
Vol.:(0123456789)1 3

Engineering with Computers (2023) 39:3691–3720
https://doi.org/10.1007/s00366-022-01779-3

ORIGINAL ARTICLE

Scalable computational kernels for mortar finite element methods

Matthias Mayr1,2  · Alexander Popp1

Received: 7 February 2022 / Accepted: 22 December 2022 / Published online: 25 January 2023
© The Author(s) 2022

Abstract
Targeting simulations on parallel hardware architectures, this paper presents computational kernels for efficient computa-
tions in mortar finite element methods. Mortar methods enable a variationally consistent imposition of coupling conditions
at high accuracy, but come with considerable numerical effort and cost for the evaluation of the mortar integrals to compute
the coupling operators. In this paper, we identify bottlenecks in parallel data layout and domain decomposition that hinder
an efficient evaluation of the mortar integrals. We then propose a set of computational strategies to restore optimal parallel
communication and scalability for the core kernels devoted to the evaluation of mortar terms. We exemplarily study the pro-
posed algorithmic components in the context of three-dimensional large-deformation contact mechanics, both for cases with
fixed and dynamically varying interface topology, yet these concepts can naturally and easily be transferred to other mortar
applications, e.g. classical meshtying problems. To restore parallel scalability, we employ overlapping domain decomposi-
tions of the interface discretization independent from the underlying volumes and then tackle parallel communication for
the mortar evaluation by a geometrically motivated reduction of ghosting data. Using three-dimensional contact examples,
we demonstrate strong and weak scalability of the proposed algorithms up to 480 parallel processes as well as study and
discuss improvements in parallel communication related to mortar finite element methods. For the first time, dynamic load
balancing is applied to mortar contact problems with evolving contact zones, such that the computational work is well bal-
anced among all parallel processors independent of the current state of the simulation.

Keywords  Mortar methods · Contact mechanics · Interface problems · Parallel algorithms · Finite elements · Domain
decomposition

1  Introduction

Mortar finite element methods (FEM) are nowadays well
established in a variety of application areas in computational
science and engineering as discretization technique for the
coupling of non-matching meshes. Their general applicabil-
ity in a vast range of problems as well as their mathemati-
cal properties, e.g. variational consistency, make them one

of the most popular choices among interface discretization
techniques. They are undoubtedly the most preferred choice
for robust finite element discretization in computational con-
tact mechanics undergoing large deformations [16, 61, 62,
80, 82]. However, the numerical effort and computational
cost is high and can be considered a bottleneck in many sce-
narios. This paper discusses several performance challenges
of mortar methods in the context of parallel computing and
proposes remedies to reduce the overall runtime, obtain opti-
mal scalability as well as reduce parallel communication and
memory consumption. As a demanding prototype applica-
tion, several test cases from computational contact mechan-
ics showcase the proposed algorithms and their impact on
runtime and parallel scalability.

Originally being developed in the context of domain
decomposition for the weak imposition of interfacial con-
straints [5, 10], mortar methods soon became popular in
meshtying [59, 60] and contact mechanics problems [6, 34,
53, 56–58, 62, 63, 85, 86]. Recently, mortar methods for

 *	 Matthias Mayr
	 matthias.mayr@unibw.de

	 Alexander Popp
	 alexander.popp@unibw.de

1	 Institute for Mathematics and Computer‑Based
Simulation, Universität der Bundeswehr München,
Werner‑Heisenberg‑Weg 39, 85577 Neubiberg, Germany

2	 Data Science & Computing Lab, Universität der Bundeswehr
München, Werner‑Heisenberg‑Weg 39, 85577 Neubiberg,
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01779-3&domain=pdf
http://orcid.org/0000-0002-2780-1233

3692	 Engineering with Computers (2023) 39:3691–3720

1 3

meshtying problems have regained attention due to the rise
of isogeometric analysis and the need for isogeometric patch
coupling [20, 21, 23, 24, 41, 83, 89]. A variety of papers dis-
cusses mortar methods in the context of isogeometric analy-
sis for contact problems, among them [16, 17, 19, 25, 66].
Moreover, mortar methods have spread to other single-field
problems, e.g. contact mechanics including wear [30] or
fluid dynamics [26], as well as a variety of surface-coupled
multi-physics problems, among them fluid-structure inter-
action [42, 47, 52] or the simulation of lithium-ion cells in
electrochemistry [27]. Lately, also volume-coupled problems
have been addressed by mortar methods [29]. Despite their
significant computational cost, the popularity of mortar
methods over classical node-to-segment, Gauss-point-to-
segment, and other collocation-based approaches is based
on their mathematical properties such as their variational
consistency and stability. Compared to two-dimensional
problems, an efficient mortar evaluation is much more criti-
cal in three-dimensional problems, which are at the same
time of great practical relevance in real-world applications.

When using a Lagrange multiplier field � to impose con-
straints on the subdomain interfaces, mortar methods dis-
cretize � on the so-called slave side of the interface. The
numerical effort of mortar methods is usually related to the
search for nearest neighbors, local projection of meshes
and subsequent clipping and triangulation of intersected
meshes, as well as the resulting segment-based numerical
integration, cf. Fig. 1. While these operations themselves are
already expensive, implicit contact solvers need to perform
them in every nonlinear iteration, rendering this a possi-
ble feasibility bottleneck or at least a performance impedi-
ment, which becomes even more demanding through the
necessity of consistent linearizations of all mortar terms.
The parallelization of contact search algorithms has been
addressed in [36] for example, where standard domain-
decomposition-based spatial search is enhanced with thread-
level parallelism. To speed-up the subsequent evaluation of
contact terms, various integration strategies are available,

among them element-based and segment-based integration,
cf. [12, 28, 51, 74]. Segment-based integration subdivides
each slave element into segments having no discontinuities
of the integrands within their domain. This yields a highly
accurate quadrature, though is computationally expensive.
Element-based integration on the other hand reduces the
effort of clipping and triangulation the intersected meshes
by employing higher-order integration schemes to deal with
weak discontinuities at element edges, though brings along
a less accurate evaluation of the mortar integrals. While the
segment-based integration strategy is unequivocally prefer-
able due to its accuracy, it comes at significantly higher com-
putational cost. Furthermore, systems of linear equations
arising from mortar-based interface discretizations require
tailored preconditioning techniques for an efficient iterative
solution procedure. Depending on the specific details of
the discretization, the resulting linear system might exhibit
saddle-point structure. Efficient preconditioners to be used
in conjunction with Krylov solvers are available in litera-
ture [1, 14, 68, 70–73, 78] and, thus, are not in the scope
of this paper. We rather focus on the cost of evaluating all
mortar-related terms.

As outlined previously, many theoretical aspects of mor-
tar methods have already been discussed and solved in the
literature, e.g. the choice of discrete basis functions [31,
49, 50, 57, 58, 77, 81], numerical quadrature [12, 28, 51,
74], conservation laws [39, 40, 86], or contact search algo-
rithms [8, 75, 76, 84, 85, 87, 88]. However, computational
aspects of mortar methods for contact problems—especially
in the context of parallel computing—have largely been
neglected by the scientific community so far. To fill this gap,
this work is motivated and guided by the quest for parallel
scalability of all algorithmic components of mortar methods
for arbitrarily evolving contact zones in three-dimensional
problems. Therefore, we analyze the computational kernels
of mortar finite element methods and design their interplay
to assure parallel scalability. To the best of our knowledge,
most contributions in literature have focused on the serial

Fig. 1   Main steps of 3D mortar coupling (from left to right): Pairs of
master and slave elements, that (i) are potentially in contact, need to
be (ii) projected onto each other along the normal vector n0 to (iii)

compute the mesh intersection and to (iv) perform numerical quadra-
ture of mortar contributions on integration cells

3693Engineering with Computers (2023) 39:3691–3720	

1 3

case (i.e. one processor) only or have embedded mortar
methods into existing parallel finite element codes without
specific provisions. An exception to this observation is the
work of Krause and Zulian [48], where a parallel approach
to the variational transfer of discrete fields between unstruc-
tured finite element meshes as well as the associated prox-
imity and intersection detections are described in detail and
examples for the evaluation of grid projection operators are
given for various surface and volume projection problems.
Yet, Krause and Zulian [48] spare dynamic contact prob-
lems with evolving contact zones, which are of particular
importance in engineering applications. In the present con-
tribution, we analyze several schemes to subdivide mortar
interface discretizations into subdomains suitable for parallel
computing and discuss their interplay with distributed mem-
ory architectures of computing clusters to achieve parallel
scalability. Thereby, we follow a message-passing parallel
programming model that utilizes the message passing inter-
face (MPI) for communication between address spaces of
different processes [54]. Finally, we develop and showcase
a dynamic load balancing strategy to address the particu-
lar needs of contact problems with evolving contact con-
figurations and interface topologies for three-dimensional
problems.

By starting from an analysis of the computational cost
of the evaluation of mortar terms, which is most commonly
related to the slave side of the contact interface, we identify
three main tasks, which will directly lead to the postulation
of two essential requirements for parallel and scalable com-
putational kernels for mortar finite element methods:

•	 For the geometrical task of identifying close master and
slave nodes within the contact search, each slave node
needs access to the position of every node of the master
side of the interface discretization. While the distribution
of the master interface discretization to several compute
nodes enables larger problem sizes, it requires advanced
ghosting (i.e. sending data between different processors)
of interface quantities to reduce the overall communica-
tion and memory footprint. We will propose ghosting
strategies that take a measure of geometric proximity
between master and slave nodes into account to pre-
compute and reduce the list of master nodes/elements to
be communicated.

•	 To efficiently parallelize the evaluation of mortar terms,
we will start from a baseline approach where interfa-
cial subdomains are aligned with the subdomains of the
underlying bulk domain. This method is straightforward
to implement, preserves data locality, and reduces com-
munication between parallel processes. However, it does
not include all processes in the evaluation of the mortar
terms and, thus, is not scalable. We will then devise strat-
egies for redistributing the interface domain decomposi-

tion to increase parallel efficiency and scalability of the
mortar evaluation.

•	 As the contact configuration and area often changes over
the course of a simulation, we will propose a dynamic
load balancing scheme. Therefore, we will monitor char-
acteristic quantities of the parallel evaluation of all mor-
tar terms and will trigger an adaptation of the interface
domain decomposition if the current state and computa-
tional behavior of the simulation indicate a deterioration
of parallel performance.

We will discuss these approaches in detail and demonstrate
their scaling behavior and applicability to large three-dimen-
sional problems. Although our current work studies scalable
computational kernels for mortar methods in the context of
classical finite element analysis, all findings are equally valid
for isogeometric mortar methods (i.e. NURBS-based inter-
face discretizations).

The remainder of this paper is organized as follows: After
a brief description of the contact problem, its discretization,
and suitable solution techniques in Sect. 2, the implications
of storing mortar discretizations on distributed memory
machines will be discussed in Sect. 3. Domain decompo-
sition approaches for an efficient evaluation of the mortar
integrals will then be developed in Sect. 4. Section 5 pre-
sents several numerical studies to assess communication pat-
terns and demonstrate the parallel scalability of the proposed
methods in the context of computational contact mechanics,
before we conclude with some final remarks in Sect. 6.

2 � Problem formulation and finite element
discretization

While mortar methods are applicable to a broad spectrum
of problems and partial differential equations (PDEs), finite
deformation contact problems are nowadays certainly one
of the most appealing and challenging application areas for
mortar methods in computational mechanics. Hence, we
focus on contact problems now, but keep the generality of
mortar evaluations in mind.

2.1 � Governing equations

In general, mortar methods allow for the coupling of sev-
eral physical domains governed by PDEs through enforcing
coupling conditions at various coupling surfaces or inter-
faces. Without loss of generality, we focus our presentation
on the two-body contact problem with bodies Ω(1)

0
 and Ω(2)

0

which potentially come into frictionless contact along their
contact boundaries Γ(1)

∗ and Γ(2)
∗  , respectively. Each subdo-

main Ω(i)

0
, i ∈ {1, 2} is governed by the initial boundary value

problem of finite deformation elasto-dynamics and is subject

3694	 Engineering with Computers (2023) 39:3691–3720

1 3

to the Hertz–Signorini–Moreau conditions for frictionless
contact, reading

with the unknown displacement field u , the first Piola–Kirch-
hoff stress tensor P , the body force vector b̄

0
 , density �0 ,

normal vector n
0
 , and traction vector h̄

0
 . Prescribed bound-

ary values on the Dirichlet boundaries Γ(i)

D,0
 and Neumann

boundaries Γ(i)

N,0
 as well as any initial values are marked

with ̄(∙) . First and second time derivatives are given as ̇(∙)
and ̈(∙) , respectively. The reference configuration is distin-
guished from the current configuration by the subscript (∙)0 .
Furthermore, pn refers to the contact pressure acting in the
normal direction of the contact interface Γ∗ in the current
configuration, while the gap function gn denotes the normal
distance between the two bodies in the current configuration.
To later distinguish between the two sides of the contact
interface, we follow the traditional naming scheme and refer
to Γ(1)

∗ carrying the Lagrange multiplier as so-called “slave”
side Γsl

∗
 , while Γ(2)

∗ denotes the “master” side Γma
∗

.
Since this paper is concerned with the efficient evalua-

tion of the mortar terms on parallel computing clusters, we
will detail the discretization of all mortar-related terms in
Sect. 2.2. However, to keep the focus tight and concise, we
refer to the extensive literature for any further details on the
finite element formulation and discretization [31, 49, 50, 57,
58, 77, 81], the solution of the nonlinear problem via active
set strategies [37, 43, 45, 46, 56], as well as for details on
the structure of the arising linear systems of equations and
efficient solvers thereof [1, 14, 68, 70–73, 78].

2.2 � Discretization

To perform the spatial discretization with FEM, we assume
the existence of a weak form of the contact mechanics
problem summarized in Sect. 2.1. For the additional terms
arising in contact mechanics, a Lagrange multiplier field �
is introduced into the weak form to enforce the contact
constraints, leading to a mixed method with a variational
inequality, where both the primal field u as well as the dual
variable � need to be discretized in space.

For the sake of a concise presentation, we skip the
details of the FEM applied to the three-dimensional solid
bodies Ω(i)

0
, i ∈ {1, 2} . Considering the contact interface,

we adopt from the volume discretization the isoparametric

DivP(i) + b̄
(i)

0
= 𝜌(i)

0
ü
(i) in Ω

(i)

0
× [0, T],

u
(i) = ū

(i) on Γ
(i)

D,0
× [0, T],

P
(i)
n
(i)

0
= h̄

(i)

0
on Γ

(i)

N,0
× [0, T],

u
(i)(X(i), 0) = ū

(i)(X(i)) in Ω
(i)

0
,

u̇
(i)(X(i), 0) = ̄̇u(i)(X(i)) in Ω

(i)

0
,

gn ≥ 0, pn ≤ 0, pngn = 0 on Γ∗ × [0, T]

concept with the parameter coordinate � = [�1, �2] and the
shape functions Nk(�) defined at node k of all n(1) nodes on
the discrete slave surface Γsl

∗,h
 and N

�(�) defined at node �
of all n(2) nodes on the discrete master surface Γma

∗,h
 , respec-

tively. The interpolation of the displacement field on ele-
ment level is then given as

As usual in mortar methods, the Lagrange multiplier field �
is discretized on m(1) nodes of the discrete slave surface Γsl

∗,h
 ,

reading

where �j(�) denotes the Lagrange multiplier shape function
at node j . Thereby, either standard or dual shape functions
can be used.

Inserting (1) and (2) into the contact vir tual
work �W� = ∫

Γ∗
�
(

�usl − �uma
)

dΓ yields

The mortar matrices D and M associated with the slave
and master side of the coupling interface are then assembled
from the nodal blocks D

[

j, k
]

 and M
[

j,�
]

 defined in (3),
respectively. In general, both D and M are rectangular
matrices. If m(1) = n(1) (which is common practice except
for a few cases, e.g. higher-order FEM [49, 50, 58]), D
becomes square. Furthermore, if �j are chosen as so-called
dual shape functions that satisfy a biorthogonality relation-
ship with the standard shape functions Nj , then D becomes
a diagonal matrix and, thus, easy and computationally cheap
to invert [31, 49, 50, 58, 65, 77, 79, 81].

We stress that both summands in (3) contain integrals
over the slave side Γ(1)

∗,h
 of the discrete coupling surface,

where the discretization is indicated by the additional sub-
script (∙)h . A suitable discrete mapping �h ∶ Γma

∗,h
→ Γsl

∗,h

from the master side to the slave side of the coupling
interface is required, because the discrete coupling sur-
faces Γma

∗,h
 and Γsl

∗,h
 do not coincide anymore in general,

especially when considering non-matching meshes on

(1)u
(1)(�, t) =

n(1)
∑

k=1

Nk(�)uk(t), u
(2)(�, t) =

n(2)
∑

�=1

N
�(�)u�(t).

(2)�(�, t) =

m(1)

∑

j=1

�j(�)�j(t),

(3)

�W� ≈ �W�,h =

m(1)

∑

j=1

n(1)
∑

k=1

�T
j

D[j,k]
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

∫Γsl
∗,h

�jN
(1)

k
dΓ

]

�u(1)
k

−

m(1)

∑

j=1

n(2)
∑

𝓁=1

�T
j

[

∫Γsl
∗,h

�j

(

N
(2)

𝓁
◦�h

)

dΓ

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
M[j,𝓁]

�u(2)
𝓁
.

3695Engineering with Computers (2023) 39:3691–3720	

1 3

curved interfaces. These projections are usually based on
a continuous field of normal vectors defined on the slave
side Γsl

∗,h
 , cf. [56, 86].

We note that the mortar matrices D and M also occur in
the discrete representation of the Hertz–Signorini–Moreau
conditions, cf. [57] for example.

2.3 � Evaluation of mortar integrals

In general, the evaluation of both D
[

j, k
]

 and M
[

j,�
]

 in (3)
requires information from both the discrete slave inter-
face Γsl

∗,h
 and the discrete master interface Γma

∗,h
 . Firstly, this

inevitably involves the discrete mapping �h to project finite
element nodes and quadrature points between slave and mas-
ter sides. In practice, mortar integration is often performed

on a piecewise flat geometrical approximation of the slave
surface Γsl

∗,h
 as proposed in [59]. For further details and an

in-depth mathematical analysis, see [18, 61, 62]. Secondly,
the slave-sided integration domain Γsl

∗,h
 has to be split into

so-called mortar segments, such that both �(1)

j
 and N(2)

�
 are

C1-continuous on these segments, as kinks in the function to
be integrated would deteriorate the achievable accuracy of
the numerical quadrature. These mortar segments are arbi-
trarily shaped polygons, which will then be decomposed into
triangles to perform quadrature. While the evaluation
of D

[

j, k
]

 involves quantities solely defined on the slave
interface Γsl

∗,h
 , the evaluation of M

[

j,�
]

 requires to integrate
the product of master side shape functions N(2)

�
 and slave side

shape functions �(1)

j
 over the discrete slave interface Γsl

∗,h
.

Algorithm 1 outlines the necessary steps to perform seg-
mentation and numerical quadrature for the interaction of slave
and master elements. While we summarize the most important
steps of the integration procedure here to highlight its tremen-
dous numerical effort, we refer to [59] for a detailed descrip-
tion of all steps outlined in Algorithm 1. Although segment-
based quadrature as described in Algorithm 1 undoubtedly
delivers the highest achievable accuracy for the numerical inte-
gration of D

[

j, k
]

 and M
[

j,�
]

 in three dimensions, it comes at

high computational expenses related to mesh projection and
intersection, subsequent triangulation as well as numerical
quadrature. In practice and also in the present work, both mor-
tar operators D

[

j, k
]

 and M
[

j,�
]

 are usually evaluated using
segment-based integration to guarantee conservation of lin-
ear momentum [59]. More efficient but possibly less accurate
integration algorithms have been discussed in [12, 28, 51, 74].

3696	 Engineering with Computers (2023) 39:3691–3720

1 3

Having today’s parallel computing architectures with dis-
tributed memory in mind, the evaluation of (3) brings along
two major implications on the software and algorithm design:

1.	 The evaluation of the integrands in (3) requires informa-
tion from both the slave and master side. Slave data are
readily available locally on each parallel process. The
implementation has to enable access also to master side
data, that might be owned by another process or is stored
on a different compute node.

2.	 The computational cost and time is mostly associated
with numerical integration over the slave side of the
interface. Parallelization can reduce the computational
time by distributing the integration domain, i.e. the slave
interface, over multiple parallel processes.

Therefore, we deduce the following requirements:

R1:	� Enable access to all required slave and master data
during evaluation of mortar integrals while keeping
the memory demand and parallel communication low.

R2:	� Use parallel resources efficiently for numerical inte-
gration over the slave side of the mortar interface, also
targeting parallel scalability.

 We will elaborate on these implications in Sects. 3 and 4 and
outline various approaches to satisfy both requirements R1
and R2 in the context of parallel computing.

3 � Storing data of the contact interface
on a parallel machine

When executing the FEM solver on a parallel machine,
data need to be distributed among the different MPI ranks
or compute nodes. Now, we first summarize the basics of
overlapping domain decomposition to distribute chunks of
the discretization to individual processes. Then, we discuss
the implications on access to the relevant interface data dur-
ing contact evaluation, before we present and discuss sev-
eral strategies to ensure access to the necessary data without
excessive data redundancy. Overall, this section is devoted
to strategies to satisfy our basic requirement R1.

3.1 � Overlapping domain decomposition

We base our considerations on the existence of an FEM
solver that can be executed on parallel computers with a
multitude of CPUs and/or compute nodes using a distributed
memory architecture. In our case, this FEM solver is our
in-house code Baci [3]. For optimal parallel treatment, the

Fig. 2   Exemplary overlapping domain decomposition and parallel
assembly involving four subdomains Ω

m
,m ∈ {0, 1, 2, 3} assigned to

four parallel processes p ∈ {0, 1, 2, 3} . Since each process can only
assemble into unknowns of owned nodes, elements spanning across

the subdomain boundaries need to be evaluated by multiple pro-
cesses. This requires ghosting of nodes and elements, which entails
parallel communication among multiple processes

3697Engineering with Computers (2023) 39:3691–3720	

1 3

code base utilizes overlapping domain decomposition (DD)
techniques [22, 64, 67, 69]. Using nproc to denote the number
of available parallel processes, the computational domain Ω
is divided into nproc subdomains Ωm , m ∈ {0, 1,… ,M − 1} .
A one-to-one mapping of subdomains to processes is
employed, such that nproc = M.

An exemplary overlapping DD into four subdomains
distributed to processes p ∈ {0, 1, 2, 3} is shown in Fig. 2.
While each node in the finite element discretization is
uniquely assigned to a subdomain Ωm , elements might span
subdomain boundaries. We stress that processes can only
access data of nodes that they own themselves. This has
implications on finite element evaluation and assembly: A
process p can only assemble into those entries of the global
residual vector and those rows of the global Jacobian matrix
that are associated with nodes in Ωp . Hence, elements that
span across subdomain boundaries will be evaluated by all
processes that own at least one of this element’s nodes such
that each process can assemble quantities associated with
its own nodes.1 This requires communication of data prior
to the evaluation, i.e. data of off-process nodes need to be
communicated. This is often referred to as ghosting. Ide-
ally, subdomains exhibit a small surface-to-volume ratio to
minimize the amount of data subject to ghosting.

In our code base Baci, we employ the hypergraph par-
titioning package Zoltan [11] with the ParMETIS back-
end to decompose the computational domain Ω into nproc
subdomains Ωm . Parallel data structures and parallel linear
algebra are enabled through the Trilinos2 packages Epetra,
Tpetra, and Xpetra. Iterative solvers for sparse systems of
linear equations are taken form the Trilinos packages Azte-
cOO [38] and Belos [4] with scalable multi-level precondi-
tioners from ML [33] and MueLu [9].

3.2 � Implications of distributed memory
on the contact search and evaluation

Without loss of generality and for ease of presentation, we
assume that the entire discretization of a two-body contact
problem has undergone an overlapping DD and that each
subdomain m ∈ {0,… ,M − 1} has been assigned to a pro-
cess p ∈ {0,… , nproc − 1} . For the purpose of illustration,
we will discuss the case of nproc = 3 subdomains and further
assume that every process owns a part of the master and of
the slave interface as illustrated in Fig. 3. Please note that
our considerations also hold, if some processes only own
a part of either the slave or the master side of the interface

discretization or even if some processes do not own any por-
tion of the contact interface at all.

When process p is performing contact search and evalua-
tion on its share of the slave interface, it needs access to data
from the geometrically close master side of the interface. In
a parallel computing environment, the required data from
the master side of the interface does not necessarily reside
on that same process p . Still, access has to be enabled to

•	 identify pairs of slave/master elements, that potentially
are in active contact. This step is usually referred to as
“contact search”.

•	 evaluate the second integrand in (3), where the shape
functions N(2)

�
 defined on the master side need to be eval-

uated and projected onto the slave side.

If the required data of the master side resides on a differ-
ent parallel process q than the current slave-sided process p ,
these data have to be communicated or “ghosted” (cf. Fig. 2)
from process q to process p to be known by process p .
Therefore, the ghosting of the master interface discretiza-
tion has to be extended. Since such an extension will impact
the inter-processes communication demand as well as the
on-process memory demand, we will introduce models for
communication and memory demands in Sect. 3.3. More
importantly, we will discuss various approaches for extend-
ing the ghosting of the master interface discretization in
Sects. 3.4 and 3.5, where we will also discuss the impact of
these ghosting extension strategies on the memory demand.

Fig. 3   Without particular measures, DDs of master and slave side of
the interface distribute each interface side to some processes. Geo-
metrically close portions of the master and slave interface are not
guaranteed to reside on the same process. Without further measures,
each process p can only identify possibly contacting pairs of slave/
master elements from the subset of master elements owned by pro-
cess p , i.e. master elements that reside in the set Ω

p
∩ Γma

∗
 . This can

and needs to be alleviated by extending the ghosting of the master
side of the interface. (For simplicity of visualization, coloring of
ownership omits ghosted elements stemming from the overlapping
interface DD)

1  As an alternative, linear algebra data structures, that are specialized
for FEM computations, are available. They allow to assemble into
off-process rows. Naturally, communication among parallel processes
is required.
2  https://​trili​nos.​github.​io.

https://trilinos.github.io

3698	 Engineering with Computers (2023) 39:3691–3720

1 3

3.3 � Models for communication and memory
demand

Starting from an overlapping DD and distributed storage of
both interface discretizations, data need to be communicated
among processes to facilitate the mortar evaluation. We
will use � to denote the amount of data to be sent over the
interconnect of all compute nodes and processes. Since data
related to the slave side of the interface discretization just
remain on its process p , �sl

p
= 0 . As has already been indi-

cated in Fig. 3, process p owning the portion Γsl
m
 of the slave

side of the mortar interface requires the master side’s data
from those processes owning the geometrically close master
elements. Hence, usually 𝜎ma

p
> 0 , especially if a situation

as depicted in Fig. 3 occurs. Although an explicit expression
to compute �ma

p
 cannot be given, as it highly depends on the

software implementation at hand, it for sure is related to the
number of nodes nnd and elements nel to be communicated.
We denote this relation by

with �(nnd, nel) referring to an implementation-specific meas-
ure describing the cost of parallel communication. The total
amount of data to be communicated to process p sums up to

Obviously, � increases with an increasing number of sub-
domains. More importantly, however, it is impacted by the
individual contributions �ma

p
 . Especially when the number

of subdomains, that are required to solve a given problem,
is fixed, reducing �ma

p
 is key to reduce the overall cost of

communication. Naturally, � = 0 if nproc = 1.
From the domain decomposition of the underlying bulk

field, the memory demand sΩ
p

 per process p is given. For
the mortar interface discretizations, we use ssl

p
 to denote the

memory demand of the slave interface portion Γsl
m

 on pro-
cess p . Furthermore, sma

p
 refers to the memory demand of the

master interface portion Γma
m

 on process p . Then, the total
memory demand sp on process p is given as

Note that sp includes the amount of memory required for
owned nodes/elements as well as for ghost nodes/elements
originating from the overlapping DD with an element
overlap of 1. We stress that sΩ

p
 is fully determined by the

overlapping DD of the underlying bulk fields and that ssl
p

is only governed by the overlapping DD of the slave inter-
face discretization, that might arise from any of the schemes
proposed in Sect. 4 later. At this point, only the master

(4)�ma
p

∝ �(nnd, nel)

(5)� =

nproc−1
∑

p

�ma
p
.

(6)sp = sΩ
p
+ ssl

p
+ sma

p
∀p ∈ {0,… , nproc − 1}.

interface’s contribution sma
p

 can be controlled by choosing a
specific ghosting extension strategy.

3.4 � Redundant storage: the straightforward case

The probably most straightforward remedy for the issue
of undetected master/slave pairs described in Fig. 3 is to
fully extend the master side’s ghosting to all processes, i.e.
to store the entire master side of the interface redundantly
on every process p . This scenario of distributed storage of
the slave interface discretization, but redundant storage of
the master interface discretization is illustrated in Fig. 4
for an exemplary number of three processes. The slave
interface Γsl

∗
 is decomposed into three subdomains and dis-

tributed to the processes ‘proc 0 ’, ‘proc 1 ’, and ‘proc 2 ’,
indicated by coloring. The master interface Γma

∗
 starts

out from its initial DD (colored boxes with solid lines)
as already seen in Fig. 3. Then, its ghosting is extended
over the entire master interface Γma

∗
 (colored boxes with

dashed lines), such that Γma
∗

 is now stored redundantly on
all three processes.

The redundant storage of the master side of the inter-
face just requires a one-time setup and communication
cost at the beginning of the simulation to extend the ghost-
ing of master data to the entire master interface, but then
enables access to every bit of master interface data from
every process p ∈ {0, 1,… , nproc − 1} without further com-
munication among parallel processes. After the ghosting
has been extended following the idea of fully redundant
storage, all algorithmic steps, e.g. the contact search or the
evaluation of (3), can be performed immediately without
further communication.

In terms of the communication cost � , however, this
approach is rather expensive: since the entire master dis-
cretization needs to be communicated to every slave pro-
cessor p , the total communication cost can be estimated
via (4) and (5) as

Fig. 4   Fully redundant storage of the master interface discretization:
Solid lines indicate data that are owned by a particular process due to
the initial DD. Dashed lines indicate data that are available through
the extended ghosting. With fully redundant storage of the master dis-
cretization on each process, each process p can immediately identify
all pairs of slave/master elements, that are possibly in active contact

3699Engineering with Computers (2023) 39:3691–3720	

1 3

where all nodes and elements of the master side of the inter-
face discretization enter the cost estimate. The model (7)
suffers only from a slight over-estimation, since a part of the
master surface might already be located on the target pro-
cess and, thus, does not need to be communicated. Yet, this
over-estimation becomes smaller for an increasing number
of subdomains.

Since the entire master discretization has to be stored
on each process along with a portion of the slave discre-
tization, the memory demand of this approach can grow
quite excessively when going to large master interface
discretizations. The maximum problem size, for which
this strategy still works, cannot be given theoretically. It
strongly depends on several key factors, for example the
exact specifications of the computing hardware or intri-
cate details of the software implementation. Considering
the memory model (6), the per-process master contribu-
tion sma

p
 has to be replaced by the memory consumption sma

of the entire master interface since each process stores the
entire master discretization. Since sma grows with mesh
refinement, the total storage demand sp on process p is not
bounded. This limits the applicability of redundant stor-
age to small and medium sized interface discretizations,
depending on the hardware at hand.

Besides the possibly unbounded memory demand, fully
redundant ghosting of the master side also comes with a
run-time cost: when process p loops over all of its nodes/
elements of the master discretization, then it actually loops
over all nodes/elements of the entire master discretiza-
tion, although most of the nodes/elements are irrelevant on
process p as they are not located in the geometric vicinity
of process p ’s slave nodes/elements. Naturally, the code
is not aware of any concept of vicinity prior to the contact
search, so this cost cannot be avoided with this approach.

3.5 � Distributed storage: going to large problems

As soon as the memory demand sp exceeds the avail-
able memory on a computing node, redundant storage as
described in Sect. 3.4 should not be applied anymore to
avoid performance degradation due to memory swapping.
Following (6), the total storage demand sp per process can
be reduced by reducing the storage demand of the mas-
ter interface. In particular, when storing also the master
interface discretization in a distributed fashion, its stor-
age demand per process can be reduced to sma

p
< sma for

p ∈ {0,… , nproc − 1}, nproc ≥ 2 . Similarly, when the growth
in run-time for loops over master nodes/elements becomes
prohibitive, reducing the portion of the master interface
stored on each process p is expected to speed up simula-
tions. Still, each portion of the slave interface needs to have

(7)� ≈ nproc�(n(2), nel,ma), access to those parts of the master interface that reside in
its geometric proximity (cf. Fig. 3). In turn, measuring geo-
metric proximity requires access to all pairs of slave and
master nodes.

This situation can be remedied by different algorithmic
modifications: Within a token-based evaluation strategy, e.g.
inspired by Round-Robin (RR) scheduling [13], the paral-
lel decomposition and distribution of the slave interface is
fixed. On the master side, just the decomposition into sub-
domains is fixed, while the subdomain-to-process mapping
is shifted by one process per RR iteration until every process
has owned each master interface subdomain once. Since an
RR loop requires nproc iterations for a complete evaluation
of all slave elements, its run-time cost is high and has even
proven to be prohibitive in large-scale applications, which
we have also observed in our own experiments.

As an alternative, the incorporation of the notion of prox-
imity already into the extension of the master side’s ghosting
offers a promising solution. Hence, we resort to pre-comput-
ing ghosting data based on a geometrically motivated binning
approach, where we exploit the fact that the contact search
needs to identify all master elements in the proximity of a
given slave element. This idea is inspired by [55], where a
similar parallel algorithm is used for the spatial decomposi-
tion of atoms in short-range molecular dynamics simulations.

In the context of mortar methods, we will first construct
an axis aligned bounding box around the mortar interface, i.e.
a cuboid box that is oriented along the Cartesian axes and
encloses all nodes of the mortar interface. Then, this bound-
ing box will be covered with a set of Cartesian bins {�} that
are independent of the finite element meshes of the contacting
bodies (cf. Fig. 5). Since the contacting bodies are moving
relative to the background bins, slave nodes or elements can
migrate between individual bins over time. To not loose track
of individual nodes or elements due to this motion, the mini-
mal bin size �min is chosen as

with maxnel,sl h
sl being the largest element edge of the slave

discretization, Δt representing the time step size, u̇∗ denoting
the vector of nodal interface velocities and (∙) referring to
the mean value of (∙) , respectively. If the interface velocity
is not available in static problems, it can be replaced via a
finite difference approximation w.r.t. to the previous load
step. Analogously, the axis aligned bounding box embrac-
ing all mortar nodes is expanded by �min in each direction.
Then, the actual bin size � and number of bins per direction
is computed based on the dimensions of the expanded axis
aligned bounding box and the minimal bin size �min . We then

𝛽min = max
nel,sl

hsl + 2 ⋅ Δt ⋅ u̇∗

3700	 Engineering with Computers (2023) 39:3691–3720

1 3

apply Algorithm 2 to compute process-specific lists {egh}ma
p

of master elements to be ghosted for each process p . Please

note that potentially a subset of {egh}ma
p

 already resides on
processor p and, thus, does not need to be communicated.

Fig. 5   Extended ghosting of the master interface using a binning
scheme—We exemplarily show three parallel processes and depict
each one in its own sketch for the sake of presentation. Bins {�} are
sketched in solid orange lines. On Γsl

∗
 , mesh entities (such as nodes

and elements) are owned by the respective process anyway. On Γma
∗

 ,
solid lines indicate data that are owned by this process, while dashed
lines indicate data that has been ghosted via binning

3701Engineering with Computers (2023) 39:3691–3720	

1 3

Figure 5 illustrates the binning approach detailed in
Algorithm 2 for three processes. For ‘proc 0 ’, no further
ghosting is required in this example, since all required
master elements {egh}ma

0
 already reside in the neighbor-

ing bins of the set of bins {�sl
0
} enclosing all slave ele-

ments of Γsl
∗,0

 . In contrast, the master elements owned by
‘proc 1 ’ are not contained in {�sl

1
} and do not participate

to the evaluation of mortar terms in Γsl
∗,1

 . The master ele-
ments of interest, i.e. {egh}ma

1
 in the neighboring bins

of {�sl
1
} , need to be ghosted, which leaves out the mas-

ter elements in the left most bin covering Γma
∗

 . Finally,
‘proc 2 ’ requires {egh}ma

2
 , while it already owns some of

the required elements and only needs to ghost some addi-
tional elements.

The communication cost �ma
p

 for each processor p now
depends on the number of nodes/elements in the current
bin b and its neighboring bins. Due to the Cartesian char-
acter of bins, each bin has 8 or 26 neighbors in 2D or 3D,
respectively. Based on a constant bin size and assuming
uniform mesh sizes, the cost measure � per subdomain
introduced in (4) is now evaluated with 8 × n(2)

p
 or 26 × n(2)

p

nodes and 8 × nel,ma
p

 or 26 × nel,ma
p

 elements for 2D and 3D
problems, respectively. With an increasing number of sub-
domains and under the assumption of uniform meshes, the
total cost for communication is then bounded by

which is a significant reduction for large core counts com-
pared to (7). The scalar factors in (8) originate from the
number of neighboring bins in 2D and 3D, respectively.

Regarding memory demand as estimated via (6), the mas-
ter side’s demand sma

p
 now comprises of all master elements

stored on process p plus all master elements in neighbor-
ing bins. Assuming bin sizes similar to the size of subdo-
mains Ωm as well as evenly sized master elements, the master
side’s storage demand is bounded by 5 × sma

p
 or 9 × sma

p
 for

2D and 3D problems, respectively. While the number of
bins and, thus, the effort to sort master elements into bins
increases with a smaller characteristic bin size � , the storage
demands for each process p diminishes even more.

3.6 � Intermediate discussion of ghosting strategies

So far, we have concerned ourselves with strategies to satisfy
the requirement R1. Before addressing R2 in Sect. 4, we
briefly discuss some properties of the presented strategies
for the ghosting of the master interface.

While the fully redundant ghosting presented in Sect. 3.4
appears as straightforward, easy to implement, and only
needs to be done once at the beginning of the simulation,
its runtime cost for communication as well as its memory

(8)� ≤
{

8 ⋅ �ma
p

for 2D

26 ⋅ �ma
p

for 3D

demand can become prohibitive when going to large prob-
lems. The RR approach, in turn, alleviates the issue of exces-
sive growth of memory demand. Yet, the number of nec-
essary RR iterations equals the number of processes nproc ,
rendering this approach impractical for nproc ≫ 1 (especially
as it has to be applied in every time/load step). Although the
binning approach proposed in Sect. 3.5 needs to be applied
in every time/load step, it appears as the only approach with-
out impractical restrictions when going to large problem
sizes: Through the choice of the number and size of the bins,
the amount of data to be ghosted can be controlled, such that
only those master elements will be ghosted, that are likely
to be required during contact search and evaluation. In sum,
the applicability of the binning approach is neither affected
by the number of parallel processes nor greatly impacts the
parallel communication or total memory demand.

We will later supplement our assessment with detailed
numerical experiments in Sect. 5.1.1, but want to antici-
pate the main finding here: For the largest problems with
25M mesh nodes and 25k interface nodes, the process with
the largest ghosting demand asks for the redundant ghost-
ing of 25,921 nodes, while binning reduces this number to
1212 nodes, which amounts to a reduction of more than
20× . On average across all MPI ranks, these numbers can
be improved through load balancing which will be intro-
duced in Sect. 4.

4 � Balancing the work load among multiple
parallel processes

Now, we discuss strategies for an optimal distribution of the
work load to multiple parallel processes. These strategies are
intended to satisfy the requirement R2 from Sect. 2.3. We
assume that requirement R1 has already been satisfied by
any of the methods described in Sect. 3 and, thus, all data
are accessible whenever needed.

In Sects. 4.1–4.3, we first present some general consid-
erations applicable to all type of mortar interface problems,
before we move to the specific scenario of dynamically
evolving contact problems in Sect. 4.4.

4.1 � The concepts of strong and weak scalability

When assessing the performance of a parallel code and/or
algorithm, an important question is whether adding more
computational resources will actually speed-up the algo-
rithm’s performance at the proper rate. Two concepts are
commonly followed and investigated:

3702	 Engineering with Computers (2023) 39:3691–3720

1 3

•	 For a fixed problem size, strong scalability is given, if
the computational time diminishes at the same rate as the
used hardware resources grow. The strong scaling limit
is reached, when increasing the hardware resources does
not lead to a further reduction of computational time. See
[2].

•	 Weak scalability expects a constant computational
time when increasing the problem size and the parallel
resources at the same rate, i.e. when the work load per
process is kept constant. See [35].

As it is well established in many research and application
codes (and also in our code base Baci [3]), weak scalabil-
ity of the finite element evaluation of the pure bulk field
(i.e. volume element evaluation) without the presence of
any mortar interface can be achieved under uniform mesh
refinement.

4.2 � Curse of dimensionality

In surface-coupled problems with d spatial dimensions, the
coupling surface is always a d − 1 dimensional geometric
entity. Originally described in [7], this curse of dimensional-
ity between the bulk and the interface discretization becomes
problematic under uniform mesh refinement. Denoting the
characteristic mesh size with h , the number of unknowns
in the bulk discretization grows at O

(

hd
)

 while the surface
discretization of the coupling interface exhibits a growth
rate of O

(

hd−1
)

 only.
This becomes evident in practice when a first and simple

DD of the interface discretizations is now obtained by align-
ing the interface subdomains of the slave and master side
with the subdomains of the underlying bulk discretizations.
Although this approach is straightforward to implement
and also avoids off-process assembly, thus reducing parallel

communication, it does not result in an optimal parallel dis-
tribution for the evaluation of the mortar coupling terms.
Since computing the interface contributions, i.e. the mor-
tar segmentation process, integration and assembly of the
mortar matrices D and M to only name the most important
tasks, is all done on the slave interface discretization, all
numerical tasks might be performed by very few parallel
processes only, while others idle.

For simplicity of visualization, this is illustrated using
a two-dimensional meshtying problem in Fig. 6, where the
domain decomposition of the mortar interface’s slave and
master side is fully aligned with the underlying bulk discre-
tizations. Considering a coarse discretization distributed to
four parallel processes as shown in Fig. 6a, the slave inter-
face is divided into two subdomains and the master inter-
face is owned by two processes only as well. Consequently,
there are two processes, that do not own a share of the slave
interface, and two other processes not owning any node of
the master interface. In Fig. 6b, the mesh has been refined
by a factor of two in each direction, and 16 processes have
been used such that the load per process remains constant
in the bulk discretization. While the bulk discretization is
now split into 16 subdomains, the slave and master inter-
face are shared only among four processes each. In sum,
only 4 processes tackle the expensive evaluation of mortar
terms on the slave side of the interface, while 12 processes
are completely left out. Even in these small and only two-
dimensional problem, it becomes evident that the alignment
of interface subdomains with bulk subdomains potentially
leaves a huge fraction of all processes idle during inter-
face evaluation. While it is true that using more processes
improves the parallelization of the bulk discretization, it
does not necessarily contribute to a good and scalable par-
allelization of the interface computations. We stress that this

Fig. 6   Perfect alignment of bulk and interface domain decomposi-
tion: subdomains in the master side of the interface (left vertical strip)
coincide with the master side’s bulk discretization (left square), while

the slave side’s interface subdomains (right vertical strip) are aligned
with the slave side’s bulk discretization (right square)

3703Engineering with Computers (2023) 39:3691–3720	

1 3

issue is even more pronounced for the three-dimensional
case and larger numbers of parallel processes.

4.3 � Improving the domain decomposition
of interface discretizations

To overcome the curse of dimensionality and to satisfy R2,
we allow the slave and master side of the interface to be
decomposed into subdomains independently from the under-
lying bulk discretizations to achieve optimal parallel scal-
ability of the computational tasks associated with both the
integration and assembly in the bulk domains Ω1 and Ω2
as well as integration and assembly on the interfaces Γsl
and Γma . In a first and straightforward approach, one can
divide both interfaces Γsl and Γma into nproc subdomains, such
that each parallel process handles a portion of the interface
as illustrated in Fig. 7. This is particularly important for the
slave side which needs to perform all computations related
to the integration of the mortar terms in (3).

For the coarse and the fine mesh, both Γsl and Γma are
distributed to 4 and 16 parallel processes, respectively.
A clear advantage of this strategy is that all parallel pro-
cesses participate in the interface treatment, so idling is
mostly avoided. However, the fine mesh already indicates
that the interface subdomains may become very small, i.e.
they consist only of a few elements. Recalling the curse of
dimensionality outlined in Sect. 4.2, this will become an
issue at large scale where the bulk field is divided into nproc
subdomains of reasonable size, while the subdomain size of
the interface decreases when refining the mesh and adding
parallel processes at the same rate. Having many but very

small interface subdomains does not leave any process idle,
but also yields interface subdomains with a large surface-
to-volume ratio which indicates an increasing communica-
tion overhead. In sum, this strategy distributes the compu-
tational work of the interface evaluation more evenly to all
processes than just adopting the interface subdomains from
the underlying bulk discretization. The numerical experi-
ments in Sect. 5 confirm this statement.

Conceptually, there is still room for further optimizations,
in particular related to parallel communication among pro-
cesses, e.g. by setting a lower bound nel

min
 on the number of

elements per interface subdomain to reduce the communi-
cation overhead. Such an approach needs to compromise
between the amount of parallel communication among pro-
cesses and the number of idling processes. In this work,
we have refrained from exploring this research direction,
since the distribution of the interface to all parallel processes
already delivers satisfying scaling behavior for many practi-
cal applications.

4.4 � Interface domain decompositions
for dynamically evolving interfaces

In many applications, the interface configuration evolves
over time, e.g. as in contact problems with large sliding or
contact of rolling bodies. In such cases, the interface DD
can come out of balance, resulting in some processes to do
significantly more work than others, which possibly idle.
Then, a rebalancing can become necessary to distribute the
computational work evenly to all participating processes.

Fig. 7   Independent interface domain decomposition using all nproc parallel processes

3704	 Engineering with Computers (2023) 39:3691–3720

1 3

Algorithm 3 details the integration of imbalance monitor-
ing and potential rebalancing steps into the time integration
and nonlinear solver routines. In each time step, each proces-
sor p tracks the time teval,p spent in the evaluation of all mor-
tar terms as well as the number of its slave elements nel,sl

p
 . We

then estimate the imbalance among all processes by

with �t and �e denoting the imbalance in contact evaluation
time and number of slave elements per processor, respec-
tively. The theoretical optimum of a perfect balancing of
the mortar-related workload is given for �t = 1 and �e = 1 ,
respectively, i.e. when all processes spend exactly the same
time in mortar evaluation and when all processes own
the exact same number of slave elements. If in any time
step these imbalance estimates exceed user-given thresh-
olds 𝜂̂t ≥ 1 and �e ≥ 1 for contact evaluation time and num-
ber of slave elements per processor, respectively, i.e. if

(9)�t =
maxp

(

teval,p
)

minp
(

teval,p
) , �e =

maxp

(

nel,sl
p

)

minp

(

n
el,sl
p

)

(10)𝜂t ≥ 𝜂̂t ∨ 𝜂e ≥ 𝜂̂e,

then we re-compute the interface DD to obtain a DD with
better load balancing. As this load balancing procedure is
triggered dynamically by the current state of the simulation,
we refer to it as dynamic load balancing.

Naturally, 𝜂̂t = 1 will trigger rebalancing in every time
step, such that each time step can rely on the best possible
interface DD. In practice, the cost for rebalancing needs
to be taken into account, such that practical computations
require 𝜂̂t > 1 . We will study the impact of the actual choice
of 𝜂̂t on the run time in Sect. 5.2.

The main difference between the two imbalance meas-
ures �t and �e is that �e does not account for the time to
evaluate a given master/slave pair, while �t relies on actual
wall clock timings. Thus, situations with 𝜂e ≫ 1 , but �t fairly
close to 1 can occur, if the contact search identifies a huge
number of pairs of master and slave elements as close to
each other, but the subsequent mortar evaluation cannot find
a valid projection and, thus, most of the computational work
to evaluate (3) is skipped for such pairs of elements. In sum,
the time-based trigger �t is expected to be more effective to
avoid idling processes in practical simulations.

3705Engineering with Computers (2023) 39:3691–3720	

1 3

4.5 � Implication on finite element assembly
and communication patterns

Although the slave side’s interface discretization might
exhibit its independent DD to improve scalability, all system
quantities, e.g. the Jacobian matrix J and the residual vec-
tor f , are distributed among parallel processes following the
DD of the underlying bulk discretizations. After evaluation
of the mortar element matrices defined in (3) within a mor-
tar element in interface subdomain Γn , n ∈ {0,… ,M − 1} ,
on process q ∈ {0,… , nproc − 1} , a contribution to J and f
associated with node j in Ωm , m ∈ {0,… ,M − 1} , owned
by process p ∈ {0,… , nproc − 1} can only be assembled by
process p . Hence, if p ≠ q , communication is required to
send data from process q to process p to assemble into global
system quantities. From the perspective of the evaluating
process, this is referred to as off-process assembly. Com-
munication can only be avoided if and only if p = q.

It is true that off-process assembly increases the amount
of communication and, thus, puts a cost burden onto the
entire algorithm. Although this is not desirable, it is usually
the much cheaper price to pay than to just stick to the one-
to-one matching of interface and underlying bulk DDs. The
speed-up of the cost-intensive evaluation of mortar terms
through an independent DD of the interface discretiza-
tions easily amortizes the additional cost of communication
related to off-process assembly. We will study timings of the
mortar evaluation and off-process assembly in detail in the
numerical experiments in Sect. 5.

5 � Numerical experiments

We first study parallel redistribution and scalability in a sim-
ple two-block contact example in Sect. 5.1 before moving on
to dynamic contact problems in Sect. 5.2.

All computations are done with our in-house multi-phys-
ics research code Baci [3]. All scaling studies have been run
on our in-house cluster (20 nodes with 2x Intel Xeon Gold
5118 (Skylake-SP) 12 core CPUs, 196 GB RAM per node,
Mellanox Infiniband Interconnect).

5.1 � Contact of two cubes

For a first assessment of the scalability of the contact evalu-
ation, we consider a simple two-block contact problem with
a small block (dimensions 0.8 × 0.8 × 0.8 ) and a slightly big-
ger block (dimensions 1.0 × 1.0 × 1.0 ), where contact will
occur between two flat surfaces of the blocks. To reduce the
complexity of the contact problem and to exclude nonlinear-
ities due to changes in the contact active set, the faces oppo-
site to the contact interface are fixed with Dirichlet boundary

conditions, while the blocks initially penetrate each other at
the contact interface by 0.001. The smaller block acts as the
slave side and its entire contact area is already initialized
as “active”. Application of the contact algorithms will then
result in a slight compression of both blocks, such that the
initial penetration vanishes. This problem setup allows to
distill the computational effort spent on the redistribution,
ghosting, and contact evaluation. In fact, for the parallel
scaling studies, we only evaluate all contact terms, but then
do not even solve the contact problem to allow for an even
more concise focus on the scaling behavior of the contact
evaluation.

Both blocks use a Neo–Hooke material with Young’s
modulus E = 10 and Poisson’s ratio � = 0.3 . Denoting the
mesh refinement factor with � , both blocks are discretized
with 5� linear hexahedral elements along their edges.

As an exemplary visualization, Fig. 8 illustrates the
assignment of subdomains to MPI ranks for a simulation
with 24 MPI ranks. Since the discretization of both blocks
uses the same number of elements per block, the volume DD
exhibits 12 subdomains for each block. Without load bal-
ancing, the interface DD evidently matches the underlying
volume DD (cf. the top right picture in Fig. 8). In particular,
the slave side of the interface is shared by only 6 (out of 24)
processes, such that the remaining 18 processes idle during
the expensive mortar evaluation. While the DD of the solid
volume is not affected by the interface load balancing, the
interface DD now yields 24 subdomains for both sides of the
interface (cf. the bottom right picture in Fig. 8). This allows
to share the computational work for the mortar evaluation
among all processes.

5.1.1 � Weak scaling

We perform a weak scaling study. The smallest prob-
lem using 1 MPI rank consists of 55,566 displacement
unknowns, while 441/400 nodes/elements reside on the slave
side of the contact interface. The largest problem using 480
MPI ranks contains 25,039,686 displacement unknowns,
with 25,921/25,600 nodes/elements located on the slave
side of the contact interface. We target a load of ≈ 50 k
displacement unknowns per MPI rank under weak scaling
conditions. Timing results are shown in Fig. 9. With load
balancing, the pure contact evaluation time remains con-
stant under weak scaling conditions as shown in Fig. 9a and
as expected for finite element evaluations. Manifesting the
curse of dimensionality described in Sect. 4.2 though, the
case without load balancing does not equally benefit from
adding hardware resources since most of the additional pro-
cesses do not participate in the mortar evaluation. While
the choice of load balancing does not impact the serial case
( nproc = 1 ) of course, the contact evaluation without load

3706	 Engineering with Computers (2023) 39:3691–3720

1 3

balancing requires twice as much time on 2, 4, and 8 MPI
ranks than with load balancing, since the processes owning
a piece of the master side of the interface do not contribute
to the contact evaluation. For an increasing number of MPI
ranks, this gap increases.

Regarding the time spent in redistribution and extending
the interface ghosting, tLB + tgh , an increase with an increas-
ing number of MPI ranks is expected, as the size of the MPI
communicator grows and, thus, mandates increased com-
munication. Obviously, this time component is rather inde-
pendent of the parallel distribution, but is largely impacted
by the ghosting strategy: Since the redundant ghosting of the
master side requires to communicate all interface nodes and
elements of the master side to all MPI ranks, the timings for
redundant ghosting exceed the time for ghosting via the geo-
metrically motivated binning approach, where the amount of
data to be communicated among processes is reduced based
on geometric information.

It becomes evident from Fig. 9c, that the time for assem-
bling of all contact terms into the global linear system is
only slightly impacted by load balancing, while the impact
of the ghosting strategy appears to be negligible.

Finally, we assess the total cost of contact evalu-
ation which is the most relevant target quantity
for practical applications. It is given by the total
time ttotal = tLB + tgh + teval + tass for (possibly) redistrib-
uting, ghosting, evaluation, and assembly of the contact
interface and is shown in Fig. 9d. Again, ghosting via bin-
ning (“binning”) results in a lower total time ttotal than the
redundant ghosting of the master side (“redundant master”).
Moreover, load balancing (“LB”) allows all MPI ranks to
participate in the evaluation of the contact terms, yielding

a faster total contact time than without load balancing (“no
LB”). Dominated by the contact evaluation time teval , the
case without load balancing does not scale beyond 8 MPI
ranks, while load balancing shows good weak scalability up
to 200 MPI ranks. Overall, our proposed strategy of load
balancing in combination with binning delivers the fastest
contact evaluation for all mesh sizes and also features the
smallest increase in total contact time when increasing the
problem size.

Figure 10 illustrates the impact of both the load balanc-
ing and the ghosting strategy on the number of owned and
ghosted master side elements by reporting the maximum
number of elements per MPI rank among all processes. Nat-
urally, load balancing, where all processes hold a portion of
the contact interface, leads to a lower number of owned enti-
ties per processor than no load balancing, where the inter-
face is stored only by a subset of all processes: Depicted by
the dotted lines, the number of owned elements per MPI
rank is smaller in case of load balancing than without load
balancing, in particular by a factor of 100 for more than 48
MPI ranks in this example. The influence of the ghosting
strategy is shown with dashed and solid lines: While binning
(solid lines) just adds a small number of nodes or elements
to be ghosted from other processes, fully redundant ghosting
(dashed lines) drastically increases the number of ghosted
elements. For large examples, this increase can exceed
two orders of magnitude. We observe that the number of
owned elements is consistently smaller than the number of
ghosted elements when using load balancing, while this is
not the case without load balancing. This peculiarity is just
an artifact of the visualization, since the MPI rank with the
maximum number of owned entities is not necessarily the

Fig. 8   Two cubes in contact: colors represent the owning MPI rank of a volume/interface subdomain (Color figure online)

3707Engineering with Computers (2023) 39:3691–3720	

1 3

same as the one with the maximum number of ghosted enti-
ties. Using the ratio of ghosted elements to owned elements
to indicate the additional overhead in memory and parallel
communication due to the distributed memory paradigm, we
make the following key observation: ghosting via binning
as proposed in Sect. 3.5 is much more efficient in terms of

memory and parallel communication than fully redundant
ghosting. Please note that the respective diagram for owned
and ghosted nodes of the interface’s master side essentially
looks the same and, thus, is not shown for the conciseness
of the presentation.

Fig. 9   Weak scaling of contact time for two cubes

3708	 Engineering with Computers (2023) 39:3691–3720

1 3

5.1.2 � Strong scaling

To assess the strong scaling behavior under different load
balancing and ghosting strategies, we study three different
meshes and problem sizes detailed in Table 1. The strong
scaling behavior is reported in Fig. 11. While meshes 2M
and 5M could be run in serial, mesh 10M did not fit into the
memory of a single core. Hence, the graphs for the mesh
10M start at 3 MPI ranks, while 2M and 5M start at 1 MPI
rank.

Regarding the pure contact evaluation time teval depicted
in Fig. 11a, the curse of dimensionality as described in
Sect. 4.2 leads to insufficient scaling behavior for the case
without load balancing. For some cases, the contact evalua-
tion time does not decrease (or even slightly increase) when
adding more processes, (cf. the mesh ‘2M’ without load
balancing executed on 3, 6, and 12 MPI ranks for example).
In contrast, the proposed load balancing scheme delivers
the expected strong scaling behavior across a wide range
of MPI ranks, since all MPI ranks participate in the contact
evaluation. Moreover, load balancing results in faster con-
tact evaluation independent of the mesh size and ghosting
strategy than no load balancing. Naturally, strong scaling
behavior of the contact evaluation time teval is not affected
by the choice of ghosting strategy.

For the combined time tLB + tgh for redistribution and
ghosting as shown in Fig. 11b, the timings are now domi-
nated by the choice of ghosting strategy. In particular, fully
redundant ghosting of the master interface (dashed lines)

requires a consistently larger time across a wide range of
MPI ranks. Ghosting via binning (solid lines) can benefit
from additional hardware resources, until the strong scaling
limit is reached and timings are increasing with an increas-
ing number of MPI ranks. The effect of the load balancing
strategy is negligible, but we note that the extra cost of per-
forming a redistribution leads to slightly higher times with
load balancing than without load balancing.

Considering the assembly of all contact terms into the
global linear system, Fig. 11c shows just a small difference
with and without load balancing. Similar to the weak scal-
ing study from Sect. 5.1.1, the ghosting strategy does not
impact these timings. We observe good strong scalability
for all studied cases.

Having in mind the overall goal of a fast time-to-solu-
tion, the total time ttotal = tLB + tgh + teval + tass for (possi-
bly) redistributing, ghosting, evaluation, and assembly of the
contact interface is depicted in Fig. 11d. Again, the proposed
load balancing strategy results in the best timings and in
good, but not perfect scaling behavior. Stemming from the
pure contact evaluation time teval (depicted in Fig. 11a), the
total time ttotal without load balancing does not strictly follow
the expected strong scaling behavior. Per definition of ttotal ,
this diagram combines all characteristics from Fig. 11b–d,
namely the better scaling of teval due to load balancing and
the increase in the timing component tLB + tgh for large
numbers of MPI ranks due to increased communication and
redistribution effort.

Fig. 10   Number of owned and ghosted elements of the interface’s master side under weak scaling conditions

Table 1   Three meshes and
problem sizes for strong scaling
of a two-block contact example

Mesh ID Bulk domain Slave interface

Number of nodes Number of DoFs Number of nodes Number
of ele-
ments

2M 715,822 2,147,466 5041 4900
5M 1,769,472 5,308,416 9216 9025
10M 3,543,122 10,629,366 14,641 14,400

3709Engineering with Computers (2023) 39:3691–3720	

1 3

In sum, the best scaling behavior is achieved with the
proposed approach of load balancing in combination with
ghosting via binning. While both components affect the
overall efficiency, the fastest evaluation times and the best
weak and strong scaling behavior can only be achieved
through the combination of load balancing with ghosting
via binning. So far, we have limited our analysis to static
contact problems without any changes in the contact zone,
where the proposed algorithms demonstrate their benefi-
cial effect on the run time and the weak and strong scaling
behavior, but could not unfold their full potential. Therefore,
we now move to dynamic contact problems, where the con-
tact zone changes over time and, thus, the load balancing is
expected to show an even better effect on the scalability and
performance.

5.2 � Rolling cylinder with dynamic contact

This example studies the behavior of parallel algorithms for
dynamic contact problems, i.e. for uni-lateral contact prob-
lems where the contact zone is changing over time. This will
exercise the parallel redistribution of the contact interface
discretization to its full extent.

The problem is configured as follows: An elastic hollow
cylinder is pushed onto a deformable block with initially
flat surfaces. After contact has been established, a rotat-
ing motion is imposed on the inner surface of the hollow
cylinder, somewhat mimicking a rolling tire. Both bodies
are modeled with a compressible Neo-Hooke material with
Young’s modulus E = 1 , Poisson’s ratio � = 0.3 , and den-
sity � = 10−6.

Fig. 11   Two-block contact: strong scaling of contact time

3710	 Engineering with Computers (2023) 39:3691–3720

1 3

Both bodies are discretized with first-order hexahedral
finite elements. The top surface of the block is chosen as the
master side of the contact interface, while the outer surface
of the hollow cylinder takes the role of the slave surface.

For constraint enforcement, a node-based penalty regu-
larization of the mortar approach with a penalty parameter
of 5 is chosen. Time integration employs the generalized-�
method [15] with spectral radius �∞ = 1.0.

Fig. 12   Visualization of volume and interface subdomains for different load balancing strategies in a dynamic contact example. Interesting fea-
tures are highlighted with roman numbers I–IV and discussed in the text

3711Engineering with Computers (2023) 39:3691–3720	

1 3

Figure 12 exemplarily compares the volume and interface
subdomains for the different load balancing strategies for
the case of 24 MPI ranks. The initial subdomain layout in
step 0 is the same for all load balancing strategies. While the
DD of the underlying bodies will not be altered, we apply
the interface load balancing scheme proposed in Sect. 4.3,
which results in different interface DDs for the slave side.
To unclutter the presentation, we only show the evolution of
the slave side’s interface DDs, since this is the key ingredient
for a scalable mortar evaluation. Interesting features due to
load balancing are highlighted with roman numbers I–IV
(see also Fig. 12b–e) and will be discussed below. In the
case of no load balancing (column “no LB”), the interface

subdomains match the subdomains of the underlying vol-
ume DD throughout the entire simulation. For static LB
(column “static LB”), an initial interface DD is performed
at the beginning of step 1, but it is not updated during the
simulation. Hence, a small strip of slave subdomains is gen-
erated during the initial load balancing phase (cf. highlight
I or Fig. 12b) and then rotates with the rolling motion of
the cylinder as marked by highlight III (see also Fig. 12d),
such that it quickly leaves the contact area and, thus, does
not contribute to an optimal contact evaluation throughout
the entire simulation. Based on the threshold criterion (10),
the dynamic load balancing (column “dyn. LB”) updates
the interface DD close to the contact area (cf. highlight II or

Fig. 13   Effect of different load balancing strategies on the time spent in the contact evaluation

3712	 Engineering with Computers (2023) 39:3691–3720

1 3

Fig. 12c) such that the interface DD is nearly optimal in the
vicinity of the contact zone and all processes participate in
the evaluation of the contact terms independent of the rolling
motion of the cylinder (cf. highlight IV or Fig. 12e).

5.2.1 � Effect of load balancing on wall clock time
and memory consumption

We compare the cases of no load balancing, an initial load
balancing in the reference configuration, and the dynamic
load balancing proposed in Sect. 4.4 on a mesh with
825,600 hexahedral elements consisting of 913,923 nodes
and resulting in 2,741,769 displacement unknowns. We run
the simulation on 96 MPI ranks on our in-house cluster.
For the case of initial and dynamic load balancing, we limit
the relative mismatch in subdomain size of the interface
DD by setting the Zoltan parameter IMBALANCE_TOL
to 1.03 [11]. For dynamic load balancing, we have tested
different thresholds 𝜂̂t ∈ {1.01, 1.2, 1.5, 1.8, 2.5, 5.0, 8.0}
to trigger rebalancing, but will only report and discuss
selected cases in the following for the sake of presentation,
namely 𝜂̂t ∈ {1.01, 1.8, 5.0, 8.0} . To extend the ghosting of
the master side’s interface discretization, we rely on the bin-
ning strategy outlined in Sect. 3.5. A comparison of the dif-
ferent ghosting strategies is presented in Sect. 5.2.3.

We run the simulation for 200 time steps (20 time steps
to close the initial gap, then 180 time steps of the rolling
motion) to facilitate a rotation of 180◦ , such that the contact
area on the outer cylinder surface substantially moves along
the circumferential direction.

For every time step, Fig. 13a reports the average time
per nonlinear iteration spent in contact evaluation (without
considering the cost for load balancing). If no load balanc-
ing is performed, the average contact evaluation time is the
largest. Since the slave side’s interface DD is just adopted
from the underlying volume discretization, some processes
do never participate in contact evaluation. Moreover, the
number of processes contributing to the contact evaluation
changes over time, so the average contact evaluation time
also changes over time steps. In contrast, static load balanc-
ing assures that all parallel processes hold their share of
the slave side of the interface, such that the average contact
evaluation time is roughly constant for all time steps (as soon
as full contact is established). Since only a part of all pro-
cesses contributes to the evaluation of the potentially active
part of the slave interface, the average contact evaluation
time is still rather large. Ultimately, dynamic load balancing
triggers a rebalancing based on the current simulation status
to aid a well-balanced distribution of the contact evaluation
work to all parallel processes. In Fig. 13a, time steps just
after a drop in teval are those, in which a rebalancing has
occurred. Since the effort of mortar evaluation is now dis-
tributed to all processes, the time spent in mortar evaluation

drops significantly on average. Of course, individual time
steps with an imbalanced work distribution among processes
might take longer, which will ultimately lead to rebalancing
as soon as the rebalancing criterion (10) is met. In particular,
a very low rebalancing threshold (e.g. 𝜂̂t = 1.01 ) requires to
rebalance in basically every time step. Although this results
in the overall fastest mortar evaluation, the additional effort
for rebalancing limits the possible speed-up. On the other
hand, a loose threshold (e.g. 𝜂̂t ∈ {5.0, 8.0} ) triggers the
rebalancing only a few times over the course of the simu-
lation, however for some time steps the time spent in the
mortar evaluation can grow by a factor of two or even three
compared to the ideal case. In our numerical experiments,
we have found the threshold 𝜂̂t = 1.8 to deliver a good com-
promise between imbalance in per-process workload and
the frequency of rebalancing. Therefore, we will use this
threshold value for all further studies.

Figure 13b reports the time tgh spent for ghosting of the
master side of the contact interface plus the time tLB for
rebalancing of the interface DD (if applicable). For the
clarity of the presentation, we concentrate on three selected
cases. While the time component tgh for the master side
ghosting is rather constant for all three cases, the time com-
ponent tLB varies: For static load balancing, only the first
time step requires rebalancing, while all later time steps
do not perform load balancing anymore. Hence, this curve
peaks in the first time step and then drops and remains at low
values. For dynamic load balancing with the strict imbal-
ance threshold 𝜂̂t = 1.01 , rebalancing occurs in every time
step, such that this case consistently delivers high values
for tLB + tgh . Obviously, these two cases can be interpreted
as a lower and upper bound as evident from Fig. 13b. The
case of dynamic load balancing with 𝜂̂t = 1.8 positions itself
in between, since some time steps require rebalancing, but
some do not.

While all cases with dynamic load balanc-
ing spend additional time on the redistribution of
the interface subdomains, these additional timings
are easily amortized. To this end, Fig. 13c plots the
time tacc =

∑C

c=1
(teval + tLB + tgh)c, c ∈ {1,… ,C}, of all

time components related to mortar evaluation over all time
steps accrued over all C contact evaluations of the entire
simulation. The end point markers are intended to highlight
also small differences between curves. Naturally, a strict
monotone increase is expected, while one aims for an as
low as possible slope. Similar to the average contact evalu-
ation time, static load balancing is beneficial compared to no
load balancing at all, while dynamic load balancing results
in the lowest contact evaluation times. Clearly, the better
parallelization due to the dynamic load balancing strategy
pays off the additional cost for occasional rebalancing. The
lower the acceptable imbalance 𝜂̂t is, the lower is the accu-
mulated contact evaluation time tacc . Overall, a maximum

3713Engineering with Computers (2023) 39:3691–3720	

1 3

reduction up to 71% in tacc can be achieved through proper
dynamic load balancing. We note that the difference in tacc
between 𝜂̂t = 1.01 and 𝜂̂t = 1.8 is very small, indicating that
load balancing in every time step does not bring much addi-
tional value.

To demonstrate the effect of the rebalancing trigger 𝜂̂t in
detail, Fig. 14 shows a close-up of the results in Fig. 13a
as well as the evolution of the max/min ratio �t in contact
evaluation time across all parallel processes. For a clearer
visualization, only a subset of the results is plotted. In
Fig. 14a, data points after a drop in teval correspond to
time steps, where load balancing has occurred since the
max/min ratio �t exceeded the threshold 𝜂̂t in the previous
time step. This is in line with Fig. 14b, where �t is plotted
over time along with dashed lines to indicate the different
thresholds 𝜂̂t . We observe that �t drops close to the perfect
balance (i.e. �t = 1.0 ) just after it exceeded the threshold
level 𝜂̂t . In favor of an uncluttered view, Fig. 14b shows
only results obtained with dynamic load balancing.

So far, we have studied the impact of the load balanc-
ing strategy and the imbalance threshold 𝜂̂t onto the time
spent in the computational treatment of all mortar terms. In
all cases, dynamic load balancing is worth the effort. Since

the present example shows very good behavior for 𝜂̂t = 1.8 ,
we continue to use this value throughout this example. We
note that the optimal choice of 𝜂̂t is problem-dependent. Yet,
we generally recommend to use dynamic load balancing for
contact problems with changing contact zones and select 𝜂̂t
on a case-by-case basis.

5.2.2 � Strong scaling behavior under dynamic load
balancing

Now, we study the strong scaling behavior of the contact
evaluation time when dynamic load balancing is active. We
therefore study two different problem sizes: 517,185 dis-
placement unknowns referred to as “500k” and 1,005,993
displacement degrees of freedom denoted by “1000k”.
While we keep the problem sizes fixed, we solve the prob-
lem on an increasing number of MPI ranks on our in-house
cluster.

We will compare different load balancing strategies,
namely no load balancing (“no LB”), initial load balancing
in the reference configuration (“static LB”), and dynamic

Fig. 14   Detailed view of contact evaluation timings and its imbalance

3714	 Engineering with Computers (2023) 39:3691–3720

1 3

load balancing (with 𝜂̂t = 1.8 (“dyn. LB”) as found useful
in Sect. 5.2.1).

Figure 15 shows the strong scaling behavior. Again,
we consider the average contact evaluation time teval per
time step, the time tLB + tgh spent in redistribution and
ghosting of the interface discretizations, the average total
time ttotal = teval + tLB + tgh per time step, and finally the total
contact time tacc =

∑C

c=1
(teval + tLB + tgh)c, c ∈ {1,… ,C},

accumulated over all C contact evaluations of the entire
simulation. For both problem sizes as well as all quanti-
ties of interest, we observe good strong scaling behavior
when using dynamic load balancing: starting from a small
number of MPI ranks, the time spent on a given task (e.g.
contact evaluation, redistribution and ghosting, total con-
tact time, accumulated contact time) is reduced when add-
ing more MPI ranks to tackle the computations, while the
reduction rate is linked to the increase in MPI ranks, i.e.

delivering perfect strong scaling [2]. As expected, both
meshes reached their strong scaling limit at some point, such
that adding more hardware resources does not reduce, but
actually increase the execution time, e.g. due to a deterio-
rating computation-to-communication ratio. Naturally, the
strong scaling limit of the large problem (1000k) is located
at twice the number of MPI ranks as for the small, half-
sized problem (500k). The beneficial effect of dynamic load
balancing becomes evident in comparison to “no LB” and
“static LB”: Without any load balancing or just an initial
rebalancing of the interface discretizations, the initial slope
in the scaling diagrams is far from optimal. Once again, this
originates from the curse of dimensionality, since the addi-
tional hardware resources do not necessarily participate in
the interface evaluation. For an intermediate number of MPI
ranks, strong scaling is recovered, however absolute timings

Fig. 15   Strong scaling of the contact timings under different load balancing strategies

3715Engineering with Computers (2023) 39:3691–3720	

1 3

are much higher than for the same setup with dynamic load
balancing. As already observed in Sect. 5.1.1, static load bal-
ancing is consistently a bit faster than using no load balanc-
ing at all, yet it is by far slower than dynamic load balancing.

As demonstrated, the proposed dynamic load balancing
scheme is the key factor to achieve strong scalability of the
evaluation of mortar terms in a nonlinear and time-depend-
ent contact simulation. To the authors’ best knowledge, this
constitutes the first time that strong scalability in such a
complex setting could be demonstrated.

5.2.3 � Comparison of strategies to extend the master side’s
ghosting

While the influence of the load balancing strategy has
already been discussed previously, we now aim to assess the
impact of the ghosting strategy on the overall performance
of the contact evaluation. Therefore, we exemplarily con-
sider the mesh from Sect. 5.2.1 run on 96 MPI ranks. Now,
we compare the fully redundant storage of the master side

Fig. 16   Effect of ghosting strategies on the contact timings: the combination of dynamic load balancing with ghosting via binning consistently
delivers the fastest timings for contact evaluation

3716	 Engineering with Computers (2023) 39:3691–3720

1 3

of the interface (cf. Sect. 3.4) to the geometrically motivated
binning approach (cf. Sect. 3.5). We study again the cases
of no, static, and dynamic load balancing. For the clarity
of the presentation, we only show the case of dynamic load
balancing scenario with 𝜂̂t = 1.8 , but note that other values
for 𝜂̂t exhibit similar behavior.

Figure 16 summarizes the wall clock time spent on con-
tact evaluation. For the pure contact evaluation time reported
in Fig. 16a, the fully redundant ghosting increases the evalu-
ation time for all cases, since the contact detection needs to
account for all master elements, while ghosting via binning
pre-sorts the master elements based on their geometric prox-
imity within neighboring bins.

Figure 16b depicts the time spent in redistribution and
ghosting of interface data. For the sake of a clear presenta-
tion and to really focus on the most relevant case, we show
only the curves for dynamic load balancing. Evidently,
ghosting via binning is faster by a factor of ≈ 8−10× than
fully redundant ghosting.

Figure 16c shows the accumulated time for con-
tact evaluation, load balancing, and ghosting, i.e.
tacc =

∑C

c=1
(teval + tLB + tgh)c, c ∈ {1,… ,C}, to assess the

overall accumulated time spent on all C evaluations of the
contact interface over the course of the entire simulation.
For the cases with no and static load balancing, the ghost-
ing strategy does not impact the overall performance sig-
nificantly. For dynamic load balancing though, the necessity
of ghosting after each redistribution makes the difference:
the performance difference between fully redundant ghost-
ing and ghosting via binning as observed in Fig. 16b now
accumulates over time, such that the use of binning results
in the overall lowest time spent on contact evaluation. So,
additional savings of 40% of the contact evaluation time can
be achieved. Summing up the study of contact timings, the
best case scenario of dynamic load balancing with ghosting
via binning is faster than

•	 dynamic load balancing with fully redundant ghosting by
a factor of ≈ 1.67,

•	 static load balancing by a factor of ≈ 2.61,
•	 no load balancing by a factor of ≈ 3.30,

which strongly emphasizes the benefits of dynamic load
balancing and ghosting via binning in dynamic contact
problems.

Finally, we briefly summarize the impact of the load bal-
ancing scheme and the ghosting strategy onto the cost for
storage and parallel communication: If no load balancing is
performed (“no LB”), the maximum number of owned nodes
per process is roughly 10× larger than its average across all
processes, since not all processes hold a portion of the inter-
face. This imbalance is alleviated for static or dynamic load
balancing. Regarding the impact of the ghosting strategy,

ghosting via binning reduces down the number of nodes/
elements to be ghosted by a factor of 100× compared to
the fully redundant case, which ultimately also impacts the
global memory footprint of the application.

In sum, dynamic contact problems require a good choice
of load balancing strategy as well as a suitable ghosting
strategy. In particular, load balancing highly impacts the
time spent in contact evaluation. Despite the additional cost
of performing the load balancing operation, the overall fast-
est contact evaluation is achieved with dynamic load bal-
ancing based on a user-given imbalance threshold 𝜂̂t . While
we have found 𝜂̂t = 1.8 to deliver very good results in our
numerical studies, the optimal choice of 𝜂̂t can depend on
details of the computing hardware, the software implemen-
tation, and also the example at hand. To reduce the amount
of parallel communication as well as the memory demand
per compute node, ghosting via binning is by far superior to
a fully redundant storage of the master side of the interface
discretization. The overall best performance with respect
to both phenomena (run time and communication/memory
demand) is obtained through the combination of dynamic
load balancing with ghosting via binning.

6 � Concluding remarks

Recognizing the tremendous computational effort to evalu-
ate mortar integrals in the context of non-matching inter-
face discretizations as they exemplarily arise in contact
mechanics, this paper proposes strategies for efficient stor-
age and parallel computational kernels for mortar interface
problems. Starting from a closer look at the tasks and the
computational effort to evaluate mortar integrals, we have
derived two basic requirements for computations on parallel
machines with distributed memory architecture: On the one
hand, one needs to enable access to the appropriate interface
data to guarantee a correct identification of all master/slave
pairs at the mortar interface. On the other hand, the avail-
able parallel hardware needs to be used efficiently, such that
parallel scalability of the mortar evaluation can be achieved.

We have found the combination of efficient ghosting
of data from the master side of the mortar interface using
as few as possible parallel communication together with a
scalable evaluation of mortar integrals to be crucial for the
overall efficiency and performance of mortar evaluations.
Regarding the finite element assembly of the mortar opera-
tors, special care needs to be taken for off-process values. In
our implementation, we strictly follow the traditional imple-
mentation of overlapping DD, i.e. we ghost elements whose
nodes are owned by more than one MPI rank and then evalu-
ate these elements on each of the participating processes,

3717Engineering with Computers (2023) 39:3691–3720	

1 3

such that each process only needs to write into rows of the
matrices that reside on this process. As an alternative, spe-
cialized data structures for sparse matrices (e.g. from Tri-
linos’ Tpetra package3) allow for off-process assembly.
Then, shared elements are only evaluated once and result
values need to be communicated to other processes after the
evaluation. The faster option for finite element assembly in
parallel highly depends on the implementation and software
stack at hand, so we cannot give a general recommendation.
For both approaches, a sparse communication pattern as pro-
posed in [44] could speed-up the parallel communication
even further.

For the ghosting of interface data, we have discussed
techniques to guarantee access to all required master/
slave pairs during the contact search and mortar evalu-
ation. While fully redundant ghosting is conceptually
easy and straightforward to implement, it suffers from
elevated memory demands and tremendous communica-
tion overhead at large scale, which ultimately increases
the overall time-to-solution. A geometrically motivated
approach using a background grid of Cartesian bins allows
for the efficient identification of nearby master elements,
reduces the per-process memory demand as well as limits
the number of master elements to be ghosted. The binning
approach has shown the best timings in weak and strong
scaling studies and consistently reduces the amount of data
to be communicated between parallel processes as well as
to be stored within a process.

Regarding a scalable evaluation of the mortar inte-
grals on parallel architectures, we have then discussed
the curse of dimensionality in overlapping DDs of inter-
face problems, which requires a special treatment of the
interface subdomains. To this end, we have proposed to
use an interface DD independent from the underlying
volume DD and were able to demonstrate optimal weak
and strong scalability of the mortar evaluation time. To
account for dynamic changes in the contact zone, we have
designed a dynamic load balancing scheme for contact
problems, which tracks imbalances among parallel pro-
cesses and rebalances the computational work as soon as
user-given imbalance thresholds are exceeded. We have
tested the proposed algorithms on a time-dependent non-
linear contact problem undergoing large deformations. In
time measurements on such large-scale examples, dynamic
load balancing outperforms the case of no or only initial
load balancing by factors up to 2−4× . Wall clock time
is the lowest, when only small imbalances are allowed,
although even a large imbalance tolerance delivers faster
computations than simulations without any load balancing
at all. For the first time, strong and weak scalability could

be shown for time-dependent nonlinear contact problems
undergoing large deformations and dynamically evolv-
ing contact zones through the application of the proposed
dynamic load balancing scheme.

In our numerical experiments, we have studied represent-
ative test cases from computational contact mechanics. We
have performed weak and strong scaling studies up to 480
MPI ranks as well as have assessed the impact of different
algorithmic parameters. From our numerical experiments,
we extract several findings:

•	 Ghosting via binning is favorable due to its reduced com-
munication overhead, which also directly reduces the
time-to-solution.

•	 Load balancing is crucial for optimal contact evaluation
times. In particular, systems with a static contact zone
benefit from an initial redistribution of the interface,
while contact problems with dynamically evolving con-
tact zones require the proposed dynamic load balancing
scheme for optimal performance.

•	 For static contact problems, we have found the combina-
tion of static load balancing and ghosting via binning to
deliver the best results.

•	 For dynamic contact problems, we have found the com-
bination of dynamic load balancing and ghosting via bin-
ning to deliver the best results.

In sum, we recommend to apply static load balancing in
combination with ghosting via binning for problems with
static contact zones, while dynamic load balancing in com-
bination with ghosting via binning is preferable for prob-
lems with dynamically evolving contact zones. Following
these recommendations, a fast time-to-solution as well as
good weak and strong scaling behavior can be achieved.

Acknowledgements  This work has been partially funded by the
Deutsche Forschungsgemeinschaft (DFG-German Research Founda-
tion) within the project “Experimental characterization and numeri-
cal simulation of the automated fiber placement (AFP) process for
thermoplastic fiber-reinforced plastics” (Project number 325153381).

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Data availability statement  All data are available from the correspond-
ing author upon reasonable request.

Declarations 

Conflict of interest  The authors have no other competing interests di-
rectly or indirectly related to this manuscript.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes 3  https://​trili​nos.​github.​io/​tpetra.​html.

https://trilinos.github.io/tpetra.html

3718	 Engineering with Computers (2023) 39:3691–3720

1 3

were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Achdou Y, Maday Y, Widlund OB (1999) Iterative substructur-
ing preconditioners for mortar element methods in two dimen-
sions. SIAM J Numer Anal 36(2):551–580

	 2.	 Amdahl GM (1967) Validity of the single-processor approach to
achieving large scale computing capabilities. In: AFIPS confer-
ence proceedings. AFIPS Press, Reston/Va, vol 30, pp 483–485

	 3.	 BACI: a comprehensive multi-physics simulation framework.
https://​baci.​pages.​gitlab.​lrz.​de/​websi​te/. Accessed 3 Feb 2022

	 4.	 Bavier E, Hoemmen M, Rajamanickam S, Thornquist H (2012)
Amesos2 and Belos: direct and iterative solvers for large sparse
linear systems. Sci Program 20(3):241–255

	 5.	 Belgacem FB (1999) The Mortar finite element method with
Lagrange multipliers. Numerische Mathematik 84(2):173–197

	 6.	 Belgacem FB, Hild P, Laborde P (1998) The mortar finite
element method for contact problems. Math Comput Model
28(4–8):263–271

	 7.	 Bellmann R (1957) Dynamic programming. Princeton Univer-
sity Press, Princeton

	 8.	 Benson DJ, Hallquist JO (1990) A single surface contact algo-
rithm for the post-buckling analysis of shell structures. Comput
Methods Appl Mech Eng 78:141–163

	 9.	 Berger-Vergiat L, Glusa CA, Hu JJ, Mayr M, Prokopenko A,
Siefert CM, Tuminaro RS, Wiesner TA (2019) MueLu user’s
guide 2.0. Technical Report SAND2019-0537, Sandia National
Laboratories, Albuquerque, NM 87185, USA

	10.	 Bernardi C, Maday Y, Patera AT (1993) Domain decomposition
by the mortar element method. In: Kaper HG, Garbey M, Pieper
GW (eds) Asymptotic and numerical methods for partial differ-
ential equations with critical parameters. Springer, Dordrecht,
pp 269–286

	11.	 Boman EG, Çatalyürek UV, Chevalier C, Devine KD (2012)
The Zoltan and Isorropia parallel toolkits for combinatorial
scientific computing: partitioning, ordering and coloring. Sci
Program 20(2):29–150

	12.	 Brivadis E, Buffa A, Wohlmuth B, Wunderlich L (2015) The
influence of quadrature errors on isogeometric mortar methods.
In: Jüttler B, Simeon B (eds) Isogeometric analysis and applica-
tions 2014. Springer, Berlin

	13.	 Brucker P (2007) Scheduling algorithms, 5th edn. Springer,
Berlin

	14.	 Casarin MA, Widlund OB (1996) A hierarchical preconditioner
for the mortar finite element method. Electron Trans Numer
Anal 4:75–88

	15.	 Chung J, Hulbert G (1993) A time integration algorithm for
structural dynamics with improved numerical dissipation: the
generalized-$\alpha $ method. J Appl Mech 60(2):371–375

	16.	 De Lorenzis L, Wriggers P, Hughes TJ (2014) Isogeometric
contact: a review. GAMM-Mitteilungen 37(1):85–123

	17.	 De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar for-
mulation for 3D large deformation contact using NURBS-based
isogeometric analysis and the augmented Lagrangian method.
Comput Mech 49:1–20

	18.	 Dickopf T, Krause R (2009) Efficient simulation of multi-body
contact problems on complex geometries: a flexible decompo-
sition approach using constrained minimization. Int J Numer
Methods Eng 77(13):1834–1862

	19.	 Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeomet-
ric analysis and thermomechanical Mortar contact problems.
Comput Methods Appl Mech Eng 274:192–212

	20.	 Dittmann M, Schuß S, Wohlmuth B, Hesch C (2019) Weak Cn
coupling for multipatch isogeometric analysis in solid mechan-
ics. Int J Numer Methods Eng 118(11):678–699

	21.	 Dittmann M, Schuß S, Wohlmuth B, Hesch C (2020) Crosspoint
modification for multi-patch isogeometric analysis. Comput
Methods Appl Mech Eng 360:112768

	22.	 Dolean V, Jolivet P, Nataf F (2015) An introduction to domain
decomposition methods: algorithms, theory and parallel imple-
mentation. SIAM, Philadelphia

	23.	 Dornisch W, Stöckler J, Müller R (2017) Dual and approximate
dual basis functions for B-splines and NURBS—comparison
and application for an efficient coupling of patches with the
isogeometric mortar method. Comput Methods Appl Mech Eng
315:449–496

	24.	 Dornisch W, Vitucci G, Klinkel S (2015) The weak substitu-
tion method—an application of the mortar method for patch
coupling in NURBS-based isogeometric analysis. Int J Numer
Meth Eng 103(3):205–234

	25.	 Duong TX, De Lorenzis L, Sauer RA (2019) A segmentation-
free isogeometric extended mortar contact method. Comput
Mech 63:383–407

	26.	 Ehrl A, Popp A, Gravemeier V, Wall WA (2014) A dual mortar
approach for mesh tying within a variational multiscale method
for incompressible flow. Int J Numer Methods Fluids 76(1):1–27

	27.	 Fang R, Farah P, Popp A, Wall WA (2018) A monolithic, mor-
tar-based interface coupling and solution scheme for finite ele-
ment simulations of lithium-ion cells. Int J Numer Methods Eng
114(13):1411–1437

	28.	 Farah P, Popp A, Wall WA (2015) Segment-based vs. element-
based integration for mortar methods in computational contact
mechanics. Comput Mech 55(1):209–228

	29.	 Farah P, Vuong A-T, Wall WA, Popp A (2016) Volumetric cou-
pling approaches for multiphysics simulations on non-matching
meshes. Int J Numer Methods Eng 108(12):1550–1576

	30.	 Farah P, Wall WA, Popp A (2016) An implicit finite wear con-
tact formulation based on dual mortar methods. Int J Numer
Methods Eng 111(4):325–353

	31.	 Flemisch B, Wohlmuth BI (2007) Stable Lagrange multipliers
for quadrilateral meshes of curved interfaces in 3D. Comput
Methods Appl Mech Eng 196(8):1589–1602

	32.	 Foley J (1997) Computer graphics: principles and practice.
Addison-Wesley, Boston

	33.	 Gee MW, Siefert CM, Hu JJ, Tuminaro RS, Sala MG (2006)
ML 5.0 smoothed aggregation user’s guide. Technical Report
SAND2006-2649, Sandia National Laboratories, Albuquerque,
NM, 87185, USA

	34.	 Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite defor-
mation frictional mortar contact using a semi-smooth Newton
method with consistent linearization. Int J Numer Methods Eng
84(5):543–571

	35.	 Gustafson JL (1988) Reevaluating Amdahl’s law. Commun ACM
31(5):532–533

	36.	 Hansen GA, Xavier PG, Mish SP, Voth TE, Heinstein MW, Glass
MW (2016) An MPI+X implementation of contact global search
using Kokkos. Eng Comput 32:295–311

	37.	 Hartmann S, Brunssen S, Ramm E, Wohlmuth BI (2007) Uni-
lateral non-linear dynamic contact of thin-walled structures
using a primal-dual active set strategy. Int J Numer Methods Eng
70(8):883–912

http://creativecommons.org/licenses/by/4.0/
https://baci.pages.gitlab.lrz.de/website/

3719Engineering with Computers (2023) 39:3691–3720	

1 3

	38.	 Heroux MA (2007) AztecOO user guide. Technical Report
SAND2004-3796, Sandia National Laboratories, Albuquerque,
NM, 87185, USA

	39.	 Hesch C, Betsch P (2009) A mortar method for energy–momen-
tum conserving schemes in frictionless dynamic contact problems.
Int J Numer Methods Eng 77(10):1468–1500

	40.	 Hesch C, Betsch P (2011) Transient three-dimensional contact
problems: mortar method. Mixed methods and conserving integra-
tion. Comput Mech 48:461–475

	41.	 Hesch C, Betsch P (2012) Isogeometric analysis and domain
decomposition methods. Comput Methods Appl Mech Eng
213–216:104–112

	42.	 Hesch C, Gil AJ, Arranz Carreño A, Bonet J, Betsch P (2014)
A mortar approach for fluid–structure interaction problems:
immersed strategies for deformable and rigid bodies. Comput
Methods Appl Mech Eng 278:853–882

	43.	 Hintermüller M, Ito K, Kunisch K (2003) The primal-dual active
set strategy as a semismooth Newton method. SIAM J Optim
13(3):865–888

	44.	 Hoefler T, Siebert C, Lumsdaine A (2010) Scalable communica-
tion protocols for dynamic sparse data exchange. ACM SIGPLAN
Not 45(5):159–168

	45.	 Hüeber S, Stadler G, Wohlmuth BI (2008) A primal-dual active
set algorithm for three-dimensional contact problems with Cou-
lomb friction. SIAM J Sci Comput 30(2):527–596

	46.	 Hüeber S, Wohlmuth BI (2005) A primal-dual active set strategy
for non-linear multibody contact problems. Comput Methods
Appl Mech Eng 194(27–29):3147–3166

	47.	 Klöppel T, Popp A, Küttler U, Wall WA (2011) Fluid–struc-
ture interaction for non-conforming interfaces based on a
dual mortar formulation. Comput Methods Appl Mech Eng
200(45–46):3111–3126

	48.	 Krause R, Zulian P (2016) A parallel approach to the vari-
ational transfer of discrete fields between arbitrarily distrib-
uted unstructured finite element meshes. SIAM J Sci Comput
38(3):C307–C333

	49.	 Lamichhane BP, Stevenson RP, Wohlmuth BI (2005) Higher order
mortar finite element methods in 3D with dual Lagrange multi-
plier bases. Numerische Mathematik 102(1):93–121

	50.	 Lamichhane BP, Wohlmuth BI (2007) Biorthogonal bases with
local support and approximation properties. Math Comput
76(257):233–249

	51.	 Maday Y, Rapetti F, Wohlmuth BI (2002) The influence of quadra-
ture formulas in 2D and 3D mortar element methods. In: Pavarino
LF, Toselli A (eds) Recent developments in domain decomposi-
tion methods, vol 23. Lecture notes in computational science and
engineering. Springer, Berlin

	52.	 Mayr M, Klöppel T, Wall WA, Gee MW (2015) A temporal con-
sistent monolithic approach to fluid–structure interaction enabling
single field predictors. SIAM J Sci Comput 37(1):B30–B59

	53.	 McDevitt TW, Laursen TA (2000) A mortar-finite element formu-
lation for frictional contact problems. Int J Numer Methods Eng
48(10):1525–1547

	54.	 Message Passing Interface Forum (2021) MPI: a message-passing
interface standard version 4.0

	55.	 Plimpton S (1995) Fast parallel algorithms for short-range molec-
ular dynamics. J Comput Phys 117(1):1–19

	56.	 Popp A, Gee MW, Wall WA (2009) A finite deformation mortar
contact formulation using a primal-dual active set strategy. Int J
Numer Methods Eng 79(11):1354–1391

	57.	 Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar
approach for 3D finite deformation contact with consistent lin-
earization. Int J Numer Methods Eng 83(11):1428–1465

	58.	 Popp A, Wohlmuth BI, Gee MW, Wall WA (2012) Dual quadratic
mortar finite element methods for 3D finite deformation contact.
SIAM J Sci Comput 34(4):B421–B446

	59.	 Puso MA (2004) A 3D mortar method for solid mechanics. Int J
Numer Methods Eng 59(3):315–336

	60.	 Puso MA, Laursen TA (2003) Mesh tying on curved interfaces in
3D. Eng Comput 20(3):305–319

	61.	 Puso MA, Laursen TA (2004) A mortar segment-to-segment
contact method for large deformation solid mechanics. Comput
Methods Appl Mech Eng 193(6–8):601–629

	62.	 Puso MA, Laursen TA (2004) A mortar segment-to-segment fric-
tional contact method for large deformations. Comput Methods
Appl Mech Eng 193(45–47):4891–4913

	63.	 Puso MA, Laursen TA, Solberg J (2008) A segment-to-segment
mortar contact method for quadratic elements and large deforma-
tions. Comput Methods Appl Mech Eng 197(6):555–566

	64.	 Quarteroni A, Valli AMP (2005) Domain decomposition methods
for partial differential equations. Clarendon, Oxford

	65.	 Scott LR, Zhang S (1990) Finite element interpolation of nons-
mooth functions satisfying boundary conditions. Math Comput
54(190):483–493

	66.	 Seitz A, Farah P, Kremheller J, Wohlmuth BI, Wall WA, Popp A
(2016) Isogeometric dual mortar methods for computational con-
tact mechanics. Comput Methods Appl Mech Eng 301:259–280

	67.	 Smith B, Bjørstad P, Gropp W (2008) Domain decomposition:
parallel multilevel methods for elliptic partial differential equa-
tions. Cambridge University Press, Cambridge

	68.	 Stefanica D (2001) A numerical study of FETI algorithms for mor-
tar finite element methods. SIAM J Sci Comput 23(4):1135–1160

	69.	 Toselli A, Widlund OB (2005) Domain decomposition methods:
algorithms and theory, vol 34. Springer series in computational
mathematics. Springer, Berlin

	70.	 Wieners C, Wohlmuth BI (1999) A general framework for mul-
tigrid methods for mortar finite elements. Technical Report 415,
Institut für Mathematik, Universität Augsburg

	71.	 Wieners C, Wohlmuth BI (2003) Duality estimates and multigrid
analysis for saddle point problems arising from mortar discretiza-
tions. SIAM J Sci Comput 24(6):2163–2184

	72.	 Wiesner TA, Mayr M, Popp A, Gee MW, Wall WA (2021)
Algebraic multigrid methods for saddle point systems arising
from mortar contact formulations. Int J Numer Methods Eng
122(15):3749–3779

	73.	 Wiesner TA, Popp A, Gee MW, Wall WA (2018) Algebraic mul-
tigrid methods for dual mortar finite element formulations in con-
tact mechanics. Int J Numer Methods Eng 114(4):399–430

	74.	 Wilking C, Bischoff M (2017) Alternative integration algorithms
for three-dimensional mortar contact. Comput Mech 59:203–218

	75.	 Williams JR, O’Connor R (1995) A linear complexity intersection
algorithm for discrete element simulation of arbitrary geometries.
Eng Comput 12:185–201

	76.	 Williams JR, O’Connor R (1999) Discrete element simulation and
the contact problem. Arch Comput Methods Eng 6:279–304

	77.	 Wohlmuth BI (2000) A mortar finite element method using
dual spaces for the Lagrange multiplier. SIAM J Numer Anal
38(3):989–1012

	78.	 Wohlmuth BI (2000) A multigrid method for saddle point prob-
lems arising from mortar finite element discretizations. Electron
Trans Numer Anal 11:43–54

	79.	 Wohlmuth BI (2001) Discretization methods and iterative solvers
based on domain decomposition, vol 17. Springer, Heidelberg

	80.	 Wohlmuth BI (2011) Variationally consistent discretization
schemes and numerical algorithms for contact problems. Acta
Numer 20:569–734

	81.	 Wohlmuth BI, Popp A, Gee MW, Wall WA (2012) An abstract
framework for a priori estimates for contact problems in 3d with
quadratic finite elements. Comput Mech 49(6):735–747

	82.	 Wriggers P (2006) Computational contact mechanics, 2nd edn.
Springer, Berlin

3720	 Engineering with Computers (2023) 39:3691–3720

1 3

	83.	 Wunderlich L, Seitz A, Alaydın MD, Wohlmuth B, Popp A (2019)
Biorthogonal splines for optimal weak patch-coupling in isogeo-
metric analysis with applications to finite deformation elasticity.
Comput Methods Appl Mech Eng 346:197–215

	84.	 Yang B, Laursen TA (2008) A contact searching algorithm includ-
ing bounding volume trees applied to finite sliding mortar formu-
lations. Comput Mech 41:189–205

	85.	 Yang B, Laursen TA (2008) A large deformation mortar formu-
lation of self contact with finite sliding. Comput Methods Appl
Mech Eng 197(6):756–772

	86.	 Yang B, Laursen TA, Meng X (2005) Two dimensional mortar
contact methods for large deformation frictional sliding. Int J
Numer Methods Eng 62(9):1183–1225

	87.	 Zhong Z-H, Nilsson L (1989) A contact searching algorithm for
general contact problems. Comput Struct 33(1):197–209

	88.	 Zhong Z-H, Nilsson L (1990) A contact searching algorithm
for general 3-D contact-impact problems. Comput Struct
34(2):327–335

	89.	 Zou Z, Scott MA, Borden MJ, Thomas DC, Dornisch W, Brivadis
E (2018) Isogeometric Bézier dual mortaring: refineable higher-
order spline dual bases and weakly continuous geometry. Comput
Methods Appl Mech Eng 333:497–534

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Scalable computational kernels for mortar finite element methods
	Abstract
	1 Introduction
	2 Problem formulation and finite element discretization
	2.1 Governing equations
	2.2 Discretization
	2.3 Evaluation of mortar integrals

	3 Storing data of the contact interface on a parallel machine
	3.1 Overlapping domain decomposition
	3.2 Implications of distributed memory on the contact search and evaluation
	3.3 Models for communication and memory demand
	3.4 Redundant storage: the straightforward case
	3.5 Distributed storage: going to large problems
	3.6 Intermediate discussion of ghosting strategies

	4 Balancing the work load among multiple parallel processes
	4.1 The concepts of strong and weak scalability
	4.2 Curse of dimensionality
	4.3 Improving the domain decomposition of interface discretizations
	4.4 Interface domain decompositions for dynamically evolving interfaces
	4.5 Implication on finite element assembly and communication patterns

	5 Numerical experiments
	5.1 Contact of two cubes
	5.1.1 Weak scaling
	5.1.2 Strong scaling

	5.2 Rolling cylinder with dynamic contact
	5.2.1 Effect of load balancing on wall clock time and memory consumption
	5.2.2 Strong scaling behavior under dynamic load balancing
	5.2.3 Comparison of strategies to extend the master side’s ghosting

	6 Concluding remarks
	Acknowledgements
	References

