ þ �ð Þ23T
� �

. Concerning the strong-ellipticity, in a

similar manner with Eq. (35), the additional restriction owing to
the isochoric macro-area-stretch m̂a can be calculated as

A J
4
3f m2 a � F�T � ea
� �2

b � C�1 � ea
� �2

þ J
2
3
r̂m
a

m̂a
a � F�T � ea
� �2

F�T � b
� �2� 


> 0;

ð56Þ

where f m2 ¼ 1
m̂2a

@r̂ma
@m̂a

� r̂ma
m̂3a
. Thus, together with Eq. (36), the necessary

requirement to ensure the strong-ellipticity in each representative
direction follows as

r̂m
a > 0 and

@r̂m
a

@m̂a
P

r̂m
a

m̂a
> 0: ð57Þ

Based on Eqs. (36) and (57), the Mooney-Rivlin directional ener-
gies in Eqs. (45) and (46) are unconditionally stable.

To avoid additional stress tensor computations due to Eq. (54), a
simplified form of the directional energy depending only on r̂a can

be utilised. Then, by replacing A k̂2a

h i
with k̂2a, and

^̂k4a with k̂4a in Eq.

(45), the Mooney-Rivlin type directional energy is defined as

qRU
iso
a ¼ 3l1 k̂2a � 1

� �
þ 3l2 k̂4a � 1

� �
: ð58Þ

Hence, the directional stress r̂a based on Eq. (58) can be
obtained as

r̂a ¼ 6l1 k̂a þ 12l2 k̂3a

� �
: ð59Þ

In contrast to Eqs. (24) and (39), the directional stress r̂a in Eq.
(59) is stable due to the fulfillment of the strong-ellipticity condi-
tion in Eq. (36).

As a further example, the directionalisation procedure will be
applied to Yeoh, Gent and the extended-tube models. The reason
to select these models is due to the common applicability and their
high performances on Treloar’s data based on the work of
Marckmann and Verron (2006). In general, the directional stresses
are acquired by making use of the relation

qR
_Uiso ¼ @Uiso

@bI1 _bI1 þ @Uiso

@bI2 _bI2 ¼ A r̂a
_̂ka þ r̂m

a
_̂ma

h i
. Then, with the help of

_bI1 ¼ A 6k̂a
_̂ka

h i
and _bI2 ¼ A 6m̂a _̂ma

h i
, the directional stresses are

defined as r̂a ¼ 6k̂aqR
@Uiso

@bI1 and r̂m
a ¼ 6m̂aqR

@Uiso

@bI2 . Now, firstly, the iso-

choric hybrid free energy of the Yeoh model is

qRU
iso ¼ l1

bI1 � 3
� �

þ l2
bI1 � 3
� �2

þ l3
bI1 � 3
� �3

: ð60Þ

The corresponding directional stress r̂a follows as

r̂a ¼ 6 k̂a l1 þ 2l2
bI1 � 3
� �

þ 3l3
bI1 � 3
� �2	 


: ð61Þ

Secondly, the isochoric hybrid free energy of the Gent model
can be expressed as
6

qRU
iso ¼ �l1 Im � 3ð Þ ln Im �bI1

Im � 3
; ð62Þ

where Im is related to the maximum stretch limit. This limit must
not be exceeded to avoid numerical problems. The directional stress
r̂a is

r̂a ¼ 6l1 k̂a
Im � 3

Im �bI1 : ð63Þ

According to Marckmann and Verron (2006), the extended-tube
model of Kaliske and Heinrich (1999) performs best to describe
Treloar’s data. For this reason, this model is also considered for
the directionalisation. Due to the definition of the tube part in
the original model, approximate directionalisation is carried out
by making use of the isochoric macro-area-stretch m̂a (i.e.

r̂m
a ¼ qR

@Uiso;tube
a
@m̂a ). The isochoric hybrid free energy of the extended-

tube type model is considered as

qRU
iso ¼ lc

1� d2
� � bI1 � 3

� �
1� d2 bI1 � 3

� � þ ln 1� d2 bI1 � 3
� �� �24 35

þ A
2le

b
m̂2 b
a � 1

� �� 

: ð64Þ

Subsequently, the directional stresses are

r̂a ¼ 6lc k̂a
1� d2

1� d2 bI1 � 3
� �� �2 � d2

1� d2 bI1 � 3
� �

264
375 and r̂m

a

¼ 4lem̂
2 b�1
a : ð65Þ
2.7. An ad hoc approach to improve integration points

The integration weights and directions computed by Bažant and
Oh (1986) can be specifically tailored to each model. There are
many different sets of integration points in the literature over-
viewed in detail by Verron (2015) and Itskov (2016). From a prac-
tical point of view, the most important consideration when
optimising the integration points is the fulfilment of the material
symmetry, see Ehret et al. (2010). Hence, to improve the material
symmetry, a rotational scheme is devised as illustrated in Fig. 2.
The goal of the rotational scheme is to load the unit-sphere along
all possible direction vectors of the employed numerical integra-
tion scheme. According to this approach, the unit-sphere is rotated
for each and all discrete direction vectors aligning with the chosen
main direction (e.g. e3). Moreover, the unit-sphere can be further
rotated around the e3 direction to provide more rotational effects.
Table 2 demonstrates the optimisation procedure in detail based



Table 3
An algorithm for the computation of the isochoric 2nd PK stress tensor Ŝ and the
isochoric tangent modulus Ĉ at each local Gauss point in the reference configuration.

Given: ea;wa; Ĉ

Initialise: Ŝ ¼ 0 and Ĉ ¼ 0
Compute:

Non-affine: k̂ ¼ Pnr
a¼1wa k̂

p
a

� �1=s
, r̂ k̂
� �

for a ¼ 1 : ndir

k̂a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ea � ea : Ĉ

q
, m̂a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ea � ea : Ĉ

�1
q

r̂a k̂a
� �

; r̂ma m̂að Þ
Ŝa (Eq. (17) or Eq. (18)), Ŝ

m
a (Eq. (53))

Ĉa (Table 1), Ĉm
a (Eq. (55)

Ŝ ¼ Ŝ þwa Ŝa þ Ŝ
m
a

� �
Ĉ ¼ Ĉþwa Ĉa þ Ĉm

a

� �
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on the rotational scheme illustrated in Fig. 2. As a note, the direc-
tion vectors can be also predefined, but this is not taken into
account, as they are distributed rather well. As an alternative, for
instance, Gauss points can be utilised with a suitable domain trans-
formation. However, as pointed out by Bažant and Oh (1986), they
are not uniformly distributed on the unit-sphere and localised
around the pole. Hence, the integration weights can be optimised
instead of the representative directions. In this case, the optimisa-
tion problem is classified as a highly constrained linear optimisa-
tion problem or the so-called linear programming (see
Luenberger and Ye, 2015). To solve this sort of optimisation prob-
lems, MATLAB provides the robust lsqlin function.

3. Numerical examples

3.1. Comparisons of Lion’s model

In this part, two homogenous stress states, namely uniaxial ten-
sion (UT) and equibiaxial-tension (ET), are considered to compare
the directional stress r̂a of Lion et al. (2013) in Eq. (24) and the
non-affine directional stress r̂ in Eq. (25). The algorithm shown
in Table 3 is utilised without computing the tangent modulus C.
The employed 2nd PK stress tensors for the computations are given
in Eq. (17) for the affine model and in Eq. (18) for the non-affine
model. The simulated results are based on the integration points
of Fliege and Maier (1999) in parallel with Itskov (2016), as these
integration points were utilised to compute the reference numeri-
cal solution.

Firstly, for the UT case with J ¼ 1, the isochoric right Cauchy-
Green deformation tensor is given as

Ĉ ¼ 1
k
e1 � e1 þ 1

k
e2 � e2 þ k2 e3 � e3: ð66Þ
Table 2
An ad hoc optimisation strategy for the improvement of integration weights for
material symmetry. sf is 2 for symmetric points, otherwise 1.

i. Given the experimental data
the representative directions ea
Put ; Pet ¼ P1; P2; . . . Pm½ �T ,
k ¼ k1; k2; . . . km½ �T ; Ĉ kð Þ

ii. For each ec , where c ¼ 1; . . . ; nr ,
compute Rc ¼ R2 � R1

1:�ec ¼ ec�e3
jjec�e3 jj ; cosh ¼ ec � e3; sinh ¼ jj�ecjj,

2:R1 ¼ �ec � �ec þ cos h I� �ec � �ec
� �þ sin h�ec � I

3:R2 ¼ e3 � e3 þ cos b I� e3 � e3ð Þ þ sin be3 � I
iii. For each computed rotation tensor Rc

compute the Ac matrix
for i ¼ 1 : m
for a ¼ 1 : ndir

1:e� ¼ Rc � ea ; k̂a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� � Ĉ � e�

p
2: r̂a from the 1D constitutive law

3: Ŝa ¼ r̂a
k̂a

ea � ea � 1
3 r̂a k̂a Ĉ

�1

4: if uniaxial

Acia ¼ sf � 1:5ki bS33;a
elseif equbiaxial

Acia ¼ sf � 3ki bS11;a
iv. Form the complete A and d matrix

A ¼ c1A1; c2A2; . . . ; cndir Andir
h iT

d ¼ c1 P; c2 P; . . . ; cndir P
� �T

v. Optimise the weights w ¼ w1; . . . ; wn½ �T
min
w

1
2 jjAw� djj2,

with constraints lb 6 w 6 ub,P
a¼1 eawa ¼ 0 andP
a¼1 ea � eawa ¼ 1

3 I
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The 1st PK stress Put vs the stretch k of both the affine and the
non-affine approach for two different sets of material parameters
are depicted in Fig. 3. The stiffening effect of the non-affine
approach is observed with the increasing values of s in Fig. 3. How-
ever, for the compression (i.e. k̂ < 1), this effect is smaller com-
pared to tension. For s ¼ 100, the non-affine solutions in both
cases are close to the unidirectional stress in Eq. (22). Nevertheless,
high values of s are inadmissible as Eq. (8) then approaches the
infinity norm.

Secondly, in the case of ET, the isochoric right Cauchy-Green
deformation tensor is given as

Ĉ ¼ k2 e1 � e1 þ e2 � e2ð Þ þ 1
k4

e3 � e3: ð67Þ

The 1st PK stress Pet vs the stretch k of the affine and non-affine
approach for two different parameter cases are illustrated in Fig. 4.
In a similar trend with the UT case, the stiffening effect of the non-
affine approach can also be observed with increasing values of s in
Fig. 4. However, unlike the UT, the stiffening effect of the non-
affine approach is relatively small. In other words, the unidirec-
tional solution is difficult to obtain, even with the high values of s.

3.2. Parameter identification of the directionalised models

Here, the main objective is to assess the directionalised forms
presented in Section 2.6 with the Treloar’s data. To do that, for
example, the material parameters (here denoted as the original
parameters) from Marckmann and Verron (2006) or Hossain and
Steinmann (2013) can be employed, as they are optimised for Tre-
loar’s data. After computing the unidirectional stress Puni (Put and
Pet) with these parameters, a parameter fit is done with the lsqnon-
lin and the ga functions of MATLAB. The function ga is considered for
the Yeoh, the Gent and the extended-tube type model since lsqnon-
lin can get stuck in a local optimum. The parameters for these three
models are identified based on the digitised data of Treloar tabu-
lated in Hossain and Steinmann (2013). For the numerical integra-
tion, the 21 integration points of Bažant and Oh (1986) are used as
listed in Table 5. The original parameters of the models and the
identification results are given in Table 4,5.

Firstly, the results for the approximated Mooney-Rivlin type
model are shown in Fig. 5. Furthermore, Lion et al. (2013)’s direc-
tional stress in Eq. (24) can be optimised for the Mooney-Rivlin
original parameters shown in Table 4. The comparisons are dis-
played in Fig. 6. Secondly, the Yeoh model is considered. The
parameter identification results are shown in Fig. 7. Thirdly, the
Gent model is displayed in Fig. 8. Finally, the extended-tube type



Fig. 3. The comparisons of the affine and non-affine models for the UT case. The exact solution is based on the analytical integration of Eq. (24) by Lion et al. (2013). For the
non-affine computations, Eq. (25) is employed. (a) l1 ¼ 1 MPa½ � and l2 ¼ 0 MPa½ � (b) l1 ¼ 0 MPa½ � and l2 ¼ 1 MPa½ �.

Fig. 4. The comparisons of the affine and non-affine models for the ET case. The exact solution is based on the analytical integration of Eq. (24) by Lion et al. (2013). For the
non-affine computations, Eq. (25) is employed. (a) l1 ¼ 1 MPa½ � and l2 ¼ 0 MPa½ � (b) l1 ¼ 0 MPa½ � and l2 ¼ 1 MPa½ �.

Table 4
The original and identified model parameters for the directionalisation comparisons.

Mooney-Rivlin l1 MPa½ � l2 MPa½ �
Original 0.1620 5.90e�3
UT 0.170 	 0
ET 0.1617 3.56e�3

Lion l1 MPa½ � l2 MPa½ �
UT 0.1085 0.6868
ET 0.6026 	 0

Yeoh l1 MPa½ � l2 MPa½ � l3 MPa½ �
UT 0.1643 �1.53e�3 4.32e�5
ET 0.2132 �1.27e�3 3.95e�5

Gent l1 MPa½ � Im

UT 0.1229 82.6
ET 0.1809 114.1

Extended-tube lc MPa½ � d le MPa½ � b

UT 0.0974 9.15e�3 0.300 0.172
ET 0.1402 7.47e�3 0.129 0.064
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model fits are plotted in Fig. 9. In the cases of approximated ver-
sion of the Mooney-Rivlin model in Fig. 5 and the model of Lion
et al. (2013) in Fig. 6, small to moderate differences in comparison
8

with the corresponding standard Mooney-Rivlin solution exist. As
a remark, the model applied by Lion et al. (2013) is not formulated
using the directionalisation of the classical Mooney-Rivlin strain
energy as applied here. The Yeoh and Gent models are exactly
directionalised, and these models are not able to fit the UT and
ET data together. In this aspect, the extended-tube type model per-
forms better than the mentioned models. This particular success
stems from the directionalisation of the tube term in Eq. (64) with
the isochoric macro-area-stretch m̂a.
3.3. Optimisation of the integration points

Based on the algorithm demonstrated in Table 2, the 21 integra-
tionweights of Bažant andOh (1986) are optimised for the analytical
solutions of Lion et al. (2013) for the UT and ET cases. As an optimi-
sation tool, MATLAB’s lsqlin function is utilised. For the optimisation of
the weights for the UT, the following vector d is considered:

d ¼ Put; . . . ;Put|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
l1¼1;l2¼0

; Put; . . . ; Put|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
l1¼0;l2¼1

264
375

T

; ð68Þ

where the size of vector d is 2� ndir �m, and m is the length of the
analytical solution Put from Lion et al. (2013). Moreover, under-



Table 5
Optimised integration weigths for the 21 points, wB represents Bažant and Oh (1986)’s weights. wut and wet are based on the optimisation for UT and ET, respectively.

a ea1 ea2 ea3 wB wut wet

1 0 0 1 0.0265214244093 0.0251909960250 0.0238695589281
2 0 1 0 0.0265214244093 0.0251909960250 0.0238695589281
3 1 0 0 0.0265214244093 0.0251909960250 0.0238695589281
4 0 0.707106781187 0.707106781187 0.0199301476312 0.0222769709304 0.0238018297263
5 0 �0.707106781187 0.707106781187 0.0199301476312 0.0222769709304 0.0238018297263
6 0.707106781187 0 0.707106781187 0.0199301476312 0.0222769709304 0.0238018297263
7 �0.707106781187 0 0.707106781187 0.0199301476312 0.0222769709304 0.0238018297263
8 0.707106781187 0.707106781187 0 0.0199301476312 0.0222769709304 0.0238018297263
9 �0.707106781187 0.707106781187 0 0.0199301476312 0.0222769709304 0.0238018297263
10 0.836095596749 0.387907304067 0.387907304067 0.0250712367487 0.0242304321952 0.0238018297263
11 �0.836095596749 0.387907304067 0.387907304067 0.0250712367487 0.0242304321952 0.0238018297263
12 0.836095596749 �0.387907304067 0.387907304067 0.0250712367487 0.0242304321952 0.0238018297263
13 �0.836095596749 �0.387907304067 0.387907304067 0.0250712367487 0.0242304321952 0.0238018297263
14 0.387907304067 0.836095596749 0.387907304067 0.0250712367487 0.0242304321952 0.0238018297263
15 �0.387907304067 0.836095596749 0.387907304067 0.0250712367487 0.0242304321952 0.0238018297263
16 0.387907304067 �0.836095596749 0.387907304067 0.0250712367487 0.0242304321952 0.0238018297263
17 �0.387907304067 �0.836095596749 0.387907304067 0.0250712367487 0.0242304321952 0.0238018297263
18 0.387907304067 0.387907304067 0.836095596749 0.0250712367487 0.0242304321952 0.0238018297263
19 �0.387907304067 0.387907304067 0.836095596749 0.0250712367487 0.0242304321952 0.0238018297263
20 0.387907304067 �0.387907304067 0.836095596749 0.0250712367487 0.0242304321952 0.0238018297263
21 �0.387907304067 �0.387907304067 0.836095596749 0.0250712367487 0.0242304321952 0.0238018297263

Fig. 5. The comparisons for the approximately directionalised version of the Mooney-Rivlin model in Eq. (59) with the unidirectional solutions of the standard Mooney-Rivlin
model.

Fig. 6. The parameter identification results for the model of Lion et al. (2013).
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braces indicate the evaluated Put for that parameter set. Similarly,
for the ET case, d is defined as

d ¼ Pet ; . . . ;Pet|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
l1¼1;l2¼0

; Pet; . . . ; Pet|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
l1¼0;l2¼1

264
375

T

: ð69Þ
9

The directional stresses from the directionalisation of the
Mooney-Rivlin model in Section 2.6 are not considered for
the optimisation since they do represent the Mooney-Rivlin
model exactly. In this regard, the exact solutions of Lion
et al. (2013) provide a solid setting for any numerical
comparison.



Fig. 7. The parameter identification results for the Yeoh model given by Eq. (61).

Fig. 8. The parameter identification results for the Gent model given by Eq. (63).

Fig. 9. The parameter identification results for the extended-tube type model given by Eq. (65).
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First, the optimisation is done for the UT vector d given in Eq.
(68). Subsequently, the optimisation results are visualised in
Fig. 10. Since 21 integration points are considered, the unit-
sphere is rotated 21 times according to the algorithm. Essentially,
each loading curve represents the corresponding rotation. There-
fore, this visualisation manifests material symmetry. Another tech-
nique to assess material symmetry is the annular disk benchmark
of Ehret et al. (2010). However, to observe the changes in material
symmetry, the locking stretch of the corresponding microsphere
model has to be reached. For this reason, it is not considered in this
study. This matter was discussed in Dal et al. (2018b). Based on
Fig. 10, it can be concluded that the algorithm given in Table 2
slightly improves the material symmetry. Although the integration
weights are optimised for the UT, the optimisation of material
symmetry for the ET is more obvious.
10
Second, the optimisation results for the ET vector d given in Eq.
(69) are displayed in Fig. 11. In this case, despite the optimisation
is based on the ET, there is no significant difference between the UT
results in Fig. 11 with the UT results in Fig. 10. Considering the ET
case, a clear improvement of material symmetry is observed since
the loading curves closely cluster around each other. The optimised
weights for the UT and ET are listed in Table 5.
3.4. FE benchmark 1: perforated strip with a hole

In this part, a perforated strip with a hole is analysed. The main
motivation of this benchmark is to compare different 1D stress-
stretch relations for a non-homogeneous stress state in contrast
to the UT and ET cases. The FE program COMSOL is used to analyse
the directional models given in Sections 2.5 and 2.6. Furthermore,



Fig. 10. The optimisation of Bažant and Oh (1986)’s 21 point weights for the UT. The ET results are recomputed based on the optimised weights.

Fig. 11. The optimisation results of the Bažant and Oh (1986)’s 21 Points. The points are optimised based on the exact solutions of the ET and recomputed for the UT.
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since incompressibility has to be taken into account, the mixed u-p
approach is applied to overcome the inherent numerical difficul-
ties. Hence, the perturbed Lagrangian method (see Sussman and
Bathe, 1987) with constant pressure is a natural choice for the
hybrid free energy approach. Due to the volumetric energy defined

in Eq. (15) in Section 2.3 (e.g. qRU
vol ¼ K

2 J � 1ð Þ2), there is no differ-
ence between the formulation used here with the Q1P0 formula-
tion by Simo et al. (1985) and Miehe (1994). To begin with, the
following Galerkin form is considered:
Fig. 12. (a) Perforated strip with a hole (t ¼ 20; h ¼ 100; l ¼ 50 and R ¼ 50), all in
mm. Only the 1=8 of the geometry is analysed due to the geometric and boundary
condition symmetries. The displacements are ramped up to 100 and 660 mm (k ¼ 2
and k ¼ 7:6) with 20 loading steps, 3600 Q1P0 elements with 6 elements per
thickness.
G u;p; du; dpð Þ ¼
Z
Be

R

S : dEdV þ
Z
Be

R

dp J � 1þ p
K

� �
dV ¼ 0: ð70Þ

The geometry and boundary conditions are illustrated in Fig. 12.
For this standard geometry, the dimensions are obtained from
Waffenschmidt et al. (2014). Fig. 13 depicts the norm of the total

displacement jjujj and the Von-Mises stresses
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 T

D : TD
q

for the

Mooney-Rivlin type model in Eq. (59) (cf. Eq. (31) and (48) for
the exact form). Furthermore, the directional stresses r̂a of the
two mentioned models are locally compared with each other at
point A. The material parameters employed are from the ET fit
given in Table 4. For both models, the results of the corresponding
contour plots seem to be similar. On the other hand, the local direc-
tional stresses are different. Eq. (24) results in negative r̂a values
separately from Eq. (59), which produces positive values. Albeit
their r̂a definitions are different, the r̂a curves have a similar
trend. Furthermore, Eq. (24) depicts a slight numerical conver-
11
gence problem associated with Eq. (36), when the loading is fur-
ther increased. In contrast, Eq. (59) does not have numerical
issues with further loading.



Fig. 13. The comparisons between models of Lion et al. (2013) in Eq. (24) and Mooney-Rivlin type model given in Eq. (59).
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To compare the directionalised models in a quantitative sense,
force–displacement curves are considered. The employed parame-
ters are chosen for the ET case given in Table 4. However, UT
parameters are employed for the Yeoh, Gent and extended-tube
type models, as the loading strech of k ¼ 7:6 is considered. More-
over, for the Mooney-Rivlin model defined by Eqs. (31) and (48),
which is essentially equivalent to the standard Mooney-Rivlin
12
model, the original parameters in Table 4 are employed. The results
are demonstrated in Fig. 14. Firstly, based on the optimisation
results presented in the previous Section 3.3, optimised integration
weights are compared with each other utilising the directional
stress of Lion et al. (2013) in Eq. (24). According to Fig. 14, employ-
ing different integration weights does not affect the results. As a
further remark, the variation of l2 affects the results only slightly,



Fig. 14. The force–displacement curves. Forces are multiplied with four due to the symmetry. (a) The evaluation of different sets of integration weights for the model of Lion
et al. (2013) is based on Table 5 (b) a comparison of Lion et al. (2013) (Eq. 24) and Mooney-Rivlin type (Eq. 59) models (c) A comparison of Yeoh (Eq. 61), Gent (Eq. 63) and
extended-tube type (Eq. 65) models from Section 2.6 for strains up to k ¼ 7:6.

Fig. 15. The TD
12 component of the deviatoric Cauchy stress tensor TD for the Lion’s model in Eq. (24). (a) / ¼ 0 (b) / ¼ p (c) / ¼ 2p (d) / ¼ 3p (e) / ¼ 4p. The material

parameters employed are from the ET fit given in Table 4.
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Fig. 16. The moment-rotation curves for the directional models presented in Sections 2.5 and 2.6. (a) A comparison of Lion et al. (2013) (Eq. 24) and Mooney-Rivlin type (Eq.
59) models (b) Comparisons between the Yeoh (Eq. 61), Gent (Eq. 63) and extended-tube type (Eq. 65) models. Moments M33 are calculated from the Cauchy stress T. The
material parameters employed are from the ET fit given in Table 4.
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as the nonlinearity is small. Furthermore, Fig. 14 elucidates the
Yeoh (Eq. 61), Gent (Eq. 63) and extended-tube type (Eq. 65) mod-
els for large strains, in which they display a similar UT-like
performance.

3.5. FE benchmark 2: twist of a rectangular prism

Another numerical example, which is inspired from Dal et al.
(2018b), is presented to assess both the stability and the perfor-
mance of the directional stress r̂a of the directional models. Here,
a rectangular prism (2 � 2 � 5 mm) with 12 � 12 � 40 discontin-
uous pressure-linear displacement elements is subjected to 4p
rotation on the top of the geometry. To rotate the top of the sur-
face, a rigid connector is utilised. Moreover, at the centre of the
top surface, u1 and u2 components of the displacement are fixed,
but u3 is left free. In total, 50 loading steps are considered. The
moment M33 (evaluated in the actual configuration) and rotation
/ are obtained from the RBE2 type formulation. In the simulations,
no stability problems occurred, despite the extreme deformations.
Quadratic convergence was observed for each loading step. The
contour plots of the simulation are shown in Fig. 15. The displace-
ment on the top surface is computed as u3 ¼ 2:1058 mm½ �. Similar
to Section 3.4, the moment M33 and rotation / comparisons are
illustrated in Fig. 16. The moment-rotation curves depict mild non-
linearity. Furthermore, the differences between the Yeoh, Gent and
extended-tube models are due to the parameter identification
based on large strains.
4. Conclusion

For the affine and non-affine representative directions model,
the same structure of the material modulus arises. The investiga-
tions of the non-affine approach have shown relatively unfeasible
solutions compared to the affine approach. The directionalisation
concept introduced here is a favourable alternative to statistical
thermomechanics oriented approaches by obtaining 1D directional
stresses from the standard first and second invariant based hyper-
elastic models. Furthermore, it provides a sound basis for inelastic
modelling extensions. As an interesting outcome, it is possible to
make standard invariant based isotropic models direction depen-
dent. Moreover, with two different directional stretch definitions,
the method results in an equivalent form of second Piola–Kirchhoff
stress tensor acquired from the invariant based approach. If the
inelasticity is included in the modelling, the related tensor
mechanics and additional terms in the evolution equations due
to the macro-area-stretch could be cumbersome. Thus, an approx-
14
imate directionalisation can be combined with the multiplicative
split of the micro-stretch. However, for a simultaneous UT and
ET curve fitting, as in the case of extended-tube model, the inclu-
sion of the macro-area-stretch is essential. In general, the employ-
ment of the UT solution of any hyperelastic model as a directional
stress should be avoided. The presented algorithm for optimising
the weights of the integration schemes reveals that improvement
in material symmetry for initially isotropic materials can be
obtained. Nonetheless, improvement of the accuracy was not
observed. The FE benchmarks also illustrated that the force–dis-
placement and moment-rotation curves are not affected by the
change of integration weights. In future, this should be investi-
gated further with microsphere based models. The extension of
the algorithm is possible as integration directions and weights in
the literature could be optimised for the intended application area.
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