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Abstract
Targeting simulations on parallel hardware architectures, this paper presents computational kernels for efficient computa-
tions in mortar finite element methods. Mortar methods enable a variationally consistent imposition of coupling conditions 
at high accuracy, but come with considerable numerical effort and cost for the evaluation of the mortar integrals to compute 
the coupling operators. In this paper, we identify bottlenecks in parallel data layout and domain decomposition that hinder 
an efficient evaluation of the mortar integrals. We then propose a set of computational strategies to restore optimal parallel 
communication and scalability for the core kernels devoted to the evaluation of mortar terms. We exemplarily study the pro-
posed algorithmic components in the context of three-dimensional large-deformation contact mechanics, both for cases with 
fixed and dynamically varying interface topology, yet these concepts can naturally and easily be transferred to other mortar 
applications, e.g. classical meshtying problems. To restore parallel scalability, we employ overlapping domain decomposi-
tions of the interface discretization independent from the underlying volumes and then tackle parallel communication for 
the mortar evaluation by a geometrically motivated reduction of ghosting data. Using three-dimensional contact examples, 
we demonstrate strong and weak scalability of the proposed algorithms up to 480 parallel processes as well as study and 
discuss improvements in parallel communication related to mortar finite element methods. For the first time, dynamic load 
balancing is applied to mortar contact problems with evolving contact zones, such that the computational work is well bal-
anced among all parallel processors independent of the current state of the simulation.

Keywords  Mortar methods · Contact mechanics · Interface problems · Parallel algorithms · Finite elements · Domain 
decomposition

1  Introduction

Mortar finite element methods (FEM) are nowadays well 
established in a variety of application areas in computational 
science and engineering as discretization technique for the 
coupling of non-matching meshes. Their general applicabil-
ity in a vast range of problems as well as their mathemati-
cal properties, e.g. variational consistency, make them one 

of the most popular choices among interface discretization 
techniques. They are undoubtedly the most preferred choice 
for robust finite element discretization in computational con-
tact mechanics undergoing large deformations [16, 61, 62, 
80, 82]. However, the numerical effort and computational 
cost is high and can be considered a bottleneck in many sce-
narios. This paper discusses several performance challenges 
of mortar methods in the context of parallel computing and 
proposes remedies to reduce the overall runtime, obtain opti-
mal scalability as well as reduce parallel communication and 
memory consumption. As a demanding prototype applica-
tion, several test cases from computational contact mechan-
ics showcase the proposed algorithms and their impact on 
runtime and parallel scalability.

Originally being developed in the context of domain 
decomposition for the weak imposition of interfacial con-
straints [5, 10], mortar methods soon became popular in 
meshtying [59, 60] and contact mechanics problems [6, 34, 
53, 56–58, 62, 63, 85, 86]. Recently, mortar methods for 
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meshtying problems have regained attention due to the rise 
of isogeometric analysis and the need for isogeometric patch 
coupling [20, 21, 23, 24, 41, 83, 89]. A variety of papers dis-
cusses mortar methods in the context of isogeometric analy-
sis for contact problems, among them [16, 17, 19, 25, 66]. 
Moreover, mortar methods have spread to other single-field 
problems, e.g. contact mechanics including wear [30] or 
fluid dynamics [26], as well as a variety of surface-coupled 
multi-physics problems, among them fluid-structure inter-
action [42, 47, 52] or the simulation of lithium-ion cells in 
electrochemistry [27]. Lately, also volume-coupled problems 
have been addressed by mortar methods [29]. Despite their 
significant computational cost, the popularity of mortar 
methods over classical node-to-segment, Gauss-point-to-
segment, and other collocation-based approaches is based 
on their mathematical properties such as their variational 
consistency and stability. Compared to two-dimensional 
problems, an efficient mortar evaluation is much more criti-
cal in three-dimensional problems, which are at the same 
time of great practical relevance in real-world applications.

When using a Lagrange multiplier field � to impose con-
straints on the subdomain interfaces, mortar methods dis-
cretize � on the so-called slave side of the interface. The 
numerical effort of mortar methods is usually related to the 
search for nearest neighbors, local projection of meshes 
and subsequent clipping and triangulation of intersected 
meshes, as well as the resulting segment-based numerical 
integration, cf. Fig. 1. While these operations themselves are 
already expensive, implicit contact solvers need to perform 
them in every nonlinear  iteration, rendering this a possi-
ble feasibility bottleneck or at least a performance impedi-
ment, which becomes even more demanding through the 
necessity of consistent linearizations of all mortar terms. 
The parallelization of contact search algorithms has been 
addressed in [36] for example, where standard domain-
decomposition-based spatial search is enhanced with thread-
level parallelism. To speed-up the subsequent evaluation of 
contact terms, various integration strategies are available, 

among them element-based and segment-based integration, 
cf. [12, 28, 51, 74]. Segment-based integration subdivides 
each slave element into segments having no discontinuities 
of the integrands within their domain. This yields a highly 
accurate quadrature, though is computationally expensive. 
Element-based integration on the other hand reduces the 
effort of clipping and triangulation the intersected meshes 
by employing higher-order integration schemes to deal with 
weak discontinuities at element edges, though brings along 
a less accurate evaluation of the mortar integrals. While the 
segment-based integration strategy is unequivocally prefer-
able due to its accuracy, it comes at significantly higher com-
putational cost. Furthermore, systems of linear equations 
arising from mortar-based interface discretizations require 
tailored preconditioning techniques for an efficient iterative 
solution procedure. Depending on the specific details of 
the discretization, the resulting linear system might exhibit 
saddle-point structure. Efficient preconditioners to be used 
in conjunction with Krylov solvers are available in litera-
ture [1, 14, 68, 70–73, 78] and, thus, are not in the scope 
of this paper. We rather focus on the cost of evaluating all 
mortar-related terms.

As outlined previously, many theoretical aspects of mor-
tar methods have already been discussed and solved in the 
literature, e.g. the choice of discrete basis functions [31, 
49, 50, 57, 58, 77, 81], numerical quadrature [12, 28, 51, 
74], conservation laws [39, 40, 86], or contact search algo-
rithms [8, 75, 76, 84, 85, 87, 88]. However, computational 
aspects of mortar methods for contact problems—especially 
in the context of parallel computing—have largely been 
neglected by the scientific community so far. To fill this gap, 
this work is motivated and guided by the quest for parallel 
scalability of all algorithmic components of mortar methods 
for arbitrarily evolving contact zones in three-dimensional 
problems. Therefore, we analyze the computational kernels 
of mortar finite element methods and design their interplay 
to assure parallel scalability. To the best of our knowledge, 
most contributions in literature have focused on the serial 

Fig. 1   Main steps of 3D mortar coupling (from left to right): Pairs of 
master and slave elements, that (i) are potentially in contact, need to 
be (ii) projected onto each other along the normal vector n0 to (iii) 

compute the mesh intersection and to (iv) perform numerical quadra-
ture of mortar contributions on integration cells
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case (i.e. one processor) only or have embedded mortar 
methods into existing parallel finite element codes without 
specific provisions. An exception to this observation is the 
work of Krause and Zulian [48], where a parallel approach 
to the variational transfer of discrete fields between unstruc-
tured finite element meshes as well as the associated prox-
imity and intersection detections are described in detail and 
examples for the evaluation of grid projection operators are 
given for various surface and volume projection problems. 
Yet, Krause and Zulian [48] spare dynamic contact prob-
lems with evolving contact zones, which are of particular 
importance in engineering applications. In the present con-
tribution, we analyze several schemes to subdivide mortar 
interface discretizations into subdomains suitable for parallel 
computing and discuss their interplay with distributed mem-
ory architectures of computing clusters to achieve parallel 
scalability. Thereby, we follow a message-passing parallel 
programming model that utilizes the message passing inter-
face (MPI) for communication between address spaces of 
different processes [54]. Finally, we develop and showcase 
a dynamic load balancing strategy to address the particu-
lar needs of contact problems with evolving contact con-
figurations and interface topologies for three-dimensional 
problems.

By starting from an analysis of the computational cost 
of the evaluation of mortar terms, which is most commonly 
related to the slave side of the contact interface, we identify 
three main tasks, which will directly lead to the postulation 
of two essential requirements for parallel and scalable com-
putational kernels for mortar finite element methods:

•	 For the geometrical task of identifying close master and 
slave nodes within the contact search, each slave node 
needs access to the position of every node of the master 
side of the interface discretization. While the distribution 
of the master interface discretization to several compute 
nodes enables larger problem sizes, it requires advanced 
ghosting (i.e. sending data between different processors) 
of interface quantities to reduce the overall communica-
tion and memory footprint. We will propose ghosting 
strategies that take a measure of geometric proximity 
between master and slave nodes into account to pre-
compute and reduce the list of master nodes/elements to 
be communicated.

•	 To efficiently parallelize the evaluation of mortar terms, 
we will start from a baseline approach where interfa-
cial subdomains are aligned with the subdomains of the 
underlying bulk domain. This method is straightforward 
to implement, preserves data locality, and reduces com-
munication between parallel processes. However, it does 
not include all processes in the evaluation of the mortar 
terms and, thus, is not scalable. We will then devise strat-
egies for redistributing the interface domain decomposi-

tion to increase parallel efficiency and scalability of the 
mortar evaluation.

•	 As the contact configuration and area often changes over 
the course of a simulation, we will propose a dynamic 
load balancing scheme. Therefore, we will monitor char-
acteristic quantities of the parallel evaluation of all mor-
tar terms and will trigger an adaptation of the interface 
domain decomposition if the current state and computa-
tional behavior of the simulation indicate a deterioration 
of parallel performance.

We will discuss these approaches in detail and demonstrate 
their scaling behavior and applicability to large three-dimen-
sional problems. Although our current work studies scalable 
computational kernels for mortar methods in the context of 
classical finite element analysis, all findings are equally valid 
for isogeometric mortar methods (i.e. NURBS-based inter-
face discretizations).

The remainder of this paper is organized as follows: After 
a brief description of the contact problem, its discretization, 
and suitable solution techniques in Sect. 2, the implications 
of storing mortar discretizations on distributed memory 
machines will be discussed in Sect. 3. Domain decompo-
sition approaches for an efficient evaluation of the mortar 
integrals will then be developed in Sect. 4. Section 5 pre-
sents several numerical studies to assess communication pat-
terns and demonstrate the parallel scalability of the proposed 
methods in the context of computational contact mechanics, 
before we conclude with some final remarks in Sect. 6.

2 � Problem formulation and finite element 
discretization

While mortar methods are applicable to a broad spectrum 
of problems and partial differential equations (PDEs), finite 
deformation contact problems are nowadays certainly one 
of the most appealing and challenging application areas for 
mortar methods in computational mechanics. Hence, we 
focus on contact problems now, but keep the generality of 
mortar evaluations in mind.

2.1 � Governing equations

In general, mortar methods allow for the coupling of sev-
eral physical domains governed by PDEs through enforcing 
coupling conditions at various coupling surfaces or inter-
faces. Without loss of generality, we focus our presentation 
on the two-body contact problem with bodies Ω(1)

0
 and Ω(2)

0
 

which potentially come into frictionless contact along their 
contact boundaries Γ(1)

∗  and Γ(2)
∗  , respectively. Each subdo-

main Ω(i)

0
, i ∈ {1, 2} is governed by the initial boundary value 

problem of finite deformation elasto-dynamics and is subject 
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to the Hertz–Signorini–Moreau conditions for frictionless 
contact, reading

with the unknown displacement field u , the first Piola–Kirch-
hoff stress tensor P , the body force vector b̄

0
 , density �0 , 

normal vector n
0
 , and traction vector h̄

0
 . Prescribed bound-

ary values on the Dirichlet boundaries Γ(i)

D,0
 and Neumann 

boundaries Γ(i)

N,0
 as well as any initial values are marked 

with  ̄(∙) . First and second time derivatives are given as  ̇(∙) 
and  ̈(∙) , respectively. The reference configuration is distin-
guished from the current configuration by the subscript (∙)0 . 
Furthermore, pn refers to the contact pressure acting in the 
normal direction of the contact interface Γ∗ in the current 
configuration, while the gap function gn denotes the normal 
distance between the two bodies in the current configuration. 
To later distinguish between the two sides of the contact 
interface, we follow the traditional naming scheme and refer 
to Γ(1)

∗  carrying the Lagrange multiplier as so-called “slave” 
side Γsl

∗
 , while Γ(2)

∗  denotes the “master” side Γma
∗

.
Since this paper is concerned with the efficient evalua-

tion of the mortar terms on parallel computing clusters, we 
will detail the discretization of all mortar-related terms in 
Sect. 2.2. However, to keep the focus tight and concise, we 
refer to the extensive literature for any further details on the 
finite element formulation and discretization [31, 49, 50, 57, 
58, 77, 81], the solution of the nonlinear problem via active 
set strategies [37, 43, 45, 46, 56], as well as for details on 
the structure of the arising linear systems of equations and 
efficient solvers thereof [1, 14, 68, 70–73, 78].

2.2 � Discretization

To perform the spatial discretization with FEM, we assume 
the existence of a weak form of the contact mechanics 
problem summarized in Sect. 2.1. For the additional terms 
arising in contact mechanics, a Lagrange multiplier field � 
is introduced into the weak form to enforce the contact 
constraints, leading to a mixed method with a variational 
inequality, where both the primal field u as well as the dual 
variable � need to be discretized in space.

For the sake of a concise presentation, we skip the 
details of the FEM applied to the three-dimensional solid 
bodies Ω(i)

0
, i ∈ {1, 2} . Considering the contact interface, 

we adopt from the volume discretization the isoparametric 

DivP(i) + b̄
(i)

0
= 𝜌(i)

0
ü
(i) in Ω

(i)

0
× [0, T],

u
(i) = ū

(i) on Γ
(i)

D,0
× [0, T],

P
(i)
n
(i)

0
= h̄

(i)

0
on Γ

(i)

N,0
× [0, T],

u
(i)(X(i), 0) = ū

(i)(X(i)) in Ω
(i)

0
,

u̇
(i)(X(i), 0) = ̄̇u(i)(X(i)) in Ω

(i)

0
,

gn ≥ 0, pn ≤ 0, pngn = 0 on Γ∗ × [0, T]

concept with the parameter coordinate � = [�1, �2] and the 
shape functions Nk(�) defined at node k of all n(1) nodes on 
the discrete slave surface Γsl

∗,h
 and N

�(�) defined at node � 
of all  n(2) nodes on the discrete master surface Γma

∗,h
 , respec-

tively. The interpolation of the displacement field on ele-
ment level is then given as

As usual in mortar methods, the Lagrange multiplier field � 
is discretized on m(1) nodes of the discrete slave surface Γsl

∗,h
 , 

reading

where �j(�) denotes the Lagrange multiplier shape function 
at node  j . Thereby, either standard or dual shape functions 
can be used.

Inserting (1) and (2) into the contact vir tual 
work �W� = ∫

Γ∗
�
(

�usl − �uma
)

dΓ yields

The mortar matrices D and M associated with the slave 
and master side of the coupling interface are then assembled 
from the nodal blocks D

[

j, k
]

 and M
[

j,�
]

 defined in (3), 
respectively. In general, both D and M are rectangular 
matrices. If m(1) = n(1) (which is common practice except 
for a few cases, e.g. higher-order FEM [49, 50, 58]), D 
becomes square. Furthermore, if �j are chosen as so-called 
dual shape functions that satisfy a biorthogonality relation-
ship with the standard shape functions Nj , then D becomes 
a diagonal matrix and, thus, easy and computationally cheap 
to invert [31, 49, 50, 58, 65, 77, 79, 81].

We stress that both summands in (3) contain integrals 
over the slave side Γ(1)

∗,h
 of the discrete coupling surface, 

where the discretization is indicated by the additional sub-
script (∙)h . A suitable discrete mapping �h ∶ Γma

∗,h
→ Γsl

∗,h
 

from the master side to the slave side of the coupling 
interface is required, because the discrete coupling sur-
faces Γma

∗,h
 and Γsl

∗,h
 do not coincide anymore in general, 

especially when considering non-matching meshes on 

(1)u
(1)(�, t) =

n(1)
∑

k=1

Nk(�)uk(t), u
(2)(�, t) =

n(2)
∑

�=1

N
�(�)u�(t).

(2)�(�, t) =

m(1)

∑

j=1

�j(�)�j(t),

(3)

�W� ≈ �W�,h =

m(1)

∑

j=1

n(1)
∑

k=1

�T
j

D[j,k]
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

∫Γsl
∗,h

�jN
(1)

k
dΓ

]

�u(1)
k

−

m(1)

∑

j=1

n(2)
∑

𝓁=1

�T
j

[

∫Γsl
∗,h

�j

(

N
(2)

𝓁
◦�h

)

dΓ

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
M[j,𝓁]

�u(2)
𝓁
.
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curved interfaces. These projections are usually based on 
a continuous field of normal vectors defined on the slave 
side Γsl

∗,h
 , cf. [56, 86].

We note that the mortar matrices D and M also occur in 
the discrete representation of the Hertz–Signorini–Moreau 
conditions, cf. [57] for example.

2.3 � Evaluation of mortar integrals

In general, the evaluation of both D
[

j, k
]

 and M
[

j,�
]

 in (3) 
requires information from both the discrete slave inter-
face Γsl

∗,h
 and the discrete master interface Γma

∗,h
 . Firstly, this 

inevitably involves the discrete mapping �h to project finite 
element nodes and quadrature points between slave and mas-
ter sides. In practice, mortar integration is often performed 

on a piecewise flat geometrical approximation of the slave 
surface Γsl

∗,h
 as proposed in [59]. For further details and an 

in-depth mathematical analysis, see [18, 61, 62]. Secondly, 
the slave-sided integration domain Γsl

∗,h
 has to be split into 

so-called mortar segments, such that both �(1)

j
 and N(2)

�
 are 

C1-continuous on these segments, as kinks in the function to 
be integrated would deteriorate the achievable accuracy of 
the numerical quadrature. These mortar segments are arbi-
trarily shaped polygons, which will then be decomposed into 
triangles to perform quadrature. While the evaluation 
of D

[

j, k
]

 involves quantities solely defined on the slave 
interface Γsl

∗,h
 , the evaluation of M

[

j,�
]

 requires to integrate 
the product of master side shape functions N(2)

�
 and slave side 

shape functions �(1)

j
 over the discrete slave interface Γsl

∗,h
.

Algorithm 1 outlines the necessary steps to perform seg-
mentation and numerical quadrature for the interaction of slave 
and master elements. While we summarize the most important 
steps of the integration procedure here to highlight its tremen-
dous numerical effort, we refer to [59] for a detailed descrip-
tion of all steps outlined in Algorithm 1. Although segment-
based quadrature as described in Algorithm 1 undoubtedly 
delivers the highest achievable accuracy for the numerical inte-
gration of D

[

j, k
]

 and M
[

j,�
]

 in three dimensions, it comes at 

high computational expenses related to mesh projection and 
intersection, subsequent triangulation as well as numerical 
quadrature. In practice and also in the present work, both mor-
tar operators D

[

j, k
]

 and M
[

j,�
]

 are usually evaluated using 
segment-based integration to guarantee conservation of lin-
ear momentum [59]. More efficient but possibly less accurate 
integration algorithms have been discussed in [12, 28, 51, 74].
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Having today’s parallel computing architectures with dis-
tributed memory in mind, the evaluation of (3) brings along 
two major implications on the software and algorithm design: 

1.	 The evaluation of the integrands in (3) requires informa-
tion from both the slave and master side. Slave data are 
readily available locally on each parallel process. The 
implementation has to enable access also to master side 
data, that might be owned by another process or is stored 
on a different compute node.

2.	 The computational cost and time is mostly associated 
with numerical integration over the slave side of the 
interface. Parallelization can reduce the computational 
time by distributing the integration domain, i.e. the slave 
interface, over multiple parallel processes.

Therefore, we deduce the following requirements: 

R1:	� Enable access to all required slave and master data 
during evaluation of mortar integrals while keeping 
the memory demand and parallel communication low.

R2:	� Use parallel resources efficiently for numerical inte-
gration over the slave side of the mortar interface, also 
targeting parallel scalability.

 We will elaborate on these implications in Sects. 3 and 4 and 
outline various approaches to satisfy both requirements R1 
and R2 in the context of parallel computing.

3 � Storing data of the contact interface 
on a parallel machine

When executing the FEM solver on a parallel machine, 
data need to be distributed among the different MPI ranks 
or compute nodes. Now, we first summarize the basics of 
overlapping domain decomposition to distribute chunks of 
the discretization to individual processes. Then, we discuss 
the implications on access to the relevant interface data dur-
ing contact evaluation, before we present and discuss sev-
eral strategies to ensure access to the necessary data without 
excessive data redundancy. Overall, this section is devoted 
to strategies to satisfy our basic requirement R1.

3.1 � Overlapping domain decomposition

We base our considerations on the existence of an FEM 
solver that can be executed on parallel computers with a 
multitude of CPUs and/or compute nodes using a distributed 
memory architecture. In our case, this FEM solver is our 
in-house code Baci [3]. For optimal parallel treatment, the 

Fig. 2   Exemplary overlapping domain decomposition and parallel 
assembly involving four subdomains Ω

m
,m ∈ {0, 1, 2, 3} assigned to 

four parallel processes  p ∈ {0, 1, 2, 3} . Since each process can only 
assemble into unknowns of owned nodes, elements spanning across 

the subdomain boundaries need to be evaluated by multiple pro-
cesses. This requires ghosting of nodes and elements, which entails 
parallel communication among multiple processes
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code base utilizes overlapping domain decomposition (DD) 
techniques [22, 64, 67, 69]. Using nproc to denote the number 
of available parallel processes, the computational domain Ω 
is divided into nproc subdomains Ωm , m ∈ {0, 1,… ,M − 1} . 
A one-to-one mapping of subdomains to processes is 
employed, such that nproc = M.

An exemplary overlapping DD into four subdomains 
distributed to processes p ∈ {0, 1, 2, 3} is shown in Fig. 2. 
While each node in the finite element discretization is 
uniquely assigned to a subdomain Ωm , elements might span 
subdomain boundaries. We stress that processes can only 
access data of nodes that they own themselves. This has 
implications on finite element evaluation and assembly: A 
process p can only assemble into those entries of the global 
residual vector and those rows of the global Jacobian matrix 
that are associated with nodes in Ωp . Hence, elements that 
span across subdomain boundaries will be evaluated by all 
processes that own at least one of this element’s nodes such 
that each process can assemble quantities associated with 
its own nodes.1 This requires communication of data prior 
to the evaluation, i.e. data of off-process nodes need to be 
communicated. This is often referred to as ghosting. Ide-
ally, subdomains exhibit a small surface-to-volume ratio to 
minimize the amount of data subject to ghosting.

In our code base Baci, we employ the hypergraph par-
titioning package Zoltan [11] with the ParMETIS back-
end to decompose the computational domain Ω into nproc 
subdomains Ωm . Parallel data structures and parallel linear 
algebra are enabled through the Trilinos2 packages Epetra, 
Tpetra, and Xpetra. Iterative solvers for sparse systems of 
linear equations are taken form the Trilinos packages Azte-
cOO [38] and Belos [4] with scalable multi-level precondi-
tioners from ML [33] and MueLu [9].

3.2 � Implications of distributed memory 
on the contact search and evaluation

Without loss of generality and for ease of presentation, we 
assume that the entire discretization of a two-body contact 
problem has undergone an overlapping DD and that each 
subdomain m ∈ {0,… ,M − 1} has been assigned to a pro-
cess p ∈ {0,… , nproc − 1} . For the purpose of illustration, 
we will discuss the case of nproc = 3 subdomains and further 
assume that every process owns a part of the master and of 
the slave interface as illustrated in Fig. 3. Please note that 
our considerations also hold, if some processes only own 
a part of either the slave or the master side of the interface 

discretization or even if some processes do not own any por-
tion of the contact interface at all.

When process p is performing contact search and evalua-
tion on its share of the slave interface, it needs access to data 
from the geometrically close master side of the interface. In 
a parallel computing environment, the required data from 
the master side of the interface does not necessarily reside 
on that same process p . Still, access has to be enabled to

•	 identify pairs of slave/master elements, that potentially 
are in active contact. This step is usually referred to as 
“contact search”.

•	 evaluate the second integrand in (3), where the shape 
functions N(2)

�
 defined on the master side need to be eval-

uated and projected onto the slave side.

If the required data of the master side resides on a differ-
ent parallel process q than the current slave-sided process p , 
these data have to be communicated or “ghosted” (cf. Fig. 2) 
from process q to process  p to be known by process  p . 
Therefore, the ghosting of the master interface discretiza-
tion has to be extended. Since such an extension will impact 
the inter-processes communication demand as well as the 
on-process memory demand, we will introduce models for 
communication and memory demands in Sect. 3.3. More 
importantly, we will discuss various approaches for extend-
ing the ghosting of the master interface discretization in 
Sects. 3.4 and 3.5, where we will also discuss the impact of 
these ghosting extension strategies on the memory demand.

Fig. 3   Without particular measures, DDs of master and slave side of 
the interface distribute each interface side to some processes. Geo-
metrically close portions of the master and slave interface are not 
guaranteed to reside on the same process. Without further measures, 
each process  p can only identify possibly contacting pairs of slave/
master elements from the subset of master elements owned by pro-
cess  p , i.e. master elements that reside in the set Ω

p
∩ Γma

∗
 . This can 

and needs to be alleviated by extending the ghosting of the master 
side of the interface. (For simplicity of visualization, coloring of 
ownership omits ghosted elements stemming from the overlapping 
interface DD)

1  As an alternative, linear algebra data structures, that are specialized 
for FEM computations, are available. They allow to assemble into 
off-process rows. Naturally, communication among parallel processes 
is required.
2  https://​trili​nos.​github.​io.

https://trilinos.github.io
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3.3 � Models for communication and memory 
demand

Starting from an overlapping DD and distributed storage of 
both interface discretizations, data need to be communicated 
among processes to facilitate the mortar evaluation. We 
will use � to denote the amount of data to be sent over the 
interconnect of all compute nodes and processes. Since data 
related to the slave side of the interface discretization just 
remain on its process p , �sl

p
= 0 . As has already been indi-

cated in Fig. 3, process p owning the portion Γsl
m
 of the slave 

side of the mortar interface requires the master side’s data 
from those processes owning the geometrically close master 
elements. Hence, usually 𝜎ma

p
> 0 , especially if a situation 

as depicted in Fig. 3 occurs. Although an explicit expression 
to compute �ma

p
 cannot be given, as it highly depends on the 

software implementation at hand, it for sure is related to the 
number of nodes nnd and elements nel to be communicated. 
We denote this relation by

with �(nnd, nel) referring to an implementation-specific meas-
ure describing the cost of parallel communication. The total 
amount of data to be communicated to process p sums up to

Obviously, � increases with an increasing number of sub-
domains. More importantly, however, it is impacted by the 
individual contributions �ma

p
 . Especially when the number 

of subdomains, that are required to solve a given problem, 
is fixed, reducing �ma

p
 is key to reduce the overall cost of 

communication. Naturally, � = 0 if nproc = 1.
From the domain decomposition of the underlying bulk 

field, the memory demand sΩ
p

 per process p is given. For 
the mortar interface discretizations, we use ssl

p
 to denote the 

memory demand of the slave interface portion Γsl
m

 on pro-
cess p . Furthermore, sma

p
 refers to the memory demand of the 

master interface portion Γma
m

 on process p . Then, the total 
memory demand sp on process p is given as

Note that sp includes the amount of memory required for 
owned nodes/elements as well as for ghost nodes/elements 
originating from the overlapping DD with an element 
overlap of 1. We stress that sΩ

p
 is fully determined by the 

overlapping DD of the underlying bulk fields and that ssl
p
 

is only governed by the overlapping DD of the slave inter-
face discretization, that might arise from any of the schemes 
proposed in Sect. 4 later. At this point, only the master 

(4)�ma
p

∝ �(nnd, nel)

(5)� =

nproc−1
∑

p

�ma
p
.

(6)sp = sΩ
p
+ ssl

p
+ sma

p
∀p ∈ {0,… , nproc − 1}.

interface’s contribution sma
p

 can be controlled by choosing a 
specific ghosting extension strategy.

3.4 � Redundant storage: the straightforward case

The probably most straightforward remedy for the issue 
of undetected master/slave pairs described in Fig. 3 is to 
fully extend the master side’s ghosting to all processes, i.e. 
to store the entire master side of the interface redundantly 
on every process p . This scenario of distributed storage of 
the slave interface discretization, but redundant storage of 
the master interface discretization is illustrated in Fig. 4 
for an exemplary number of three processes. The slave 
interface Γsl

∗
 is decomposed into three subdomains and dis-

tributed to the processes ‘proc 0 ’, ‘proc 1 ’, and ‘proc 2 ’, 
indicated by coloring. The master interface Γma

∗
 starts 

out from its initial DD (colored boxes with solid lines) 
as already seen in Fig. 3. Then, its ghosting is extended 
over the entire master interface Γma

∗
 (colored boxes with 

dashed lines), such that Γma
∗

 is now stored redundantly on 
all three processes.

The redundant storage of the master side of the inter-
face just requires a one-time setup and communication 
cost at the beginning of the simulation to extend the ghost-
ing of master data to the entire master interface, but then 
enables access to every bit of master interface data from 
every process p ∈ {0, 1,… , nproc − 1} without further com-
munication among parallel processes. After the ghosting 
has been extended following the idea of fully redundant 
storage, all algorithmic steps, e.g. the contact search or the 
evaluation of (3), can be performed immediately without 
further communication.

In terms of the communication cost � , however, this 
approach is rather expensive: since the entire master dis-
cretization needs to be communicated to every slave pro-
cessor p , the total communication cost can be estimated 
via (4) and (5) as

Fig. 4   Fully redundant storage of the master interface discretization: 
Solid lines indicate data that are owned by a particular process due to 
the initial DD. Dashed lines indicate data that are available through 
the extended ghosting. With fully redundant storage of the master dis-
cretization on each process, each process p can immediately identify 
all pairs of slave/master elements, that are possibly in active contact



3699Engineering with Computers (2023) 39:3691–3720	

1 3

where all nodes and elements of the master side of the inter-
face discretization enter the cost estimate. The model (7) 
suffers only from a slight over-estimation, since a part of the 
master surface might already be located on the target pro-
cess and, thus, does not need to be communicated. Yet, this 
over-estimation becomes smaller for an increasing number 
of subdomains.

Since the entire master discretization has to be stored 
on each process along with a portion of the slave discre-
tization, the memory demand of this approach can grow 
quite excessively when going to large master interface 
discretizations. The maximum problem size, for which 
this strategy still works, cannot be given theoretically. It 
strongly depends on several key factors, for example the 
exact specifications of the computing hardware or intri-
cate details of the software implementation. Considering 
the memory model (6), the per-process master contribu-
tion sma

p
 has to be replaced by the memory consumption sma 

of the entire master interface since each process stores the 
entire master discretization. Since sma grows with mesh 
refinement, the total storage demand sp on process p is not 
bounded. This limits the applicability of redundant stor-
age to small and medium sized interface discretizations, 
depending on the hardware at hand.

Besides the possibly unbounded memory demand, fully 
redundant ghosting of the master side also comes with a 
run-time cost: when process p loops over all of its nodes/
elements of the master discretization, then it actually loops 
over all nodes/elements of the entire master discretiza-
tion, although most of the nodes/elements are irrelevant on 
process p as they are not located in the geometric vicinity 
of process p ’s slave nodes/elements. Naturally, the code 
is not aware of any concept of vicinity prior to the contact 
search, so this cost cannot be avoided with this approach.

3.5 � Distributed storage: going to large problems

As soon as the memory demand  sp exceeds the avail-
able memory on a computing node, redundant storage as 
described in Sect. 3.4 should not be applied anymore to 
avoid performance degradation due to memory swapping. 
Following (6), the total storage demand sp per process can 
be reduced by reducing the storage demand of the mas-
ter interface. In particular, when storing also the master 
interface discretization in a distributed fashion, its stor-
age demand per process can be reduced to sma

p
< sma for 

p ∈ {0,… , nproc − 1}, nproc ≥ 2 . Similarly, when the growth 
in run-time for loops over master nodes/elements becomes 
prohibitive, reducing the portion of the master interface 
stored on each process p is expected to speed up simula-
tions. Still, each portion of the slave interface needs to have 

(7)� ≈ nproc�(n(2), nel,ma), access to those parts of the master interface that reside in 
its geometric proximity (cf. Fig. 3). In turn, measuring geo-
metric proximity requires access to all pairs of slave and 
master nodes.

This situation can be remedied by different algorithmic 
modifications: Within a token-based evaluation strategy, e.g. 
inspired by Round-Robin (RR) scheduling [13], the paral-
lel decomposition and distribution of the slave interface is 
fixed. On the master side, just the decomposition into sub-
domains is fixed, while the subdomain-to-process mapping 
is shifted by one process per RR iteration until every process 
has owned each master interface subdomain once. Since an 
RR loop requires nproc iterations for a complete evaluation 
of all slave elements, its run-time cost is high and has even 
proven to be prohibitive in large-scale applications, which 
we have also observed in our own experiments.

As an alternative, the incorporation of the notion of prox-
imity already into the extension of the master side’s ghosting 
offers a promising solution. Hence, we resort to pre-comput-
ing ghosting data based on a geometrically motivated binning 
approach, where we exploit the fact that the contact search 
needs to identify all master elements in the proximity of a 
given slave element. This idea is inspired by [55], where a 
similar parallel algorithm is used for the spatial decomposi-
tion of atoms in short-range molecular dynamics simulations.

In the context of mortar methods, we will first construct 
an axis aligned bounding box around the mortar interface, i.e. 
a cuboid box that is oriented along the Cartesian axes and 
encloses all nodes of the mortar interface. Then, this bound-
ing box will be covered with a set of Cartesian bins {�} that 
are independent of the finite element meshes of the contacting 
bodies (cf. Fig. 5). Since the contacting bodies are moving 
relative to the background bins, slave nodes or elements can 
migrate between individual bins over time. To not loose track 
of individual nodes or elements due to this motion, the mini-
mal bin size �min is chosen as

with maxnel,sl h
sl being the largest element edge of the slave 

discretization, Δt representing the time step size, u̇∗ denoting 
the vector of nodal interface velocities and (∙) referring to 
the mean value of (∙) , respectively. If the interface velocity 
is not available in static problems, it can be replaced via a 
finite difference approximation w.r.t. to the previous load 
step. Analogously, the axis aligned bounding box embrac-
ing all mortar nodes is expanded by �min in each direction. 
Then, the actual bin size � and number of bins per direction 
is computed based on the dimensions of the expanded axis 
aligned bounding box and the minimal bin size �min . We then 

𝛽min = max
nel,sl

hsl + 2 ⋅ Δt ⋅ u̇∗
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apply Algorithm 2 to compute process-specific lists {egh}ma
p

 
of master elements to be ghosted for each process p . Please 

note that potentially a subset of {egh}ma
p

 already resides on 
processor p and, thus, does not need to be communicated.

Fig. 5   Extended ghosting of the master interface using a binning 
scheme—We exemplarily show three parallel processes and depict 
each one in its own sketch for the sake of presentation. Bins {�} are 
sketched in solid orange lines. On Γsl

∗
 , mesh entities (such as nodes 

and elements) are owned by the respective process anyway. On Γma
∗

 , 
solid lines indicate data that are owned by this process, while dashed 
lines indicate data that has been ghosted via binning
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Figure 5 illustrates the binning approach detailed in 
Algorithm 2 for three processes. For ‘proc 0 ’, no further 
ghosting is required in this example, since all required 
master elements {egh}ma

0
 already reside in the neighbor-

ing bins of the set of bins {�sl
0
} enclosing all slave ele-

ments of Γsl
∗,0

 . In contrast, the master elements owned by 
‘proc 1 ’ are not contained in {�sl

1
} and do not participate 

to the evaluation of mortar terms in Γsl
∗,1

 . The master ele-
ments of interest, i.e. {egh}ma

1
 in the neighboring bins 

of {�sl
1
} , need to be ghosted, which leaves out the mas-

ter elements in the left most bin covering Γma
∗

 . Finally, 
‘proc 2 ’ requires {egh}ma

2
 , while it already owns some of 

the required elements and only needs to ghost some addi-
tional elements.

The communication cost �ma
p

 for each processor p now 
depends on the number of nodes/elements in the current 
bin b and its neighboring bins. Due to the Cartesian char-
acter of bins, each bin has 8 or 26 neighbors in 2D or 3D, 
respectively. Based on a constant bin size and assuming 
uniform mesh sizes, the cost measure �  per subdomain 
introduced in (4) is now evaluated with 8 × n(2)

p
 or 26 × n(2)

p
 

nodes and 8 × nel,ma
p

 or 26 × nel,ma
p

 elements for 2D and 3D 
problems, respectively. With an increasing number of sub-
domains and under the assumption of uniform meshes, the 
total cost for communication is then bounded by

which is a significant reduction for large core counts com-
pared to (7). The scalar factors in (8) originate from the 
number of neighboring bins in 2D and 3D, respectively.

Regarding memory demand as estimated via (6), the mas-
ter side’s demand sma

p
 now comprises of all master elements 

stored on process p plus all master elements in neighbor-
ing bins. Assuming bin sizes similar to the size of subdo-
mains Ωm as well as evenly sized master elements, the master 
side’s storage demand is bounded by 5 × sma

p
 or 9 × sma

p
 for 

2D and 3D problems, respectively. While the number of 
bins and, thus, the effort to sort master elements into bins 
increases with a smaller characteristic bin size � , the storage 
demands for each process p diminishes even more.

3.6 � Intermediate discussion of ghosting strategies

So far, we have concerned ourselves with strategies to satisfy 
the requirement R1. Before addressing R2 in Sect. 4, we 
briefly discuss some properties of the presented strategies 
for the ghosting of the master interface.

While the fully redundant ghosting presented in Sect. 3.4 
appears as straightforward, easy to implement, and only 
needs to be done once at the beginning of the simulation, 
its runtime cost for communication as well as its memory 

(8)� ≤
{

8 ⋅ �ma
p

for 2D

26 ⋅ �ma
p

for 3D

demand can become prohibitive when going to large prob-
lems. The RR approach, in turn, alleviates the issue of exces-
sive growth of memory demand. Yet, the number of nec-
essary RR iterations equals the number of processes nproc , 
rendering this approach impractical for nproc ≫ 1 (especially 
as it has to be applied in every time/load step). Although the 
binning approach proposed in Sect. 3.5 needs to be applied 
in every time/load step, it appears as the only approach with-
out impractical restrictions when going to large problem 
sizes: Through the choice of the number and size of the bins, 
the amount of data to be ghosted can be controlled, such that 
only those master elements will be ghosted, that are likely 
to be required during contact search and evaluation. In sum, 
the applicability of the binning approach is neither affected 
by the number of parallel processes nor greatly impacts the 
parallel communication or total memory demand.

We will later supplement our assessment with detailed 
numerical experiments in Sect. 5.1.1, but want to antici-
pate the main finding here: For the largest problems with 
25M mesh nodes and 25k interface nodes, the process with 
the largest ghosting demand asks for the redundant ghost-
ing of 25,921 nodes, while binning reduces this number to 
1212 nodes, which amounts to a reduction of more than 
20× . On average across all MPI ranks, these numbers can 
be improved through load balancing which will be intro-
duced in Sect. 4.

4 � Balancing the work load among multiple 
parallel processes

Now, we discuss strategies for an optimal distribution of the 
work load to multiple parallel processes. These strategies are 
intended to satisfy the requirement R2 from Sect. 2.3. We 
assume that requirement R1 has already been satisfied by 
any of the methods described in Sect. 3 and, thus, all data 
are accessible whenever needed.

In Sects. 4.1–4.3, we first present some general consid-
erations applicable to all type of mortar interface problems, 
before we move to the specific scenario of dynamically 
evolving contact problems in Sect. 4.4.

4.1 � The concepts of strong and weak scalability

When assessing the performance of a parallel code and/or 
algorithm, an important question is whether adding more 
computational resources will actually speed-up the algo-
rithm’s performance at the proper rate. Two concepts are 
commonly followed and investigated:
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•	 For a fixed problem size, strong scalability is given, if 
the computational time diminishes at the same rate as the 
used hardware resources grow. The strong scaling limit 
is reached, when increasing the hardware resources does 
not lead to a further reduction of computational time. See 
[2].

•	 Weak scalability expects a constant computational 
time when increasing the problem size and the parallel 
resources at the same rate, i.e. when the work load per 
process is kept constant. See [35].

As it is well established in many research and application 
codes (and also in our code base Baci [3]), weak scalabil-
ity of the finite element evaluation of the pure bulk field 
(i.e. volume element evaluation) without the presence of 
any mortar interface can be achieved under uniform mesh 
refinement.

4.2 � Curse of dimensionality

In surface-coupled problems with d spatial dimensions, the 
coupling surface is always a d − 1 dimensional geometric 
entity. Originally described in [7], this curse of dimensional-
ity between the bulk and the interface discretization becomes 
problematic under uniform mesh refinement. Denoting the 
characteristic mesh size with h , the number of unknowns 
in the bulk discretization grows at O

(

hd
)

 while the surface 
discretization of the coupling interface exhibits a growth 
rate of O

(

hd−1
)

 only.
This becomes evident in practice when a first and simple 

DD of the interface discretizations is now obtained by align-
ing the interface subdomains of the slave and master side 
with the subdomains of the underlying bulk discretizations. 
Although this approach is straightforward to implement 
and also avoids off-process assembly, thus reducing parallel 

communication, it does not result in an optimal parallel dis-
tribution for the evaluation of the mortar coupling terms. 
Since computing the interface contributions, i.e. the mor-
tar segmentation process, integration and assembly of the 
mortar matrices D and M to only name the most important 
tasks, is all done on the slave interface discretization, all 
numerical tasks might be performed by very few parallel 
processes only, while others idle.

For simplicity of visualization, this is illustrated using 
a two-dimensional meshtying problem in Fig. 6, where the 
domain decomposition of the mortar interface’s slave and 
master side is fully aligned with the underlying bulk discre-
tizations. Considering a coarse discretization distributed to 
four parallel processes as shown in Fig. 6a, the slave inter-
face is divided into two subdomains and the master inter-
face is owned by two processes only as well. Consequently, 
there are two processes, that do not own a share of the slave 
interface, and two other processes not owning any node of 
the master interface. In Fig. 6b, the mesh has been refined 
by a factor of two in each direction, and 16 processes have 
been used such that the load per process remains constant 
in the bulk discretization. While the bulk discretization is 
now split into 16 subdomains, the slave and master inter-
face are shared only among four processes each. In sum, 
only 4 processes tackle the expensive evaluation of mortar 
terms on the slave side of the interface, while 12 processes 
are completely left out. Even in these small and only two-
dimensional problem, it becomes evident that the alignment 
of interface subdomains with bulk subdomains potentially 
leaves a huge fraction of all processes idle during inter-
face evaluation. While it is true that using more processes 
improves the parallelization of the bulk discretization, it 
does not necessarily contribute to a good and scalable par-
allelization of the interface computations. We stress that this 

Fig. 6   Perfect alignment of bulk and interface domain decomposi-
tion: subdomains in the master side of the interface (left vertical strip) 
coincide with the master side’s bulk discretization (left square), while 

the slave side’s interface subdomains (right vertical strip) are aligned 
with the slave side’s bulk discretization (right square)
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issue is even more pronounced for the three-dimensional 
case and larger numbers of parallel processes.

4.3 � Improving the domain decomposition 
of interface discretizations

To overcome the curse of dimensionality and to satisfy R2, 
we allow the slave and master side of the interface to be 
decomposed into subdomains independently from the under-
lying bulk discretizations to achieve optimal parallel scal-
ability of the computational tasks associated with both the 
integration and assembly in the bulk domains Ω1 and Ω2 
as well as integration and assembly on the interfaces Γsl 
and Γma . In a first and straightforward approach, one can 
divide both interfaces Γsl and Γma into nproc subdomains, such 
that each parallel process handles a portion of the interface 
as illustrated in Fig. 7. This is particularly important for the 
slave side which needs to perform all computations related 
to the integration of the mortar terms in (3).

For the coarse and the fine mesh, both Γsl and Γma are 
distributed to 4 and 16 parallel processes, respectively. 
A clear advantage of this strategy is that all parallel pro-
cesses participate in the interface treatment, so idling is 
mostly avoided. However, the fine mesh already indicates 
that the interface subdomains may become very small, i.e. 
they consist only of a few elements. Recalling the curse of 
dimensionality outlined in Sect. 4.2, this will become an 
issue at large scale where the bulk field is divided into nproc 
subdomains of reasonable size, while the subdomain size of 
the interface decreases when refining the mesh and adding 
parallel processes at the same rate. Having many but very 

small interface subdomains does not leave any process idle, 
but also yields interface subdomains with a large surface-
to-volume ratio which indicates an increasing communica-
tion overhead. In sum, this strategy distributes the compu-
tational work of the interface evaluation more evenly to all 
processes than just adopting the interface subdomains from 
the underlying bulk discretization. The numerical experi-
ments in Sect. 5 confirm this statement.

Conceptually, there is still room for further optimizations, 
in particular related to parallel communication among pro-
cesses, e.g. by setting a lower bound nel

min
 on the number of 

elements per interface subdomain to reduce the communi-
cation overhead. Such an approach needs to compromise 
between the amount of parallel communication among pro-
cesses and the number of idling processes. In this work, 
we have refrained from exploring this research direction, 
since the distribution of the interface to all parallel processes 
already delivers satisfying scaling behavior for many practi-
cal applications.

4.4 � Interface domain decompositions 
for dynamically evolving interfaces

In many applications, the interface configuration evolves 
over time, e.g. as in contact problems with large sliding or 
contact of rolling bodies. In such cases, the interface DD 
can come out of balance, resulting in some processes to do 
significantly more work than others, which possibly idle. 
Then, a rebalancing can become necessary to distribute the 
computational work evenly to all participating processes.

Fig. 7   Independent interface domain decomposition using all nproc parallel processes
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Algorithm 3 details the integration of imbalance monitor-
ing and potential rebalancing steps into the time integration 
and nonlinear solver routines. In each time step, each proces-
sor p tracks the time teval,p spent in the evaluation of all mor-
tar terms as well as the number of its slave elements nel,sl

p
 . We 

then estimate the imbalance among all processes by

with �t and �e denoting the imbalance in contact evaluation 
time and number of slave elements per processor, respec-
tively. The theoretical optimum of a perfect balancing of 
the mortar-related workload is given for �t = 1 and �e = 1 , 
respectively, i.e. when all processes spend exactly the same 
time in mortar evaluation and when all processes own 
the exact same number of slave elements. If in any time 
step these imbalance estimates exceed user-given thresh-
olds 𝜂̂t ≥ 1 and �e ≥ 1 for contact evaluation time and num-
ber of slave elements per processor, respectively, i.e. if

(9)�t =
maxp

(

teval,p
)

minp
(

teval,p
) , �e =

maxp

(

nel,sl
p

)

minp

(

n
el,sl
p

)

(10)𝜂t ≥ 𝜂̂t ∨ 𝜂e ≥ 𝜂̂e,

then we re-compute the interface DD to obtain a DD with 
better load balancing. As this load balancing procedure is 
triggered dynamically by the current state of the simulation, 
we refer to it as dynamic load balancing.

Naturally, 𝜂̂t = 1 will trigger rebalancing in every time 
step, such that each time step can rely on the best possible 
interface DD. In practice, the cost for rebalancing needs 
to be taken into account, such that practical computations 
require 𝜂̂t > 1 . We will study the impact of the actual choice 
of 𝜂̂t on the run time in Sect. 5.2.

The main difference between the two imbalance meas-
ures �t and �e is that �e does not account for the time to 
evaluate a given master/slave pair, while �t relies on actual 
wall clock timings. Thus, situations with 𝜂e ≫ 1 , but �t fairly 
close to 1 can occur, if the contact search identifies a huge 
number of pairs of master and slave elements as close to 
each other, but the subsequent mortar evaluation cannot find 
a valid projection and, thus, most of the computational work 
to evaluate (3) is skipped for such pairs of elements. In sum, 
the time-based trigger �t is expected to be more effective to 
avoid idling processes in practical simulations.
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4.5 � Implication on finite element assembly 
and communication patterns

Although the slave side’s interface discretization might 
exhibit its independent DD to improve scalability, all system 
quantities, e.g. the Jacobian matrix J and the residual vec-
tor f , are distributed among parallel processes following the 
DD of the underlying bulk discretizations. After evaluation 
of the mortar element matrices defined in (3) within a mor-
tar element in interface subdomain Γn , n ∈ {0,… ,M − 1} , 
on process q ∈ {0,… , nproc − 1} , a contribution to J and f 
associated with node  j in Ωm , m ∈ {0,… ,M − 1} , owned 
by process p ∈ {0,… , nproc − 1} can only be assembled by 
process p . Hence, if p ≠ q , communication is required to 
send data from process q to process p to assemble into global 
system quantities. From the perspective of the evaluating 
process, this is referred to as off-process assembly. Com-
munication can only be avoided if and only if p = q.

It is true that off-process assembly increases the amount 
of communication and, thus, puts a cost burden onto the 
entire algorithm. Although this is not desirable, it is usually 
the much cheaper price to pay than to just stick to the one-
to-one matching of interface and underlying bulk DDs. The 
speed-up of the cost-intensive evaluation of mortar terms 
through an independent DD of the interface discretiza-
tions easily amortizes the additional cost of communication 
related to off-process assembly. We will study timings of the 
mortar evaluation and off-process assembly in detail in the 
numerical experiments in Sect. 5.

5 � Numerical experiments

We first study parallel redistribution and scalability in a sim-
ple two-block contact example in Sect. 5.1 before moving on 
to dynamic contact problems in Sect. 5.2.

All computations are done with our in-house multi-phys-
ics research code Baci [3]. All scaling studies have been run 
on our in-house cluster (20 nodes with 2x Intel Xeon Gold 
5118 (Skylake-SP) 12 core CPUs, 196 GB RAM per node, 
Mellanox Infiniband Interconnect).

5.1 � Contact of two cubes

For a first assessment of the scalability of the contact evalu-
ation, we consider a simple two-block contact problem with 
a small block (dimensions 0.8 × 0.8 × 0.8 ) and a slightly big-
ger block (dimensions 1.0 × 1.0 × 1.0 ), where contact will 
occur between two flat surfaces of the blocks. To reduce the 
complexity of the contact problem and to exclude nonlinear-
ities due to changes in the contact active set, the faces oppo-
site to the contact interface are fixed with Dirichlet boundary 

conditions, while the blocks initially penetrate each other at 
the contact interface by 0.001. The smaller block acts as the 
slave side and its entire contact area is already initialized 
as “active”. Application of the contact algorithms will then 
result in a slight compression of both blocks, such that the 
initial penetration vanishes. This problem setup allows to 
distill the computational effort spent on the redistribution, 
ghosting, and contact evaluation. In fact, for the parallel 
scaling studies, we only evaluate all contact terms, but then 
do not even solve the contact problem to allow for an even 
more concise focus on the scaling behavior of the contact 
evaluation.

Both blocks use a Neo–Hooke material with Young’s 
modulus E = 10 and Poisson’s ratio � = 0.3 . Denoting the 
mesh refinement factor with � , both blocks are discretized 
with 5� linear hexahedral elements along their edges.

As an exemplary visualization, Fig.  8 illustrates the 
assignment of subdomains to MPI ranks for a simulation 
with 24 MPI ranks. Since the discretization of both blocks 
uses the same number of elements per block, the volume DD 
exhibits 12 subdomains for each block. Without load bal-
ancing, the interface DD evidently matches the underlying 
volume DD (cf. the top right picture in Fig. 8). In particular, 
the slave side of the interface is shared by only 6 (out of 24) 
processes, such that the remaining 18 processes idle during 
the expensive mortar evaluation. While the DD of the solid 
volume is not affected by the interface load balancing, the 
interface DD now yields 24 subdomains for both sides of the 
interface (cf. the bottom right picture in Fig. 8). This allows 
to share the computational work for the mortar evaluation 
among all processes.

5.1.1 � Weak scaling

We perform a weak scaling study. The smallest prob-
lem using 1 MPI rank consists of 55,566 displacement 
unknowns, while 441/400 nodes/elements reside on the slave 
side of the contact interface. The largest problem using 480 
MPI ranks contains 25,039,686 displacement unknowns, 
with 25,921/25,600 nodes/elements located on the slave 
side of the contact interface. We target a load of ≈ 50 k 
displacement unknowns per MPI rank under weak scaling 
conditions. Timing results are shown in Fig. 9. With load 
balancing, the pure contact evaluation time remains con-
stant under weak scaling conditions as shown in Fig. 9a and 
as expected for finite element evaluations. Manifesting the 
curse of dimensionality described in Sect. 4.2 though, the 
case without load balancing does not equally benefit from 
adding hardware resources since most of the additional pro-
cesses do not participate in the mortar evaluation. While 
the choice of load balancing does not impact the serial case 
( nproc = 1 ) of course, the contact evaluation without load 
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balancing requires twice as much time on 2, 4, and 8 MPI 
ranks than with load balancing, since the processes owning 
a piece of the master side of the interface do not contribute 
to the contact evaluation. For an increasing number of MPI 
ranks, this gap increases.

Regarding the time spent in redistribution and extending 
the interface ghosting, tLB + tgh , an increase with an increas-
ing number of MPI ranks is expected, as the size of the MPI 
communicator grows and, thus, mandates increased com-
munication. Obviously, this time component is rather inde-
pendent of the parallel distribution, but is largely impacted 
by the ghosting strategy: Since the redundant ghosting of the 
master side requires to communicate all interface nodes and 
elements of the master side to all MPI ranks, the timings for 
redundant ghosting exceed the time for ghosting via the geo-
metrically motivated binning approach, where the amount of 
data to be communicated among processes is reduced based 
on geometric information.

It becomes evident from Fig. 9c, that the time for assem-
bling of all contact terms into the global linear system is 
only slightly impacted by load balancing, while the impact 
of the ghosting strategy appears to be negligible.

Finally, we assess the total cost of contact evalu-
ation which is the most relevant target quantity 
for practical applications. It is given by the total 
time  ttotal = tLB + tgh + teval + tass for (possibly) redistrib-
uting, ghosting, evaluation, and assembly of the contact 
interface and is shown in Fig. 9d. Again, ghosting via bin-
ning (“binning”) results in a lower total time ttotal than the 
redundant ghosting of the master side (“redundant master”). 
Moreover, load balancing (“LB”) allows all MPI ranks to 
participate in the evaluation of the contact terms, yielding 

a faster total contact time than without load balancing (“no 
LB”). Dominated by the contact evaluation time teval , the 
case without load balancing does not scale beyond 8 MPI 
ranks, while load balancing shows good weak scalability up 
to 200 MPI ranks. Overall, our proposed strategy of load 
balancing in combination with binning delivers the fastest 
contact evaluation for all mesh sizes and also features the 
smallest increase in total contact time when increasing the 
problem size.

Figure 10 illustrates the impact of both the load balanc-
ing and the ghosting strategy on the number of owned and 
ghosted master side elements by reporting the maximum 
number of elements per MPI rank among all processes. Nat-
urally, load balancing, where all processes hold a portion of 
the contact interface, leads to a lower number of owned enti-
ties per processor than no load balancing, where the inter-
face is stored only by a subset of all processes: Depicted by 
the dotted lines, the number of owned elements per MPI 
rank is smaller in case of load balancing than without load 
balancing, in particular by a factor of 100 for more than 48 
MPI ranks in this example. The influence of the ghosting 
strategy is shown with dashed and solid lines: While binning 
(solid lines) just adds a small number of nodes or elements 
to be ghosted from other processes, fully redundant ghosting 
(dashed lines) drastically increases the number of ghosted 
elements. For large examples, this increase can exceed 
two orders of magnitude. We observe that the number of 
owned elements is consistently smaller than the number of 
ghosted elements when using load balancing, while this is 
not the case without load balancing. This peculiarity is just 
an artifact of the visualization, since the MPI rank with the 
maximum number of owned entities is not necessarily the 

Fig. 8   Two cubes in contact: colors represent the owning MPI rank of a volume/interface subdomain (Color figure online)
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same as the one with the maximum number of ghosted enti-
ties. Using the ratio of ghosted elements to owned elements 
to indicate the additional overhead in memory and parallel 
communication due to the distributed memory paradigm, we 
make the following key observation: ghosting via binning 
as proposed in Sect. 3.5 is much more efficient in terms of 

memory and parallel communication than fully redundant 
ghosting. Please note that the respective diagram for owned 
and ghosted nodes of the interface’s master side essentially 
looks the same and, thus, is not shown for the conciseness 
of the presentation.

Fig. 9   Weak scaling of contact time for two cubes
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5.1.2 � Strong scaling

To assess the strong scaling behavior under different load 
balancing and ghosting strategies, we study three different 
meshes and problem sizes detailed in Table 1. The strong 
scaling behavior is reported in Fig. 11. While meshes 2M 
and 5M could be run in serial, mesh 10M did not fit into the 
memory of a single core. Hence, the graphs for the mesh 
10M start at 3 MPI ranks, while 2M and 5M start at 1 MPI 
rank.

Regarding the pure contact evaluation time teval depicted 
in Fig. 11a, the curse of dimensionality as described in 
Sect. 4.2 leads to insufficient scaling behavior for the case 
without load balancing. For some cases, the contact evalua-
tion time does not decrease (or even slightly increase) when 
adding more processes, (cf. the mesh ‘2M’ without load 
balancing executed on 3, 6, and 12 MPI ranks for example). 
In contrast, the proposed load balancing scheme delivers 
the expected strong scaling behavior across a wide range 
of MPI ranks, since all MPI ranks participate in the contact 
evaluation. Moreover, load balancing results in faster con-
tact evaluation independent of the mesh size and ghosting 
strategy than no load balancing. Naturally, strong scaling 
behavior of the contact evaluation time teval is not affected 
by the choice of ghosting strategy.

For the combined time tLB + tgh for redistribution and 
ghosting as shown in Fig. 11b, the timings are now domi-
nated by the choice of ghosting strategy. In particular, fully 
redundant ghosting of the master interface (dashed lines) 

requires a consistently larger time across a wide range of 
MPI ranks. Ghosting via binning (solid lines) can benefit 
from additional hardware resources, until the strong scaling 
limit is reached and timings are increasing with an increas-
ing number of MPI ranks. The effect of the load balancing 
strategy is negligible, but we note that the extra cost of per-
forming a redistribution leads to slightly higher times with 
load balancing than without load balancing.

Considering the assembly of all contact terms into the 
global linear system, Fig. 11c shows just a small difference 
with and without load balancing. Similar to the weak scal-
ing study from Sect. 5.1.1, the ghosting strategy does not 
impact these timings. We observe good strong scalability 
for all studied cases.

Having in mind the overall goal of a fast time-to-solu-
tion, the total time ttotal = tLB + tgh + teval + tass for (possi-
bly) redistributing, ghosting, evaluation, and assembly of the 
contact interface is depicted in Fig. 11d. Again, the proposed 
load balancing strategy results in the best timings and in 
good, but not perfect scaling behavior. Stemming from the 
pure contact evaluation time teval (depicted in Fig. 11a), the 
total time ttotal without load balancing does not strictly follow 
the expected strong scaling behavior. Per definition of ttotal , 
this diagram combines all characteristics from Fig. 11b–d, 
namely the better scaling of teval due to load balancing and 
the increase in the timing component tLB + tgh for large 
numbers of MPI ranks due to increased communication and 
redistribution effort.

Fig. 10   Number of owned and ghosted elements of the interface’s master side under weak scaling conditions

Table 1   Three meshes and 
problem sizes for strong scaling 
of a two-block contact example

Mesh ID Bulk domain Slave interface

Number of nodes Number of DoFs Number of nodes Number 
of ele-
ments

2M 715,822 2,147,466 5041 4900
5M 1,769,472 5,308,416 9216 9025
10M 3,543,122 10,629,366 14,641 14,400
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In sum, the best scaling behavior is achieved with the 
proposed approach of load balancing in combination with 
ghosting via binning. While both components affect the 
overall efficiency, the fastest evaluation times and the best 
weak and strong scaling behavior can only be achieved 
through the combination of load balancing with ghosting 
via binning. So far, we have limited our analysis to static 
contact problems without any changes in the contact zone, 
where the proposed algorithms demonstrate their benefi-
cial effect on the run time and the weak and strong scaling 
behavior, but could not unfold their full potential. Therefore, 
we now move to dynamic contact problems, where the con-
tact zone changes over time and, thus, the load balancing is 
expected to show an even better effect on the scalability and 
performance.

5.2 � Rolling cylinder with dynamic contact

This example studies the behavior of parallel algorithms for 
dynamic contact problems, i.e. for uni-lateral contact prob-
lems where the contact zone is changing over time. This will 
exercise the parallel redistribution of the contact interface 
discretization to its full extent.

The problem is configured as follows: An elastic hollow 
cylinder is pushed onto a deformable block with initially 
flat surfaces. After contact has been established, a rotat-
ing motion is imposed on the inner surface of the hollow 
cylinder, somewhat mimicking a rolling tire. Both bodies 
are modeled with a compressible Neo-Hooke material with 
Young’s modulus E = 1 , Poisson’s ratio � = 0.3 , and den-
sity � = 10−6.

Fig. 11   Two-block contact: strong scaling of contact time
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Both bodies are discretized with first-order hexahedral 
finite elements. The top surface of the block is chosen as the 
master side of the contact interface, while the outer surface 
of the hollow cylinder takes the role of the slave surface. 

For constraint enforcement, a node-based penalty regu-
larization of the mortar approach with a penalty parameter 
of 5 is chosen. Time integration employs the generalized-� 
method [15] with spectral radius �∞ = 1.0.

Fig. 12   Visualization of volume and interface subdomains for different load balancing strategies in a dynamic contact example. Interesting fea-
tures are highlighted with roman numbers I–IV and discussed in the text
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Figure 12 exemplarily compares the volume and interface 
subdomains for the different load balancing strategies for 
the case of 24 MPI ranks. The initial subdomain layout in 
step 0 is the same for all load balancing strategies. While the 
DD of the underlying bodies will not be altered, we apply 
the interface load balancing scheme proposed in Sect. 4.3, 
which results in different interface DDs for the slave side. 
To unclutter the presentation, we only show the evolution of 
the slave side’s interface DDs, since this is the key ingredient 
for a scalable mortar evaluation. Interesting features due to 
load balancing are highlighted with roman numbers I–IV 
(see also Fig. 12b–e) and will be discussed below. In the 
case of no load balancing (column “no LB”), the interface 

subdomains match the subdomains of the underlying vol-
ume DD throughout the entire simulation. For static LB 
(column “static LB”), an initial interface DD is performed 
at the beginning of step 1, but it is not updated during the 
simulation. Hence, a small strip of slave subdomains is gen-
erated during the initial load balancing phase (cf. highlight 
I or Fig. 12b) and then rotates with the rolling motion of 
the cylinder as marked by highlight III (see also Fig. 12d), 
such that it quickly leaves the contact area and, thus, does 
not contribute to an optimal contact evaluation throughout 
the entire simulation. Based on the threshold criterion (10), 
the dynamic load balancing (column “dyn. LB”) updates 
the interface DD close to the contact area (cf. highlight II or 

Fig. 13   Effect of different load balancing strategies on the time spent in the contact evaluation
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Fig. 12c) such that the interface DD is nearly optimal in the 
vicinity of the contact zone and all processes participate in 
the evaluation of the contact terms independent of the rolling 
motion of the cylinder (cf. highlight IV or Fig. 12e).

5.2.1 � Effect of load balancing on wall clock time 
and memory consumption

We compare the cases of no load balancing, an initial load 
balancing in the reference configuration, and the dynamic 
load balancing proposed in Sect.  4.4 on a mesh with 
825,600 hexahedral elements consisting of 913,923 nodes 
and resulting in 2,741,769 displacement unknowns. We run 
the simulation on 96 MPI ranks on our in-house cluster. 
For the case of initial and dynamic load balancing, we limit 
the relative mismatch in subdomain size of the interface 
DD by setting the Zoltan parameter IMBALANCE_TOL 
to 1.03 [11]. For dynamic load balancing, we have tested 
different thresholds  𝜂̂t ∈ {1.01, 1.2, 1.5, 1.8, 2.5, 5.0, 8.0} 
to trigger rebalancing, but will only report and discuss 
selected cases in the following for the sake of presentation, 
namely 𝜂̂t ∈ {1.01, 1.8, 5.0, 8.0} . To extend the ghosting of 
the master side’s interface discretization, we rely on the bin-
ning strategy outlined in Sect. 3.5. A comparison of the dif-
ferent ghosting strategies is presented in Sect. 5.2.3.

We run the simulation for 200 time steps (20 time steps 
to close the initial gap, then 180 time steps of the rolling 
motion) to facilitate a rotation of 180◦ , such that the contact 
area on the outer cylinder surface substantially moves along 
the circumferential direction.

For every time step, Fig. 13a reports the average time 
per nonlinear iteration spent in contact evaluation (without 
considering the cost for load balancing). If no load balanc-
ing is performed, the average contact evaluation time is the 
largest. Since the slave side’s interface DD is just adopted 
from the underlying volume discretization, some processes 
do never participate in contact evaluation. Moreover, the 
number of processes contributing to the contact evaluation 
changes over time, so the average contact evaluation time 
also changes over time steps. In contrast, static load balanc-
ing assures that all parallel processes hold their share of 
the slave side of the interface, such that the average contact 
evaluation time is roughly constant for all time steps (as soon 
as full contact is established). Since only a part of all pro-
cesses contributes to the evaluation of the potentially active 
part of the slave interface, the average contact evaluation 
time is still rather large. Ultimately, dynamic load balancing 
triggers a rebalancing based on the current simulation status 
to aid a well-balanced distribution of the contact evaluation 
work to  all parallel processes. In Fig. 13a, time steps just 
after a drop in teval are those, in which a rebalancing has 
occurred. Since the effort of mortar evaluation is now dis-
tributed to all processes, the time spent in mortar evaluation 

drops significantly on average. Of course, individual time 
steps with an imbalanced work distribution among processes 
might take longer, which will ultimately lead to rebalancing 
as soon as the rebalancing criterion (10) is met. In particular, 
a very low rebalancing threshold (e.g. 𝜂̂t = 1.01 ) requires to 
rebalance in basically every time step. Although this results 
in the overall fastest mortar evaluation, the additional effort 
for rebalancing limits the possible speed-up. On the other 
hand, a loose threshold (e.g. 𝜂̂t ∈ {5.0, 8.0} ) triggers the 
rebalancing only a few times over the course of the simu-
lation, however for some time steps the time spent in the 
mortar evaluation can grow by a factor of two or even three 
compared to the ideal case. In our numerical experiments, 
we have found the threshold 𝜂̂t = 1.8 to deliver a good com-
promise between imbalance in per-process workload and 
the frequency of rebalancing. Therefore, we will use this 
threshold value for all further studies.

Figure 13b reports the time tgh spent for ghosting of the 
master side of the contact interface plus the time tLB for 
rebalancing of the interface DD (if applicable). For the 
clarity of the presentation, we concentrate on three selected 
cases. While the time component tgh for the master side 
ghosting is rather constant for all three cases, the time com-
ponent tLB varies: For static load balancing, only the first 
time step requires rebalancing, while all later time steps 
do not perform load balancing anymore. Hence, this curve 
peaks in the first time step and then drops and remains at low 
values. For dynamic load balancing with the strict imbal-
ance threshold 𝜂̂t = 1.01 , rebalancing occurs in every time 
step, such that this case consistently delivers high values 
for tLB + tgh . Obviously, these two cases can be interpreted 
as a lower and upper bound as evident from Fig. 13b. The 
case of dynamic load balancing with 𝜂̂t = 1.8 positions itself 
in between, since some time steps require rebalancing, but 
some do not.

While all  cases with dynamic load balanc-
ing spend additional time on the redistribution of 
the interface subdomains, these additional timings 
are easily amortized. To this end, Fig.  13c plots the 
time  tacc =

∑C

c=1
(teval + tLB + tgh)c, c ∈ {1,… ,C}, of all 

time components related to mortar evaluation over all time 
steps accrued over all C contact evaluations of the entire 
simulation. The end point markers are intended to highlight 
also small differences between curves. Naturally, a strict 
monotone increase is expected, while one aims for an as 
low as possible slope. Similar to the average contact evalu-
ation time, static load balancing is beneficial compared to no 
load balancing at all, while dynamic load balancing results 
in the lowest contact evaluation times. Clearly, the better 
parallelization due to the dynamic load balancing strategy 
pays off the additional cost for occasional rebalancing. The 
lower the acceptable imbalance 𝜂̂t is, the lower is the accu-
mulated contact evaluation time tacc . Overall, a maximum 
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reduction up to 71% in tacc can be achieved through proper 
dynamic load balancing. We note that the difference in tacc 
between 𝜂̂t = 1.01 and 𝜂̂t = 1.8 is very small, indicating that 
load balancing in every time step does not bring much addi-
tional value.

To demonstrate the effect of the rebalancing trigger 𝜂̂t in 
detail, Fig. 14 shows a close-up of the results in Fig. 13a 
as well as the evolution of the max/min ratio �t in contact 
evaluation time across all parallel processes. For a clearer 
visualization, only a subset of the results is plotted. In 
Fig. 14a, data points after a drop in teval correspond to 
time steps, where load balancing has occurred since the 
max/min ratio �t exceeded the threshold 𝜂̂t in the previous 
time step. This is in line with Fig. 14b, where �t is plotted 
over time along with dashed lines to indicate the different 
thresholds 𝜂̂t . We observe that �t drops close to the perfect 
balance (i.e. �t = 1.0 ) just after it exceeded the threshold 
level 𝜂̂t . In favor of an uncluttered view, Fig. 14b shows 
only results obtained with dynamic load balancing.

So far, we have studied the impact of the load balanc-
ing strategy and the imbalance threshold 𝜂̂t onto the time 
spent in the computational treatment of all mortar terms. In 
all cases, dynamic load balancing is worth the effort. Since 

the present example shows very good behavior for 𝜂̂t = 1.8 , 
we continue to use this value throughout this example. We 
note that the optimal choice of 𝜂̂t is problem-dependent. Yet, 
we generally recommend to use dynamic load balancing for 
contact problems with changing contact zones and select 𝜂̂t 
on a case-by-case basis.

5.2.2 � Strong scaling behavior under dynamic load 
balancing

Now, we study the strong scaling behavior of the contact 
evaluation time when dynamic load balancing is active. We 
therefore study two different problem sizes: 517,185 dis-
placement unknowns referred to as “500k” and 1,005,993 
displacement degrees of freedom denoted by “1000k”. 
While we keep the problem sizes fixed, we solve the prob-
lem on an increasing number of MPI ranks on our in-house 
cluster.

We will compare different load balancing strategies, 
namely no load balancing (“no LB”), initial load balancing 
in the reference configuration (“static LB”), and dynamic 

Fig. 14   Detailed view of contact evaluation timings and its imbalance
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load balancing (with 𝜂̂t = 1.8 (“dyn. LB”) as found useful 
in Sect. 5.2.1).

Figure 15 shows the strong scaling behavior. Again, 
we consider the average contact evaluation time teval per 
time step, the time  tLB + tgh spent in redistribution and 
ghosting of the interface discretizations, the average total 
time ttotal = teval + tLB + tgh per time step, and finally the total 
contact time  tacc =

∑C

c=1
(teval + tLB + tgh)c, c ∈ {1,… ,C}, 

accumulated over all C contact evaluations of the entire 
simulation. For both problem sizes as well as all quanti-
ties of interest, we observe good strong scaling behavior 
when using dynamic load balancing: starting from a small 
number of MPI ranks, the time spent on a given task (e.g. 
contact evaluation, redistribution and ghosting, total con-
tact time, accumulated contact time) is reduced when add-
ing more MPI ranks to tackle the computations, while the 
reduction rate is linked to the increase in MPI ranks, i.e. 

delivering perfect strong scaling  [2]. As expected, both 
meshes reached their strong scaling limit at some point, such 
that adding more hardware resources does not reduce, but 
actually increase the execution time, e.g. due to a deterio-
rating computation-to-communication ratio. Naturally, the 
strong scaling limit of the large problem (1000k) is located 
at twice the number of MPI ranks as for the small, half-
sized problem (500k). The beneficial effect of dynamic load 
balancing becomes evident in comparison to “no LB” and 
“static LB”: Without any load balancing or just an initial 
rebalancing of the interface discretizations, the initial slope 
in the scaling diagrams is far from optimal. Once again, this 
originates from the curse of dimensionality, since the addi-
tional hardware resources do not necessarily participate in 
the interface evaluation. For an intermediate number of MPI 
ranks, strong scaling is recovered, however absolute timings 

Fig. 15   Strong scaling of the contact timings under different load balancing strategies
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are much higher than for the same setup with dynamic load 
balancing. As already observed in Sect. 5.1.1, static load bal-
ancing is consistently a bit faster than using no load balanc-
ing at all, yet it is by far slower than dynamic load balancing.

As demonstrated, the proposed dynamic load balancing 
scheme is the key factor to achieve strong scalability of the 
evaluation of mortar terms in a nonlinear and time-depend-
ent contact simulation. To the authors’ best knowledge, this 
constitutes the first time that strong scalability in such a 
complex setting could be demonstrated.

5.2.3 � Comparison of strategies to extend the master side’s 
ghosting

While the influence of the load balancing strategy has 
already been discussed previously, we now aim to assess the 
impact of the ghosting strategy on the overall performance 
of the contact evaluation. Therefore, we exemplarily con-
sider the mesh from Sect. 5.2.1 run on 96 MPI ranks. Now, 
we compare the fully redundant storage of the master side 

Fig. 16   Effect of ghosting strategies on the contact timings: the combination of dynamic load balancing with ghosting via binning consistently 
delivers the fastest timings for contact evaluation
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of the interface (cf. Sect. 3.4) to the geometrically motivated 
binning approach (cf. Sect. 3.5). We study again the cases 
of no, static, and dynamic load balancing. For the clarity 
of the presentation, we only show the case of dynamic load 
balancing scenario with 𝜂̂t = 1.8 , but note that other values 
for 𝜂̂t exhibit similar behavior.

Figure 16 summarizes the wall clock time spent on con-
tact evaluation. For the pure contact evaluation time reported 
in Fig. 16a, the fully redundant ghosting increases the evalu-
ation time for all cases, since the contact detection needs to 
account for all master elements, while ghosting via binning 
pre-sorts the master elements based on their geometric prox-
imity within neighboring bins.

Figure 16b depicts the time spent in redistribution and 
ghosting of interface data. For the sake of a clear presenta-
tion and to really focus on the most relevant case, we show 
only the curves for dynamic load balancing. Evidently, 
ghosting via binning is faster by a factor of ≈ 8−10× than 
fully redundant ghosting.

Figure  16c shows the accumulated time for con-
tact evaluation, load balancing, and ghosting, i.e. 
tacc =

∑C

c=1
(teval + tLB + tgh)c, c ∈ {1,… ,C}, to assess the 

overall accumulated time spent on all C evaluations of the 
contact interface over the course of the entire simulation. 
For the cases with no and static load balancing, the ghost-
ing strategy does not impact the overall performance sig-
nificantly. For dynamic load balancing though, the necessity 
of ghosting after each redistribution makes the difference: 
the performance difference between fully redundant ghost-
ing and ghosting via binning as observed in Fig. 16b now 
accumulates over time, such that the use of binning results 
in the overall lowest time spent on contact evaluation. So, 
additional savings of 40% of the contact evaluation time can 
be achieved. Summing up the study of contact timings, the 
best case scenario of dynamic load balancing with ghosting 
via binning is faster than

•	 dynamic load balancing with fully redundant ghosting by 
a factor of ≈ 1.67,

•	 static load balancing by a factor of ≈ 2.61,
•	 no load balancing by a factor of ≈ 3.30,

which strongly emphasizes the benefits of dynamic load 
balancing and ghosting via binning in dynamic contact 
problems.

Finally, we briefly summarize the impact of the load bal-
ancing scheme and the ghosting strategy onto the cost for 
storage and parallel communication: If no load balancing is 
performed (“no LB”), the maximum number of owned nodes 
per process is roughly 10× larger than its average across all 
processes, since not all processes hold a portion of the inter-
face. This imbalance is alleviated for static or dynamic load 
balancing. Regarding the impact of the ghosting strategy, 

ghosting via binning reduces down the number of nodes/
elements to be ghosted by a factor of 100× compared to 
the fully redundant case, which ultimately also impacts the 
global memory footprint of the application.

In sum, dynamic contact problems require a good choice 
of load balancing strategy as well as a suitable ghosting 
strategy. In particular, load balancing highly impacts the 
time spent in contact evaluation. Despite the additional cost 
of performing the load balancing operation, the overall fast-
est contact evaluation is achieved with dynamic load bal-
ancing based on a user-given imbalance threshold 𝜂̂t . While 
we have found 𝜂̂t = 1.8 to deliver very good results in our 
numerical studies, the optimal choice of 𝜂̂t can depend on 
details of the computing hardware, the software implemen-
tation, and also the example at hand. To reduce the amount 
of parallel communication as well as the memory demand 
per compute node, ghosting via binning is by far superior to 
a fully redundant storage of the master side of the interface 
discretization. The overall best performance with respect 
to both phenomena (run time and communication/memory 
demand) is obtained through the combination of dynamic 
load balancing with ghosting via binning.

6 � Concluding remarks

Recognizing the tremendous computational effort to evalu-
ate mortar integrals in the context of non-matching inter-
face discretizations as they exemplarily arise in contact 
mechanics, this paper proposes strategies for efficient stor-
age and parallel computational kernels for mortar interface 
problems. Starting from a closer look at the tasks and the 
computational effort to evaluate mortar integrals, we have 
derived two basic requirements for computations on parallel 
machines with distributed memory architecture: On the one 
hand, one needs to enable access to the appropriate interface 
data to guarantee a correct identification of all master/slave 
pairs at the mortar interface. On the other hand, the avail-
able parallel hardware needs to be used efficiently, such that 
parallel scalability of the mortar evaluation can be achieved.

We have found the combination of efficient ghosting 
of data from the master side of the mortar interface using 
as few as possible parallel communication together with a 
scalable evaluation of mortar integrals to be crucial for the 
overall efficiency and performance of mortar evaluations. 
Regarding the finite element assembly of the mortar opera-
tors, special care needs to be taken for off-process values. In 
our implementation, we strictly follow the traditional imple-
mentation of overlapping DD, i.e. we ghost elements whose 
nodes are owned by more than one MPI rank and then evalu-
ate these elements on each of the participating processes, 
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such that each process only needs to write into rows of the 
matrices that reside on this process. As an alternative, spe-
cialized data structures for sparse matrices (e.g. from Tri-
linos’ Tpetra package3) allow for off-process assembly. 
Then, shared elements are only evaluated once and result 
values need to be communicated to other processes after the 
evaluation. The faster option for finite element assembly in 
parallel highly depends on the implementation and software 
stack at hand, so we cannot give a general recommendation. 
For both approaches, a sparse communication pattern as pro-
posed in [44] could speed-up the parallel communication 
even further.

For the ghosting of interface data, we have discussed 
techniques to guarantee access to all required master/
slave pairs during the contact search and mortar evalu-
ation. While fully redundant ghosting is conceptually 
easy and straightforward to implement, it suffers from 
elevated memory demands and tremendous communica-
tion overhead at large scale, which ultimately increases 
the overall time-to-solution. A geometrically motivated 
approach using a background grid of Cartesian bins allows 
for the efficient identification of nearby master elements, 
reduces the per-process memory demand as well as limits 
the number of master elements to be ghosted. The binning 
approach has shown the best timings in weak and strong 
scaling studies and consistently reduces the amount of data 
to be communicated between parallel processes as well as 
to be stored within a process.

Regarding a scalable evaluation of the mortar inte-
grals on parallel architectures, we have then discussed 
the curse of dimensionality in overlapping DDs of inter-
face problems, which requires a special treatment of the 
interface subdomains. To this end, we have proposed to 
use an interface DD independent from the underlying 
volume DD and were able to demonstrate optimal weak 
and strong scalability of the mortar evaluation time. To 
account for dynamic changes in the contact zone, we have 
designed a dynamic load balancing scheme for contact 
problems, which tracks imbalances among parallel pro-
cesses and rebalances the computational work as soon as 
user-given imbalance thresholds are exceeded. We have 
tested the proposed algorithms on a time-dependent non-
linear contact problem undergoing large deformations. In 
time measurements on such large-scale examples, dynamic 
load balancing outperforms the case of no or only initial 
load balancing by factors up to 2−4× . Wall clock time 
is the lowest, when only small imbalances are allowed, 
although even a large imbalance tolerance delivers faster 
computations than simulations without any load balancing 
at all. For the first time, strong and weak scalability could 

be shown for time-dependent nonlinear contact problems 
undergoing large deformations and dynamically evolv-
ing contact zones through the application of the proposed 
dynamic load balancing scheme.

In our numerical experiments, we have studied represent-
ative test cases from computational contact mechanics. We 
have performed weak and strong scaling studies up to 480 
MPI ranks as well as have assessed the impact of different 
algorithmic parameters. From our numerical experiments, 
we extract several findings:

•	 Ghosting via binning is favorable due to its reduced com-
munication overhead, which also directly reduces the 
time-to-solution.

•	 Load balancing is crucial for optimal contact evaluation 
times. In particular, systems with a static contact zone 
benefit from an initial redistribution of the interface, 
while contact problems with dynamically evolving con-
tact zones require the proposed dynamic load balancing 
scheme for optimal performance.

•	 For static contact problems, we have found the combina-
tion of static load balancing and ghosting via binning to 
deliver the best results.

•	 For dynamic contact problems, we have found the com-
bination of dynamic load balancing and ghosting via bin-
ning to deliver the best results.

In sum, we recommend to apply static load balancing in 
combination with ghosting via binning for problems with 
static contact zones, while dynamic load balancing in com-
bination with ghosting via binning is preferable for prob-
lems with dynamically evolving contact zones. Following 
these recommendations, a fast time-to-solution as well as 
good weak and strong scaling behavior can be achieved.
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