
Dartagnan: SMT-based Violation Witness
Validation (Competition Contribution)

Hernán Ponce-de-León1(�) ?, Thomas Haas2 , and Roland Meyer2

1Bundeswehr University Munich, Munich, Germany
2TU Braunschweig, Braunschweig, Germany

hernan.ponce@unibw.de, t.haas@tu-braunschweig.de, roland.meyer@tu-bs.de

Abstract. The validation of violation witnesses is an important step
during software verification. It hides false alarms raised by verifiers from
engineers, which in turn helps them concentrate on critical issues and
improves the verification experience. Until the 2021 edition of the Com-
petition on Software Verification (SV-COMP), CPAchecker was the
only witness validator for the ConcurrencySafety category. This article
describes how we extended the Dartagnan verifier to support the valida-
tion of violation witnesses. The results of the 2022 edition of the competi-
tion show that, for witnesses generated by different verifiers, Dartagnan
succeeds in the validation of witnesses where CPAchecker does not.
Our extension thus improves the validation possibilities for the overall
competition. We discuss Dartagnan’s strengths and weaknesses as a
validation tool and describe possible ways to improve it in the future.

1 Introduction

Most software verification tools report witnesses to property violations. Since
SV-COMP 2015, there is a common format in which witnesses are represented
by automata [4]. Each edge of such an automaton is annotated with data that
can be used to match program executions. A data annotation can be, e.g., “as-
sumption” specifying constraints on values of variables in a given state, “control”
specifying the outcome of a branch condition, or “startline” specifying a concrete
line in the source code. More details about data annotations and their semantics
can be found in the exchange format documentation [1].

A witness validator checks that a violation can be reproduced using the
information provided by the witness. Automata-based verifiers can easily be
converted into validators by analyzing the synchronized product of the program
with the witness automaton. In this setting, the witness automaton guides the
verifier. If none of the outgoing edges on the program state match the next
edge of the witness automaton, then the verifier cannot explore the current path
further. If the edge on the program state matches, then the witness automaton
and the program proceed to the next state, eventually leading to a violation.

? Jury member.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 418–423, 2022.
https://doi.org/10.1007/978-3-030-99527-0_24

http://orcid.org/0000-0002-4225-8830
http://orcid.org/0000-0002-3176-8552
http://orcid.org/0000-0001-8495-671X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_24&domain=pdf

While this idea allows one to easily convert any automata-based verifier into a
validator, not all verifiers are automata-based.

Dartagnan is an SMT-based verifier. In the next section, we explain how to
convert it into a validator. The idea is to extract information from the witness
and use it to reduce the search space explored by the backend SMT solver.

2 Validation Approach

Given a concurrent program and a specification in the form of assertions, Dartag-
nan generates an SMT formula ϕVer = ϕCf∧ϕDf∧ϕSc∧ϕ
 which is satisfiable
if and only if some assertion fails [17,16]. The formulas ϕCf and ϕDf encode
(respectively) the control flow and the data flow of the program. Formula ϕSc

encodes scheduling constraints. Finally, ϕ
 expresses that at least one asser-
tion must fail. If the formula is satisfiable, then a violation exists. The goal of
Dartagnan (as a verifier) is to find such a violation. This amounts to finding
an appropriate scheduling among the threads. Such a scheduling is encoded as
a happens-before relation between the instructions. Dartagnan thus searches
the space of all viable happens-before relations to find a violation or prove that
none exists.

We now explain how to extend Dartagnan into a violation witness validator.
The idea is to extract from the violation witness a formula ϕY that we conjoin
to the rest of Dartagnan’s encoding, resulting in ϕVal = ϕVer ∧ ϕY . The
extra constraints in ϕY reduce the search space for the SMT solver. For the
verification of concurrent programs taking inputs from the environment, there
are two sources of non-determinism: the data coming from the input (which
might influence the control flow) and the scheduling. The purpose of ϕY is to
reduce this non-determinism. Extending the SMT encoding as described in ϕVal

is conceptually easy. The interesting question is “what information from the
witness shall we use?” The less information we use, the more we move from
pure validation to full verification.

While automata-based validators can use some information in a straight-
forward manner, this is not the case for Dartagnan.

1. A violation witness can contain cycles to represent infinitely many execu-
tions. However, SMT-based tools unroll cycles and perform bounded verifi-
cation, thus only part of this information is helpful.

2. Since Dartagnan (as many other BMC tools) does not keep an explicit
notion of state, using state information is not trivial.

The exchange format for violation witnesses allows for expressing informa-
tion about state assumptions, the control flow, and the scheduling. We abstract
out from the former two and only use scheduling information. We assume that
witness automata represent a single path and that the edges contain “startline”
data corresponding to read or write instructions1. Those are the only instructions

1 Our validator accepts witnesses that do not satisfy the second assumption, but it
filters out the corresponding edges.

Dartagnan: SMT-based Violation Witness Validation 419

that can affect our happens-before relation. While we do not explicitly encode
the outcome of control-flow instructions, certain control-flow information is im-
plicitly encoded based on which instructions are executed. We explain the reason
behind these design decisions and assumptions, discuss its limitations, and de-
scribe how we plan to improve this in the future in Section 3. Despite these
limitations, and as we show in Section 4, our validator performs well in practice.

Let (S,E) be a witness automaton with states S and edges E. For each
e ∈ E, function e2i(e) returns the set of read or write instructions coming from
the “startline” in the C file that corresponds to the given edge. Since witnesses
represent single paths, they can be seen as a word over S. Let w ∈ S∗ be a
witness, we define the witness-to-formula function which constructs ϕY as

w2f(w) =


true if w = ε

w2f(w′) ∧
∨

i1∈e2i((,s))
i2∈e2i((s,))

happens-before(i1, i2) if w = s · w′

3 Strengths and Weaknesses

The main strengths of our validation approach are simplicity and modularity.
The approach just requires to add a new sub-formula to the SMT encoding
used for verification. The validator is modular in the sense that using more or
different information from the witness does not change the validation approach.
For example, adding information from the witness about the control flow just
requires adding more constraints to ϕY.

Our validation approach assumes that witness automata represent single
paths. This is a limitation not imposed by the exchange format. However, veri-
fiers tend to stop as soon as they find one violation and thus generate witnesses
representing a single violation path. A second limitation is that we do not ex-
plicitly consider control-flow information. This might impact the performance
of the validation since not all non-determinism is removed and the search space
might still be large. Converting such control-flow information into SMT is simple
in principle. However, since Dartagnan internally converts the C program into
Boogie [15], matching conditionals with the corresponding assembly-like jumps
requires some work. A second consequence of not extracting control-flow infor-
mation from the witness is that we might validate witnesses that do not lead
to a violation. This is because we over-approximate the paths of the program
represented by the witness and thus our approximation might include the path
leading to the violation even if the witness did not.

4 Validation Results

We inspected the results of SV-COMP 2022 [5] to answer the following questions

RQ1: What percentage of the witnesses can Dartagnan validate?
RQ2: What percentage can Dartagnan not validate and why?

420 Hernán Ponce-de-León et al.

RQ3: Can Dartagnan validate witnesses that CPAchecker cannot?
RQ4: Can CPAchecker validate witnesses that Dartagnan cannot?

From the 20 verifiers in ConcurrencySafety, we selected five tools imple-
menting different verification approaches. We consider them good representa-
tives of the whole category: (i) CBMC [13] (used as a backend by Deagle [9]
and Lazy-CSeq [11]), (ii) CPAchecker [7] (used as a backend by CPA-
Lockator [3] and Graves [14]), (iii) EBF [2] (combines BMC with fuzzing, a
very effective technique to find bugs), (iv) Dartagnan [17] (only tool where the
memory model, here sequential consistency, is taken as an input), and (v) Gem-
Cutter [12] (shares the codebase with UTaipan [8] and UAutomizer [10]).

Table 1 presents the results of the validation in SV-COMP 2022. We report
the number of witnesses generated by each verifier (“Witnesses”). For each
of the validators (columns “Dartagnan” and “CPAchecker”), we report the
number of cases where the validation conclusively finished (i.e., it returned True
or False), whether the violation was confirmed (left of “/”) or not (right of “/”),
and the number of correct validations by one tool where the other did not report
a result (columns “Dart \ CPA” and “CPA \ Dart”, respectively).

Tool Witnesses Dartagnan CPAchecker Dart \ CPA CPA \ Dart

CBMC 305 193/0 95/0 117 19

CPAchecker 256 0/0 256/0 0 256

Dartagnan 273 245/1 35/6 204 0

EBF 290 219/0 57/0 177 15

GemCutter 299 18/237 262/1 15 28
Table 1. Results of the validation in SV-COMP 2022.

For the SMT-based verifiers CBMC and EBF, Dartagnan has 63.28%
resp. 75.52% success rate in the validation (against 31.15% resp. 19.66% success
rate for CPAchecker). Unfortunately, it did not validate any of the witnesses
generated by CPAchecker. This was due to a bug in the witness parser that
has been identified and fixed after the competition. CPAchecker validated all
the witnesses that it generated as a verifier. Dartagnan validated 89.74% of its
own witnesses while CPAchecker only validated 12.82%. For GemCutter, the
validation success of Dartagnan is only 6.02%. This is because, due to another
bug, it wrongly marked 237 witnesses as not validated. The fixed version of
Dartagnan is able to validate all such cases. Despite this, from the 18 witnesses
that Dartagnan validated, 15 of them were not validated by CPAchecker,
thus improving the validation possibilities for the overall competition.

5 Software Project and Configuration

The project home page is https://github.com/hernanponcedeleon/Dat3M. To
run Dartagnan as a validator, use the following command:

$ Dartagnan-SVCOMP.sh -witness <witness> <property> <program>

Dartagnan: SMT-based Violation Witness Validation 421

https://github.com/hernanponcedeleon/Dat3M

Data Availability Statement. All data of SV-COMP 2022 are archived as described

in the competition report [5] and available on the competition web site. This includes

the verification tasks, results, witnesses, scripts, and instructions for reproduction.

The version of our verifier as used in the competition is archived together with other

participating tools [6].

References

1. Exchange Format for Violation Witnesses and Correctness Witnesses. https://
github.com/sosy-lab/sv-witnesses.

2. Fatimah Aljaafari, Lucas C. Cordeiro, Mustafa A. Mustafa, and Rafael Menezes.
EBF: A hybrid verification tool for finding software vulnerabilities in iot crypto-
graphic protocols. CoRR, abs/2103.11363, 2021.

3. Pavel S. Andrianov, Vadim S. Mutilin, and Alexey V. Khoroshilov. cpalocka-
tor: Thread-modular analysis with projections - (Competition Contribution). In
TACAS (2), volume 12652 of Lecture Notes in Computer Science, pages 423–427.
Springer, 2021. doi:10.1007/978-3-030-72013-1_25.

4. Dirk Beyer. Software verification and verifiable witnesses - (report on SV-COMP
2015). In TACAS, volume 9035 of Lecture Notes in Computer Science, pages 401–
416. Springer, 2015. doi:10.1007/978-3-662-46681-0_31.

5. Dirk Beyer. Progress on software verification: SV-COMP 2022. In TACAS (2).
Springer, 2022.

6. Dirk Beyer. Verifiers and validators of the 11th Intl. Competition on Software
Verification (SV-COMP 2022). Zenodo, 2022. doi:10.5281/zenodo.5959149.

7. Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for configurable software
verification. In CAV, volume 6806 of Lecture Notes in Computer Science, pages
184–190. Springer, 2011. doi:10.1007/978-3-642-22110-1_16.

8. Daniel Dietsch, Matthias Heizmann, Alexander Nutz, Claus Schätzle, and Frank
Schüssele. Ultimate Taipan with symbolic interpretation and fluid abstrac-
tions - (Competition Contribution). In TACAS (2), volume 12079 of Lec-
ture Notes in Computer Science, pages 418–422. Springer, 2020. doi:10.1007/

978-3-030-45237-7_32.

9. Fei He, Zhihang Sun, and Hongyu Fan. Deagle: An SMT-based verifier for multi-
threaded programs (Competition Contribution). In TACAS (2). Springer, 2022.

10. Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen
Hoenicke, Yong Li, Alexander Nutz, Betim Musa, Christian Schilling, Tanja
Schindler, and Andreas Podelski. Ultimate Automizer and the search for per-
fect interpolants - (Competition Contribution). In TACAS (2), volume 10806
of Lecture Notes in Computer Science, pages 447–451. Springer, 2018. doi:

10.1007/978-3-319-89963-3_30.

11. Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, and Gen-
naro Parlato. Lazy-CSeq: A lazy sequentialization tool for C - (Competition Con-
tribution). In TACAS, volume 8413 of Lecture Notes in Computer Science, pages
398–401. Springer, 2014. doi:10.1007/978-3-642-36742-7_46.

12. Dominik Klumpp, Daniel Dietsch, Matthias Heizmann, Frank Schüssele, Marcel
Ebbinghaus, Azadeh Farzan, and Andreas Podelski. Ultimate GemCutter and the
axes of generalization (Competition Contribution). In TACAS (2). Springer, 2022.

422 Hernán Ponce-de-León et al.

https://sv-comp.sosy-lab.org/2022/
https://github.com/sosy-lab/sv-witnesses
https://github.com/sosy-lab/sv-witnesses
http://dx.doi.org/10.1007/978-3-030-72013-1_25
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.5281/zenodo.5959149
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-030-45237-7_32
http://dx.doi.org/10.1007/978-3-030-45237-7_32
http://dx.doi.org/10.1007/978-3-319-89963-3_30
http://dx.doi.org/10.1007/978-3-319-89963-3_30
http://dx.doi.org/10.1007/978-3-642-36742-7_46

13. Daniel Kroening and Michael Tautschnig. CBMC - C bounded model checker -
(Competition Contribution). In TACAS, volume 8413 of Lecture Notes in Com-
puter Science, pages 389–391. Springer, 2014. doi:10.1007/978-3-642-54862-8_
26.

14. William Leeson and Matthew Dwyer. GraVeS: Graph-based verifier selector (Com-
petition Contribution). In TACAS (2). Springer, 2022.

15. K. Rustan M. Leino. This is Boogie 2. 2008. URL: https://www.microsoft.com/
en-us/research/publication/this-is-boogie-2-2/.

16. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer.
Portability analysis for weak memory models. PORTHOS: One tool for all mod-
els. In SAS, volume 10422 of LNCS, pages 299–320. Springer, 2017. doi:

10.1007/978-3-319-66706-5_15.
17. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer.

Dartagnan: Bounded model checking for weak memory models (Competition Con-
tribution). In TACAS (2), volume 12079 of LNCS, pages 378–382. Springer, 2020.
doi:10.1007/978-3-030-45237-7_24.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

Dartagnan: SMT-based Violation Witness Validation 423

http://dx.doi.org/10.1007/978-3-642-54862-8_26
http://dx.doi.org/10.1007/978-3-642-54862-8_26
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
http://dx.doi.org/10.1007/978-3-319-66706-5_15
http://dx.doi.org/10.1007/978-3-319-66706-5_15
http://dx.doi.org/10.1007/978-3-030-45237-7_24
http://creativecommons.org/licenses/by/4.0/

	Dartagnan: SMT-based Violation Witness Validation (Competition Contribution)
	1 Introduction
	2 Validation Approach
	3 Strengths and Weaknesses
	4 Validation Results
	5 Software Project and Configuration
	References

