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Abstract—Extracting buildings from remote sensing (RS) images
is an important task with a variety of applications. Considerable
attention has focused on achieving new state-of-the-art (SOTA)
accuracy with more and more advanced deep learning (DL) models.
However, the developed models still hardly generalize across geo-
graphical areas, hindering the practical use of SOTA approaches.
To attack this problem, we established a baseline for model cross-
area generalization ability using available datasets for building
extraction (BE). In addition to two popular fully convolutional
neural network (FCN) based models, we first adapted two novel
transformer-based models, shifted windows (Swin) transformer
and SegFormer, which are all able to output SOTA accuracy with no
big difference when tested within one area. However, experimental
results show that all models fail to generalize to a different area.
We then propose to fine-tune pretrained models from one area
on a small subset of an unseen area, the effectiveness of which
depends on the model choice and the data size for tuning. By jointly
taking advantage of the transfer learning idea and the multiscale
feature learning ability of SegFormer, a distinct improvement has
been achieved compared to results from Swin transformer and
FCN-based models trained on the same amount of data. Commonly
used metric, Intersection over Union, can be increased from 38.97 %
to 70.86 %, and from 48.36 % to 74.51%, when using 10% and 30%
subset of the targeting area, respectively. The influence of model
choice and data size for tuning has also been investigated. Our
work contributes to complementing the algorithm development and
within-area model evaluation in the hot field of BE from RS images.

Index Terms—Benchmark dataset, building extraction (BE),
convolutional neural networks (CNNs), generalization ability,
remote sensing (RS), transformer.
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I. INTRODUCTION

UILDING extraction (BE) from remote sensing (RS) im-
B ages is a hot topic because buildings are fundamental to a
wide variety of high-level tasks such as land-use statistics, urban
planning, and population evaluation [1], [2]. It remains a chal-
lenging semantic segmentation task due to a large within-class
and small between-class variance, diverse shapes of buildings,
complex backgrounds, and high requirements on the bound-
aries [3].

In recent years, deep convolutional neural networks (CNNs)
and fully convolutional neural networks (FCNs) have demon-
strated state-of-the-art (SOTA) performance, the same as in
other visual tasks in the field of earth observation [4]. Be-
cause of the powerful feature learning ability, FCN and its
variants have been the mainstream for BE. This kind of model
features an encoder—decoder structure, i.e., a contracting path
gradually down-sampling the resolution of feature maps and
an expanding path progressively restoring the resolution. This
way, hierarchical features and contextual information can be
modeled for accurate prediction of buildings from backgrounds.
To achieve accurate results and sharp boundaries, an enormous
number of variants have been proposed in the past years. The
work [5] used a distance map as a building mask to pose more
constraints for feature learning. The work [6] designed a dense
spatial pyramid pooling to extract dense and multiscale features
simultaneously and used a focal loss to suppress the impact
of incorrect labels. The work [7] proposed a boundary-aware
perceptual loss, consisting of a loss network and transfer loss
functions, which achieves much improvement over the cross-
entropy loss when tested with PSPNet and UNet. Similarly, [8]
also used a structural feature constraint module for boundary
refinement. For postprocessing, regularization algorithms were
developed to refine mixed pixels and building boundaries into
regular shapes. In [9] and [10], boundaries were generalized with
detected edges and feature points. In [11], a dense conditional
random field was used to smoothen extraction results. Based on
this, [12] developed a graph-based conditional algorithm to fur-
ther solve the boundary problem by combining some strategies
to extract and fuse multilevel and multiresolution features. To
summarize, main strategies include global information mining,
boundary contour refinement, dilated convolution, multiscale
prediction [13], and feature fusion [3].
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While being the standard paradigm for semantic segmenta-
tion tasks, FCN-based models are not good at modeling global
contextual information, limited by their receptive field. To tackle
this problem, there have been various solutions. One is based on
attention mechanisms, e.g., integrating attention modules into
FCN models [14]. Another one is resort to transformer architec-
tures that translate 2-D image-based tasks into 1-D sequence-
based tasks and feature powerful sequence-to-sequence model-
ing [15], [16]. Recently, the computation issue of transformers
motivated novel approaches such as shifted windows (Swin)
transformer and SegFormer [17], [18].

There has been an effort to adapt or improve Swin transformer
for multiclass semantic segmentation tasks using RS images.
The work [19] proposed a memory-augmented transformer us-
ing a memory-based global relationship guidance module and a
transformer-based local feature extraction module. The work
[20] proposed context transformer to combine the extracted
feature from a global and a local CNN branch. The work [21]
proposed a bilateral awareness network, consisting of a two-path
network, one based on transformer (ResT) and the other based
on CNNs, for feature extraction and an attention-based feature
aggregation module. The authors in [22] proposed an efficient
hybrid transformer by combining a CNN-based encoder and a
Swin transformer-based decoder, achieving efficiency-accuracy
balance for urban scene segmentation. The authors in [23]
adaptively fused multilevel features from CNNs and Swin trans-
former with a self-attentive mechanism. The work [24] used
Swin transformer as a backbone for semantic segmentation from
fine-resolution RS images, coupled with a proposed decoder for
feature aggregation. The authors in [25] proposed an efficient
transformer with multilayer perception (MLP) head and modules
for edge enhancement, after investigating Swin transformer.
Besides semantic segmentation, other RS applications based
on transformer include object detection and instance segmen-
tation [26].

There are also attention and transformer-based studies with a
focus on BE from RS images. The authors in [27] used a HRNet-
like architecture based on multibranch feature encoding and
attention mechanism. The authors in [28] proposed a U-Net that
combines self-attention and reconstruction-bias modules. The
authors in [29] combined a U-shaped encoder—decoder structure
and an asymmetric pyramid nonlocal block. Also using nonlocal
block, [13] proposed a global multiscale encoder—decoder net-
work. The work [30] proposed to adaptively fuse the multiscale
learned features by Swin transformer.

Most of these newly developed models are benchmarked on
publicly available datasets and demonstrate outperformance,
while some application-oriented studies also created their own
datasets [14], [31]. For example, by exploiting low- and high-
level features and designing a boundary refinement module,
the Intersection over Union (IoU) metric has been improved
from 90.86% to 91.4% when tested on the WHU dataset [32].
These works can provide interesting methodological insights,
even though there is usually only one percentage point rise
in accuracy. On the other hand, the generalization ability of
the proposed models, particularly across geographical areas
are rarely tested. This hinders application-oriented studies, as
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it is usually uncertain how a deep learning (DL) model will
perform when tested on data subject to domain shift [33]. This,
in general, is an interesting and important topic when using
machine learning in RS and quick answers are transfer learning
and domain adaptation [34]-[37]. While there are BE challenges
targeting on cross-area generalization, such as the DeepGlobe
2018 challenge [38], the datasets are underused in literature due
to the unavailability of testing labels. Consequently, there is still
little reference when it comes to generalizing DL models for BE
from RS images.

In this study, we proposed a practical approach to improving
model performance in geographically distinct areas by adapting
advanced transformer-based models coupled with a transfer
learning idea. We reviewed related work to identify suitable
datasets and models and experimentally demonstrated the need
for advanced models and strategies to enable cross-area BE
applications. Our investigation provides a new perspective to
the accuracy convergence in the hot BE topic. The particular
contributions of this work are as follows.

1) We adapted two transformer-based models, Swin and
SegFormer, for BE from RS images, and we proposed
to test model performance in a realistic cross-area setting
by adjusting public datasets.

2) We showed that Swin and SegFormer can provide SOTA
results in a common setup but can be worse compared to
SOTA convolution-based models, depending on aspects
such as data size and test setting.

3) We found that SegFormer can provide higher accu-
racy than both Swin-based and convolution-based models
when transferred from a different area and fine-tuned in the
target area. The effectiveness has been tested with several
experiments on open datasets.

The rest of this article organized as follows. Section II elabo-
rates the choice of models, and the adapted Swin and SegFormer
structure for our study. Section III details descriptions about
the datasets and the experimental setup for testing model cross-
area generalization ability. Section IV evaluates BE accuracy
of different models when tested within one dataset and in a
cross-area setting. This section also visualizes and compares
BE results from different settings. Section V discusses the model
generalization issue described above, based on the interpretation
and analysis of the achieved results, and points out the remaining
challenges and the possible solutions for the future work. Finally,
Section VI concludes this article.

II. ADAPTED SWIN AND SEGFORMER FOR BUILDING
EXTRACTION

Many classic networks have been tested on the aerial WHU
building dataset [39], e.g., U-Net [40], U-NetPlus [41], Seg-
Net [42], DeconvNet [43], HRNetv2 [44], Refinenet [45], Se-
U-Net [46], Ma-Fcn [10], PSPNet [47], and DeepLab V3 [48].
The best results are 91.4% IoU and about 95.51% F1-score by
a coarse-to-fine boundary refinement network based on VGG-
16 [32], and 90.77% IoU and 95.4% F1-score by MAP-Net [29].
These methods achieve similarly high accuracy by effectively
exploiting multiscale features. Taking this point into account, we
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Fig. 1. Architecture of a tiny Swin transformer as a backbone for BE. The output multiscale features from all four stages are fed into a decoder. Changing C and

layer numbers of each stage will result in model variants of different sizes.

took two representative FCN-based models, MAP-Net [27] and
Foreground-Aware Relation Network (FarSeg) [49], as baselines
for our investigation.

Transformer-based models have also been tested on the aerial
WHU building dataset, and best results are 88% IoU and 88.2%
F1-score by an adapted Swin transformer [30]. Considering the
recent great success of transformers, we adapted two models,
Swin and SegFormer. The former takes both the advantages of
CNNs and transformers by using a hybrid structure combining
convolutional blocks and transformer blocks, and the latter sets
new SOTA for publicly available semantic segmentation datasets
in the field of computer vision by designing a hierarchical
transformer encoder and a lightweight All-MLP decoder. These
two models can generate both high-resolution fine features and
low-resolution coarse features, thus facilitating the BE purpose.

The structure of the adapted Swin transformer as a backbone
is illustrated in Fig. 1. For the head part, we utilized a simple
structure similar to MAP-Net head and SegFormer for feature
fusion, in addition to the original UPerNet-based head [17], and
the networks are referred to as Swin-M and Swin-U, respectively.

As shown in Fig. 1, Swin transformer as a backbone consists
of the following core modules.

1) Patch partition. In this process, the input image patch is
split into nonoverlapping smaller patches, ending up with
some feature vectors corresponding to these small patches,
which are further processed by the subsequent operations.
For instance, an input image of the size of 512 x 512 is
partitioned into 128 x 128 = 16 384 small patches with
the size of 4 x 4 x 3 pixels.

2) Linear embedding is the first operation applied to the
processed feature vectors after patch partition, which out-
puts 16 384 new feature maps with a higher dimension of
C. For tiny, small, and base model, C is 96, 96, and 128,
respectively.

3) Swin transformer block. The embedded feature vectors
then go through the first stage, where the main operation
is multihead self-attention within two sequential trans-
former and Swin transformer blocks. During this process,
window-scale and local features are efficiently learned by
applying self-attention within each window, e.g., with a
size of 7 x T and 12 x 12 patch when the input image is

with a size of 224 x 224 and 384 x 384, respectively [17],
which is mainly to address the computation problem.
Cross-window information can also be learned by the shift
of window, i.e., Swin. When the original input is with a
size of 512 x 512, as the case for BE in this study, the
window size is set as 12 x 12, considering the ground
sampling distance of the used high-resolution images and
the computation efficiency. In addition, padding is used
when necessary to fit the window into the whole patch.
The following stages consist of similar operations, ex-
cept that surrounding small patches are first merged.
Layer number of stages 1, 2, 3, and 4, are {2,2,6,2},
{2,2,18,2}, and {2,2,18,2} for tiny, small, and base
model, respectively. The size and dimension of feature
maps, as well as the equivalent receptive field are kept the
same within each stage.

4) Patch merging. This is similar to a down-sampling pro-

cess in CNNs. The size of the partitioned patchesare 4 x 4,
8 % 8, 16 x 16, and 32 x 32 for stages 1, 2, 3, and 4, re-
spectively. This leads to a CNN-like hierarchical structure,
so that features of different scales can be progressively
learned.

We used output features from all four stages to benefit from
multiscale features in the head network. Features from stages 2,
3, and 4 are first up-sampled into 128 x 128, and then concate-
nated with features of stage 1. Afterwards, the combined fea-
tures are squeezed in the channel dimension and progressively
up-sampled into the same size as the input, i.e., 512 x 512, using
interpolation layers followed by convolution layers to decrease
the feature channels.

Fig. 2 illustrates the SegFormer architecture used in this study.
Similar to Swin, its encoder also outputs hierarchical feature
representation from the four-stage encoder, with the sizes of
128 x 128, 64 x 64, 32 x 32, and 16 x 16, respectively. One
difference comes in the module of overlapped patch merging.
Unlike the nonoverlapping patch merging between stages in
Swin, it aims at preserving the local continuity around patches.
Padding is needed to output feature maps with the same size
as the nonoverlapping patch merging case. Another difference
is the efficient self-attention module. Instead of performing
with-in window self-attention, SegFormer relied on a sequence
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reduction process to address the computation problem. Besides,
the mixed feed-forward network (Mix-FFN) module within each
stage is to provide positional information by mixing a 3 x 3
convolution and an MLP. Mix-FFN takes output features from
the efficient self-attention module as inputs, and these features
are processed with a convolution layer with a kernel size of 1,
a convolution layer with a kernel size of 3, an activation layer,
and a convolution layer with a kernel size of 1. The processed
results are then added with the inputs for the final output of the
Mix-FFN module.

One of the novelties of SegFormer is the lightweight decoder,
the goal of which is the same as MAP-Net and Swin-M, i.e.,
aggregating multiscale features for final dense prediction. There
are four steps in the SegFormer decoder. First, one MLP unifies
the multilevel features from each of the four stages in the encoder
to output features of the same channel dimension C. Then, fea-
tures are up-sampled to the size of 128 x 128 and concatenated
together, which are fused subsequently by a following MLP
layer. Finally, one MLP layer takes the fused features to predict
a segmentation mask, which is then up-sampled to the input size
of 128 x 128.

III. EXPERIMENTAL SETUP

A. Datasets for Cross-Area Model Generalization Testing

Commonly used airborne datasets for BE include the WHU
building dataset [50], the Massachusetts building dataset [51],
the International Society for Photogrammetry and Remote Sens-
ing (ISPRS) Vaihingen and Potsdam datasets [52], the Inria
dataset [53], and the Aerial Imagery for Roof Segmentation
(AIRS) dataset [54], which are all not ideal for testing cross-area
model generalization ability for the following reasons. Because
of the officially fixed and standard split of training, validation,
and testing datasets, the WHU building dataset is often used to
compare different models. The whole dataset is spatially split
instead of randomly split, but it is only from one single city, i.e.,
Christchurch, New Zealand, with a size of 450 km?2. Therefore,
it is not suitable for testing cross-area model generalization. The
Massachusetts building dataset is also made up of images from
only one single city, i.e., Boston, Massachusetts, and the split is
not consistent in different studies, making it difficult to interpret
different model performances [13], [55]. The ISPRS Vaihingen
and Potsdam datasets only cover a small area with the size of 2
and 11 km?, respectively. The Inria dataset includes images from
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Architecture of SegFormer, consisting of a four-stage encoder and an MLP-based decoder.

different cities, but the test data used in the literature is a subset
of the training data from the same areas, i.e., the validation set
described in [53], due to the unavailability of the official ground
truth (GT) labels [13], [55]. Therefore, cross-city tests of the
Inria dataset have rarely been reported in the literature, and the
comparison is not easy due to differences in data processing,
splitting strategies, and augmentation methods [12]. Focusing
on building roofs instead of building footprints, the AIRS dataset
also covers only one single city, i.e., Christchurch, New Zealand,
and the training, validation, and test datasets are randomly,
instead of spatially, split.

Commonly used space-borne datasets include the WHU
building dataset, the Urban 3-D Challenge dataset [56], and
the Deep Globe Building Extraction Challenge (DG-BEC)
dataset [38]. The WHU building satellite dataset is not suitable
for testing cross-area model generalization, as the six satellite
images are from the same geographical area. The Urban 3-D
Challenge dataset is not suitable for cross-area test either, as the
training, validation, and test sets are all from the same two AOls,
i.e., the test area is not entirely distinct from the training area.
The DG-BEC dataset includes World View-3 satellite images and
building labels from four areas: Las Vegas, Paris, Shanghai, and
Khartoum. The data of different cities is released in separate
folders instead of combined, making it possible for cross-area
tests. In literature, usually only a part of the dataset, e.g., only
available data form one or two cities, is used, in which case, the
training and test split is usually in a random format [27], [57].

Aiming at cross-area test, the DeepGlobe-Building dataset
was chosen and prepared in a novel generalization-testing man-
ner in our study, ending up with five subdatasets. Specifically,
we used pan-sharpened RGB images from three cities located
on different continents, with a size of 650 x 650. No other bands
were used without loss of generality. In addition, the WHU
aerial dataset is also used to benchmark our methods since it
is very often used in literature, and an official split is followed.
There are three bands, R, G, and B, for each sample, with a
size of 512 x 512. The number of image patches for training,
validation, and test are listed in Table I, and the exact splits of
training, validation, and test sets are fixed for all experiments.
Taking the DG-BEC-Shanghai-30 and DG-BEC-Shanghai-10
dataset for example, validation and test sets are exactly the same
and the 458 training patches of the smaller set is part of the
larger set. This setting helps interpreting comparative results
from different settings.
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TABLE I
SAMPLE NUMBER OF TRAINING, VALIDATION, AND TEST SET
FOR DIFFERENT EXPERIMENTS IN THIS STUDY

dataset train  val test
DG-BEC-Vegas 2310 386 1155
DG-BEC-Shanghai-30 1374 459 2749
DG-BEC-Shanghai-10 458 459 2749
DG-BEC-Paris-30 344 116 688
DG-BEC-Paris-10 114 116 688
WHU 4736 1036 2416

B. Implementation Details

Pretrained weights are important for transformer-based mod-
els [25]. Therefore, all transformer-based models are initialized
using the pretrained weights on ImageNet-1K [17], [18]. All
models were implemented using the PyTorch framework. We
used binary cross-entropy as the loss function and synchronized
trained models over four GPUs with a total of eight images per
mini-batch (two images per GPU). The synchronized batch nor-
malization was used for cross-GPU communication of statistics
in the batch normalization layer. During training on the DG-BEC
dataset, we applied common data augmentation skills including
random resize with ratios 1.25 and 1.5 followed by cropping
to 512 x 512, random horizontal and vertical flipping, and
random rotation in four directions. We trained the models using
AdamW optimizer for 500 epochs, and the learning rate was set
to an initial value of 0.001. During training on the WHU dataset
for 300 epochs, only random flipping and rotation was used
for augmentation, for fair comparison with previous work [27].
During inference, no data augmentation is used for simplicity
and fair comparison. As random cropping can result in different
testing accuracy, we cropped and saved the test samples as a
preprocessing setup for the DG-BEC dataset.

C. Experimental Setup to Assess Cross-Area Model
Generalization Abilify

To benchmark SOTA models first, we trained models using
DG-BEC-Vegas training set and tested on DG-BEC-Vegas test
set. This benchmarking experiment is also done on the WHU
dataset because it is often used in BE studies. This way, we can
compare model performance in a common experimental setting,
i.e., within one area and one dataset.

In order to test cross-area model generalization ability, mod-
els are first trained on the DG-BEC-Vegas training set. Sub-
sequently, there are different options. One is directly testing
the trained models on the DG-BEC-Shanghai/Paris test set.
The other is tuning the trained models with the DG-BEC-
Shanghai/Paris training set, in which case, there are two settings,
depending on the size of the training set. To demonstrate the
effectiveness of the pretrained weights, we compared the tuning
results to those without tuning, and the only difference is whether
to use pretrained weights from the DG-BEC-Vegas training set
when training on the DG-BEC-Shanghai/Paris training set.

As in literature, we report model performance with respect
to the target class, i.e., the building class, including precision,
recall, F1-score, and IoU.
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TABLE II
BE ACCURACY OF DIFFERENT MODELS TESTED ON DG-BEC-VEGAS DATASET

Model IoU Precision Recall Fl

FarSeg 0.8542 0.9283 09145 09214
MAP-Net 0.8338 0.9125 0.9063 0.9094
Swin-M-T  0.8430 0.9107 0.9189 0.9148
Swin-M-S 0.8452 0.9073 0.9251 0.9161
Swin-M-B 0.8285 0.8829 0.9308 0.9062
Swin-U-S 0.8400 0.9146 0.9115 0.9130
SegFormer  0.8571 0.9235 09227 09231

The best results are indicated in bold for each metric.

TABLE III
BE ACCURACY OF DIFFERENT MODELS TESTED ON WHU DATASET

Model IoU Precision  Recall F1

farSeg 0.8842 0.9372 0.9399  0.9385

Mapnet 0.8827 0.9444 0.9311 0.9377
Swin-M-S  0.8963 0.9480 0.9426  0.9453
Swin-U-S  0.9068 0.9504 09518  0.9511
SegFormer  0.9038 0.9493 09496  0.9495

The best results are indicated in bold for each metric.

IV. EXPERIMENTAL RESULTS

BE results are illustrated and compared in this section. For
both quantitative and qualitative comparisons, we listed results
under the setting of testing within one dataset, in addition to the
cross-area testing setting. This is to demonstrate the difference
of these two scenarios and enable a wide interpretation of the
generalization ability of transformer-based models.

A. Quantitative Assessment of Building Extraction Results

1) Comparison of Model Performance Within One Area:
Table II lists BE accuracy of different models tested on the
DG-BEC-Vegas dataset. From Table II, it can be seen that
these models are all able to produce similar high accuracy,
despite different architectures and different model sizes. The
relative worse results are from MAP-Net and Swin-M-B, while
the relative better results are from SegFormer. Compared to
Swin-M-S, there is no benefits from the larger model, Swin-
M-B. Therefore, Swin-M-B was not tested further in our study.
Swin-M-T was not further tested either as it provides worse
results than Swin-M-S.

BE accuracy tested on WHU dataset is listed in Table III. It
can be found that there are no big differences among the results
produced by different models, which is consistent as in Table II.
The worse results are from MAP-Net and the better results are
from Swin-U-S. The achieved SOTA accuracy on the benchmark
WHU dataset shows the correctness of our implementations in
the experiments.

2) Comparison of Model Cross-Area Performance: Table IV
lists BE accuracy of directly applying the models trained with
DG-BEC-Vegas training set on DG-BEC-Shanghai test set. Re-
sults from all the five investigated models are bad, and the better
one is by SegFormer. Besides, the recall metric is much lower for
all the models, meaning a high false negative in the BE results.
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TABLE IV
BE ACCURACY OF DIFFERENT MODELS TRAINED ON DG-BEC-VEGAS
TRAINING SET AND TESTED ON DG-BEC-SHANGHAI TEST SET

Model IoU Precision Recall F1
FarSeg 0.1902 0.5686 0.2222 0.3195
MAP-Net 0.1764 0.4095 0.2366 0.2999
Swin-M-S 0.1334 0.4903 0.1549 0.2354
Swin-U-S 0.1231 0.7506 0.1283 0.2192
SegFormer  0.2240 0.8154 0.2360 0.3661

The best results are indicated in bold for each metric.

Tables V and VI list BE accuracy after tuning models (trained
with the DG-BEC-Vegas training set) on a small subset of the
DG-BEC-Shanghai dataset. For fair comparison, results are also
listed when not using weights from the DG-BEC-Vegas training
set, i.e., models are only initialized with weights from ImageNet-
1 K and directly trained on the small subset of the DG-BEC-
Shanghai dataset. Namely, the same training data and weights
from ImageNet-1 K is used, and pretrained weights from the
DG-BEC-Vegas training set are the only difference between the
left and right part in Tables V and VL

By comparing the tuning and no-tuning settings in Tables V
and VI, it can be seen that pretrained weights from the DG-BEC-
Vegas training set are able to improve BE accuracy for all four
models, as there is an increase for all four metrics. It can also be
seen that there is a clear difference among different models.
For FarSeg, the benefit from pretrained weights of the DG-
BEC-Vegas training set depends on the available data size for
tuning. Specifically, when there are more data available, tuning
is not helpful anymore, as there is no performance improvements
when tuning on 30% of DG-BEC-Shanghai dataset for FarSeg
in Table V1. By contrast, the increase of MAP-Net is much larger
when tuning on 30% of DG-BEC-Shanghai dataset in Table VI,
compared to that in Table V. SegFormer achieves slightly and
consistently better accuracy by relying on pretrained weights
of the DG-BEC-Vegas training set. Lastly, the improvements
for Swin-M-S are remarkable in both settings. The IoU metric
increases from 38.97% to 65.57% and from 50.40% to 69.05%
when tuning on 10% and 30% of DG-BEC-Shanghai dataset,
respectively.

From Tables V and VI, it can also be seen that SegFormer
is able to provide the best BE results in almost all cases, and
the second best model is FarSeg, followed by Swin-M-S and
MAP-Net.

When more data from the target area is used, 30% in Table VI
in contrast to 10% Table V, an increase is obtained for all models
in both settings, i.e., in eight cases. It can also be seen that
MAP-Net improves more as the increase of the training data
in the tuning setting, while in the no-tuning case, FarSeg and
Swin-M-S improve more from Tables V and VL.

3) Improved Model Cross-Area Performance: We applied
the successful solutions on another test area, the DG-BEC-
Paris dataset, which achieved BE results in Table VII. As
described in Section III, SegFormer is always initialized with
pretrained weights from ImageNet-1 K. Our finding is consis-
tent with precious experiments in Section IV-A2. Specifically,
transferred SegFormer provides the highest cross-area accuracy.
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Directly applying pretrained models from DG-BEC-Vegas can-
not achieve reasonable results, while pretrained weights are able
to help in most cases when using a small set of the DG-BEC-Paris
dataset is available, and the performance is influenced by the
available training data size, and the choice of models. For
instance, SegFormer tuned with 10% of the data is able to provide
almost the same results with FarSeg tuned with 30% of the data.

B. Qualitative Assessment of Building Extraction Results

Qualitative comparisons were also carried out to comple-
ment the quantitative results and provide more insights into
the characteristics of different models and different settings.
Specifically, BE results of five different models were compared
using representative samples of varying shapes and sizes from
the DG-BEC-Vegas and WHU testing sets, as listed in Figs. 3
and 4, respectively.

Overall, these qualitative comparisons are consistent with
what have been found in Tables II and IIIL It can be seen that
there are no big differences among the predictions from the two
FCN-based and three transformer-based models, and BE results
from satellite images are worse than those from aerial images.
There are minor mistakes in the GT of both datasets, as can be
seen from the second columns in Figs. 3 and 4. In such case, most
models can actually predict correct results, as shown by the false
negative and false positive in the second columns of Figs. 3 and
4, respectively. Label noise causes difficulties in model training,
as well as result interpretation, and indicates that there is little
need to pursue higher and higher accuracy on one certain dataset.

Additionally, Fig. 5 compares BE results of two different
settings for two transformer-based models, corresponding to
Table VI. It can be seen that the cross-area test setting leads
to visually worse BE predictions, with more false positives
and false negatives, compared to those in Fig. 3. The same as
shown in Table VI, pretrained weights can help to improve BE
results, and SegFormer performs better than Swin-M-S. Still,
it is a difficult dataset to accurately predict all the buildings
of varying shapes with complex backgrounds. The same as in
Figs. 3 and 4, there are minor mistakes in the GT. There is
an additional building annotation in the last column in Fig. 5,
which is correctly left out in three of the four predicted results.
False positives tend to occur in impervious areas surrounding
buildings. False negatives tend to occur in the boundaries and
could be possibly improved by postprocessing methods.

V. DISCUSSION

In this section, we provide some empirical evidence of the
experimental setup and model design, as well as addressing the
problems of model generalization, based on insights gained from
the experimental results presented in Section I'V.

A. On the Advantage of Transformer-Based Models

Both Tables II and III show that there is a slight advantage in
transformer-based models under the within-one-dataset setting.
Jointly considering that the models are all among SOTA and are
of different sizes (for Swin-M-T, Swin-M-S§, and Swin-M-B in
Table II) and that our achieved accuracy is similarly high as in
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TABLE V
BE ACCURACY OF DIFFERENT MODELS TRAINED ON 10% OF DG-BEC-SHANGHAI DATASET AND TESTED ON DG-BEC-SHANGHAI
TEST SET UNDER TWO SETTINGS

tuning no tuning
Model loU  Precision  Recall Fl IoU  Precision  Recall Fl
FarSeg 06333 08109 07430  0.7755 06122 07522 07670  0.7595
MAP-Net 04383 07918 04954  0.6095 04262 05569 06448  0.5976
Swin-M-S 06557  0.8004 07839  0.7920 03897 06540 04910  0.5609
SegFormer 07086  0.8374  0.8218  0.8295 0.6953  0.8389  0.8024  0.8203

‘When tuning, models are pretrained on DG-BEC-Vegas training set.

The best results are indicated in bold for each metric.

TABLE VI
BE ACCURACY OF DIFFERENT MODELS TRAINED ON 30% OF DG-BEC-SHANGHAI DATASET AND TESTED ON DG-BEC-SHANGHAI
TEST SET UNDER TWO SETTINGS

tuning no tuning
Model loU  Precision  Recall Fl IoU  Precision  Recall FI
FarSeg 07234 08621 08181  0.8395 07254  0.8669 08163  0.8408
MAP-Net 06474 08285 07475  0.7859 04836 05558 07882  0.6519
Swin-M-S  0.6905 07790  0.8586  0.8169 05040  0.6030 07544  0.6702
SegFormer 07451  0.8624 08457 0.8539 07210  0.8564  0.8201  0.8379

‘When tuning, models are pretrained on DG-BEC-Vegas training set.

The best results are indicated in bold for each metric.

TABLE VII
BE ACCURACY OF TWO DIFFERENT MODELS TRAINED ON 0%, 109%, AND 30% OF DG-BEC-PARIS DATASET AND TESTED ON DG-BEC-PARIS
TEST SET UNDER TWO SETTINGS

Model Pre-trained weights  Data IoU Precision  Recall F1
DG-BEC-Vegas 0 03750 06763 04570 0.5454
ImageNet-1K lo% 06227 07803 07551 07675

FarSeg DG-BEC-Vegas 0.6425 0.7719 0.7931  0.7824
ImageNet-1K 309 06792 08135 08045  0.8090
DG-BEC-Vegas 06984  0.8185  0.8264 0.8224
DG-BEC-Vegas 0 03630 07457 04142 05326
ImageNet-1K 10 06725 08195 07894 0.8042

SegFormer  DG-BEC-Vegas 07015 08343 08151 0.8246
ImageNet-1K 07122 08385 08254 0.8319
DG-BEC-Vegas 30% 07113 08539  0.8099 0.8313

literature [27], we can assume that the highest possible accuracy
has been achieved, or we hit a bottleneck in such a testing
scenario. There is probably little improvement space left after the
considerable effort researchers have devoted to varying direc-
tions, such as designing loss functions and novel architectures.

The advantage of transformer-based models are still not very
clear when training on smaller datasets without using weights
from the DG-BEC-Vegas training set, as can be seen from the
right parts (no tuning) of Tables V and VI. When only training
on 10% of DG-BEC-Shanghai dataset, SegFormer provides the
best accuracy, followed by FarSeg. Swin-M-S is not better than
MAP-Net, providing the worst results among all four models.
Swin-M-S does not provide high BE accuracy probably because
it requires more data to train, compared to FarSeg and Seg-
Former. When increasing the size of training data, from 10% in
Table V to 30% in Table VI, all four models are able to provide
better results. Swin-M-S is better than MAP-Net but worse than
SegFormer which is slightly worse than FarSeg. Furthermore,
FarSeg and Swin-M-S improve much when using more training

data. These findings show that requirements on training data size
are different for different models. Transformer-based models can
be worse than CNN models when not training on enough data,
as can be seen from results in Tables II and II1.

The advantage of transformer-based models gets clear when
testing models in a cross-area setting, as can be seen from the
left parts (tuning) of Tables V and VI. In both tables, Swin-M-S
is clearly better than MAP-Net, and SegFormer proves to be
the best model, which can achieve high accuracy even using a
small training dataset. Still, FarSeg provides higher accuracy
compared to Swin-M-S and MAP-Net. In summary, the outper-
formance of transformer-based models depends on many factors,
including the test settings, the available dataset size for training
and tuning, as well as the specific architecture.

B. Cross-Area Model Generalization Ability

In the setting of cross-area test, high accuracy can be achieved
by tuning pretrained models on a small set of the testing area.
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This is true for all the four models. Even tuning on 10% of
the DG-BEC-Shanghai dataset brings a distinct improvement,
as can be seen by comparing Tables IV and V. No models can
achieve reasonable BE results in Table IV, and the results are
much worse, compared to directly initialized with ImageNet-
1 K weights and using 10% of the whole dataset for training,
indicating a big shift between data from the source area and the
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Visual comparison of different models tested on DG-BEC-Vegas testing set. False negative is marked in red, and false positive is marked in blue.

testing area. While this fine-tuning idea is a simple solution in a
transfer learning setting, our study experimentally finds that the
obtainable results depend both on the choice of the models and
the size of the available dataset for tuning. For instance, when
30% of the whole dataset is available in Table VI, the fine-tuning
result by FarSeg do not improve much and is similar to that by
SegFormer without tuning.



4112

RGB

GT

FarSeg

MAP-Net

Swin-M-§

Swin-U-5

SegFormer

Fig. 4.

A general explanation of the improvements gained from
pretrained weights is that a model learns more representative
features and generalizes better by seeing more samples from
both the pretraining and the testing areas, as it is usually true
that the available samples are not enough to exploit the model’s
full capacity. When there are enough samples for amodel, seeing
samples from a different area (pretraining area) might even lead
to worse results, as the case for FarSeg in Table VL.

Cross-area test, in general, belongs to a transfer learning
problem, and there are many research directions and reference
outside the scope of BE [36]. For instance, research on RS image
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Visual comparison of different models on the WHU testing set. False negative is marked in red, and false positive is marked in blue.

scene classification suggested that optimization methods also
play a role in the transfer learning results [58], and designing
additional modules can help to align the source and target do-
mains in the feature subspace [59]. Also, it has been shown that
active learning is able to efficiently adapt a classifier trained on a
source Sentinel-2 image to spatially distinct Sentinel-2 images
for mapping poplar plantations [35]. One step further is do-
main adaptation without target labels [60]. All these approaches
can help improve model generalization ability and facilitate
automatic and applicable BE from RS images. Future work will
consider further improvements by relying on specific transfer
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Visual comparison of transformer-based models trained on 30% of DG-BEC-Shanghai dataset and tested on DG-BEC-Shanghai test set, in the case of not

using (no-tuning, NT) and using (tuning, T) pretrained weights from the DG-BEC-Vegas training set. False negative is marked in red, and false positive is marked

in blue.

strategies such as learning meaningful representations from a
large amount of unlabeled data.

C. Cross-Data Model Generalization Ability

A close setting to cross-areas test is cross-data test, which
has been studied in literature, e.g., analyzing transfer learn-
ing capabilities of FCNs for slum mapping among QuickBird,
Sentinel-2, and TerraSAR-X data [61]. It has been found that
trained models with the WHU aerial dataset fail to generalize
to the WHU satellite data, even after data augmentation and
relative radiometric correction [62]. Following the proposed
tuning idea in this work, we carried out an experiment to test the
cross-data generalization ability of the advantageous SegFormer.
We applied SegFormer pretrained on DG-BEC-Vegas training
set on the WHU aerial test set with and without finetuning on
5% of the dataset. Interestingly, the IoU metric can be increased
from 81% to 83% by relying on the pretrained weights from

the DG-BEC-Vegas training set, even though the testing and
pretraining datasets are from different platforms.

VI. CONCLUSION

Extracting buildings from RS images is an important yet
challenging task, attracting an increased attention these days.
A wide variety of CNN-based FCN-like semantic segmentation
models have been proposed and tested on benchmark datasets,
and the current popular transformer-based methods have also
been tested, demonstrating impressive yet convergent perfor-
mance on commonly used open datasets. However, there are rare
studies focusing on the cross-area model generalization ability,
which is our goal in this study.

As demonstrated in this study, the best cross-area BE results
can be achieved by the proposed approach, i.e., fine-tuning
transformer-based model, SegFormer, with a small dataset from
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the targeting area. Our main conclusions and findings can be
summarized as follows.

1y

2)

3)

We adapted two transformer-based models, Swin-M and
SegFormer, for BE from RS images, which are able to
achieve SOTA BE results on two open datasets when
following the same setup as in literature. However, the
trained models can hardly generalize to a different area,
the same as previous approach.

Transferring pretrained SegFormer is able to achieve the
best cross-area BE results, demonstrating a higher model
capacity compared to both Swin-based transformers and
FCN-based models. While it is a straightforward strategy
to transfer pretrained weights and fine-tune on a small
subset of the testing area, it does not always help a DL
model generalize better. Results depend both on the choice
of the models and the size of the available subset for
training. An unsuitable model fails to generalize well even
using this transferring learning idea.

The advantage of transformer-based models is influenced
by the test setting and the training data size. When tested
within one area, and there are many training samples,
transformer-based and FCN-based models achieve sim-
ilarly high BE results. And when training samples are
fewer, a Swin-based model can perform much worse than
a traditional FCN-based model. But still, a sophisticated
transformer, SegFormer in our study, can perform consis-
tently well even when fewer training samples are available.

Our investigation shows the potential of transformer-based
models in an application-oriented and cross-area testing sce-
nario, and future work includes preparing suitable datasets for
cross-testing and developing supervised and unsupervised pre-
training approaches to further improve the BE model general-
ization ability from RS images.
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