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Abstract: The predictions of turbulent burning velocity parameterizations for non-unity Lewis num-
ber flames have been assessed based on a single-step chemistry Direct Numerical Simulation (DNS)
database of premixed Bunsen flames for different values of characteristic Lewis numbers ranging
from 0.34 to 1.2. It has been found that the definition of the turbulent burning velocity is strongly
dependent on the choice of projected flame brush area in the Bunsen burner configuration. The
highest values of normalized turbulent burning velocity are obtained when the projected flame brush
area is evaluated using the area of the isosurface of the Reynolds averaged reaction progress variable
of 0.1 out of different options, namely the Favre averaged and Reynolds averaged isosurfaces of
reaction progress variable of 0.5 and integral of the gradient of Favre and Reynolds averaged reaction
progress variable. Because of the axisymmetric nature of the mean flame brush, the normalized
turbulent burning velocity has been found to decrease as the burned gas side is approached, due to
an increase in flame brush area with increasing radius. Most models for turbulent burning velocity
provide comparable, reasonably accurate predictions for the unity Lewis number case when the pro-
jected flame brush area is evaluated using the isosurface of the Reynolds averaged reaction progress
variable of 0.1. However, most of these parameterizations underpredict turbulent burning velocity
values for Lewis numbers smaller than unity. A scaling relation has been utilized to extend these
parameterizations for non-unity Lewis numbers. These revised parameterizations have been shown
to be more successful than the original model expressions. These modified expressions also exhibit
small values of L2-norm of the relative error with respect to experimental data from literature for
different Lewis numbers, higher turbulence intensity and thermodynamic pressure levels.

Keywords: turbulent burning velocity; turbulent premixed Bunsen flame; Lewis number; flame
surface area; direct numerical simulations

1. Introduction

Due to threats of climate change, countries and industries are searching for cleaner
and efficient ways of generating energy. Although renewable forms of energy exist, these
have their own drawbacks, such as the intermittent generation of energy for wind and
solar. Unless and until more efficient methods to store such energy are devised, it is very
likely that combustion will remain the principal mode of energy production. Premixed
combustion, in which reactants are homogenously mixed, is a good way to reduce the
emission of pollutants as it limits the chances of incomplete combustion. Moreover, it is
easier to control NOx emissions by optimizing between the peak temperature achieved and
power produced. This can be done by either controlling the temperature or the composition
of the reactants. The emission of greenhouse gases such as CO2 can also be reduced by
using a premixed combustion of fuels such as hydrogen, ammonia or syngas. Net zero
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targets by governments can be achieved by the application of low/zero-carbon fuels such
as biofuel, hydrogen and ammonia, as proposed by contemporary scenario plans [1].

The application of pure hydrogen enables combustion with the complete elimination
of carbon-based greenhouse gas emission [1]. However, the thermochemistry of hydrogen
combustion is significantly different from that of hydrocarbon fuels [2], and the presence of
lighter chemical species induces significant effects of differential diffusion. This, in turn,
impacts upon practical operational burner characteristics such as (i) variations in flame
stability maps and (ii) susceptibility to premature combustion (knocking) and flashback.
As most existing combustion devices are designed to operate based on hydrocarbon fuels,
the switch from hydrocarbon to hydrogen fuel will happen gradually and, in the interim
period, hydrogen is expected to be blended in fixed proportions with hydrocarbon fuel
to enable a transitional reduction in greenhouse gas emissions. The presence of H2 in the
fuel induces a significant amount of differential diffusion of heat and species due to the
non-unity Lewis number. Thus, the non-unity Lewis number effects cannot be ignored in
the premixed combustion of High-Hydrogen-Content (HHC) fuels.

It has been shown in several previous analytical [3–6], experimental [7–10] and com-
putational [11–18] studies that the turbulent burning velocity in premixed turbulent flames
increases with decreasing characteristic Lewis number. As turbulent burning velocity ST
is one of the most important quantities in the modelling of turbulent premixed combus-
tion [7–9,19–22], it is important to consider the modelling of ST in response to the variations
of the characteristic Lewis number. However, a universal scaling law for the turbulent flame
speed is yet to be reported [23] and is still a subject of current research. Bray and Cant [24]
pointed out that the ST/SL is proportional to the product of the flame brush thickness and
the maximum of the flame surface density multiplied by the stretch factor I0. These quanti-
ties in turn depend on the turbulence structure and the thermophysical properties of the
fuel. Often a quadratic scaling of turbulent burning velocity in terms of turbulence intensity
is assumed [23]. However, upon onset of the hydro-dynamic instability, a sub-unity scaling
exponent for turbulence intensity is reported [23]. Similarly, Kobayashi et al. [25] suggested
a correlation of turbulent burning velocity ST in terms of pressure and turbulence intensity.
Driscoll [26] argued that for an ideal geometry independent turbulent flame, ST/SL would
be expected to be a function of the normalized turbulence intensity and integral length
scale as well as the turbulent Markstein number. Further, Driscoll [26] pointed out that
for real flames, the wrinkling has a memory effect which will make the functional rela-
tionship more complicated. A variety of experimental and numerical data and empirical
formulations are discussed in a review article [26]. A rather complex formulation based
on measured turbulent burning velocities has been suggested by Filatyev et al. [27] which
also provides a fit to the nonlinear bending observed for high turbulence intensities. An
important ingredient for this formulation was to include the mean flow velocity and the
burner width. The turbulent bending effect has been discussed by several authors, and
the reader is referred to [28,29] for further information in this regard. Both the Markstein
length and the thermophysical properties, related to the Lewis number of the flame, play
an important role. In this respect, it is worth noting that most existing parameterizations
of turbulent burning velocity [7–9,19–22] have been proposed for unity Lewis number
conditions where the differential diffusion of heat and mass was ignored.

As reactants are composed of different gases with different Lewis numbers, it is
difficult to estimate a characteristic mixture Lewis number. However, different methods
of estimation of the characteristic Lewis number have been proposed, such as equating
the Lewis number of the reactant with the least concentration [30,31], calculating it from
measurements made of the heat release rate [8], by numerically estimating it from binary
diffusion theory for mixtures [32] or by individually calculating the thermal conductivity
and mass diffusivity based on the mole fraction of the constituent species [33]. Bechtold
and Matalon [31] have suggested that the mixture Lewis number can be calculated as:
Le = 1.0 + [(LeF − 1) + (LeO − 1)ΛLe]/(1 + ΛLe) where ΛLe = 1 + β(Φ− 1) with Φ =
φH(φ− 1)+ (1/φ)(1− H(φ− 1)) for φ, H(x) and β being the equivalence ratio, Heaviside
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function and Zel’dovich number, respectively. Subscripts F and O are used for fuel and
oxidizer, respectively. The present analysis employs the concept of characteristic Lewis
number to analyse the effects of Le on the turbulent burning velocity using simple chemistry
DNS data of Bunsen burner flames.

To date, most of the turbulent burning velocity parameterizations [7–9,19–22] have
been proposed for unity Lewis number conditions and therefore disregard the effects of
differential diffusion of heat and species. The performance and applicability of these pa-
rameterizations in the flames with the non-unity characteristic Lewis number are yet to be
assessed in detail. The present analysis addresses this gap in the literature by considering a
DNS database of turbulent premixed Bunsen burner flames with a non-unity characteristic
Lewis number to assess the performance of existing parameterizations [7–9,19–22]. The tur-
bulent burning velocity ST can be defined in terms of the volume-integral in the following
manner [34]:

ST =
1

ρu AL

∫
V

.
ωcdV (1)

where
.

ωc is the reaction rate of reaction progress variable c, ρu is the unburned gas density
and AL is the projected flame brush area in the direction of mean flame propagation. The
evaluation and definition of AL gives rise to uncertainties to the evaluation of the turbulent
burning velocity ST , and the impact of AL evaluation on ST will be assessed in this analysis
by employing different methodologies to extract the projected flame surface area AL. In
this respect, the main objectives of this analysis are:

(a) To assess the performances of the existing parameterizations of turbulent burning
velocity ST for turbulent premixed flames with characteristic Lewis numbers signifi-
cantly different from unity.

(b) To illustrate the impact of the projected flame brush surface area AL evaluation on
turbulent burning velocity ST for turbulent Bunsen burner flames with different
characteristic Lewis numbers.

The rest of the paper will be organized as follows. The mathematical background and
numerical implementation pertaining to the current analysis are presented in Sections 2 and 3
of this paper. The results will be presented in Section 4 of this paper, and finally, the main
findings are summarized and conclusions are drawn in Section 5.

2. Mathematical Background

The present analysis deals with the integral quantities such as volume-integrated
burning rate and flame surface area, which can be captured reasonably accurately by
single-step chemistry. It was shown elsewhere [35,36] that the flame propagation statistics
extracted from single-step chemistry DNS is qualitatively similar to that obtained for
detailed chemistry DNS and the quantitative differences are of the same order of uncertainty
associated with different definitions of reaction progress variable c. Thus, a single-step
chemistry has been considered in this analysis in the interest of computational economy
and to identify the effects of the characteristic Lewis number in isolation. In the context
of simple chemistry, the reactive scalar field can be described with the help of reaction
progress variable c and non-dimensional temperature θ, which are defined as:

c =
Yα −Yαu

Yαb −Yαu
; θ =

T − Tu

Tαd − Tu
(2)

where Yα is the mass fraction of species α based on which reaction progress variable is
defined, the subscripts u and b are used to refer to the values in the unburned gas and
burned gas, respectively, and Tad is the adiabatic flame temperature. Accordingly, the
reaction rate of the reaction progress variable

.
ωc is defined as:

.
ωc =

.
ωα

Yαb −Yαu
(3)
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In the context of Reynolds Averaged Navier–Stokes (RANS) simulations, the mean
reaction rate can be modelled in the following manner for high values of Damköhler
number (i.e., Da� 1) [37]:

.
ωc = 2ρε̃c /(2cm − 1) (4)

Here, q, q̃ = ρq/ρ and q′′ = q− q̃ are the Reynolds averaged, Favre averaged and
Favre fluctuation of a general quantity q. In Equation (4), ε̃c = ρD∇c′′ ·∇c′′/ρ is the
scalar dissipation rate based on Favre fluctuations of reaction progress variable, D is the
reaction progress variable diffusivity and cm =

∫ 1
0 [

.
ωcc]Lam f (c)dc/

∫ 1
0 [

.
ωc]Lam f (c)dc is a

thermochemical parameter with f (c) being the burning mode probability density function,
and the subscript ‘Lam’ refers to the unstretched laminar flame quantities. It was discussed
by Bray [37] that the assumption of any continuous function for f (c) is sufficient for the
evaluation of cm. Although Equation (4) was originally proposed for Da � 1 flames, it
was demonstrated subsequently by Chakraborty and Cant [17] that this relation holds in
an order of magnitude sense for the flames with Da < 1. However, the scalar dissipation
rate ε̃c is an unclosed quantity and based on the leading order balance of the terms of the
transport equation of ε̃c under Da� 1 for unity Lewis number conditions, Kolla et al. [22]
proposed the following algebraic closure of scalar dissipation rate:

ε̃c =
1
β′

(
2K∗c

SL
δth

+
ε̃

k̃
[C3 − τC4DaL]

)
c̃ (1− c̃) (5)

where β′ = 6.7, C3 = 1.5
√

KaL/
(
1 +
√

KaL
)

and C4 = 1.1/(1 + KaL)
0.4 are the model

parameters, DaL = SL k̃/ε̃δth is the local Damköhler number, KaL =
(
δth ε̃/S3

L
)1/2 is the

local Karlovitz number with δth, k̃ = ρu′′i u′′i /2ρ and ε̃ = µ
(
∂u′′i /∂xj

)(
∂u′′i /∂xj

)
/ρ being

the thermal flame thickness, turbulent kinetic energy and its dissipation rate, respectively.
In Equation (5), K∗c = (δth/SL)

∫ 1
0 [
(
∇·→u

)
ρD∇c·∇c]

Lam
f (c)dc/

∫ 1
0 [ρD∇c·∇c]Lam f (c)dc

is a thermochemical parameter [22] with
→
u being the velocity vector.

Equations (4) and (5) can be utilized to obtain the turbulent burning velocity ST using
the Kolmogorov–Petrovski–Piskunov (KPP) theorem [38–40]:

ST = 2

√√√√ νt

Sccρu

(
∂

.
ωc

∂c̃

)
c̃=0

(6)

where νt = Cµ k̃2/ε̃ is the eddy kinematic viscosity with Cµ = 0.09, and Scc is the turbulent
Schmidt number, which is of the order of unity. Equation (6) upon using Equations (4) and
(5) yields the following expression for ST/SL [22]:

ST
SL

=

√√√√ 18Cµ

(2cm − 1)β′

{
(2K∗c − τC4)

{
u′l

SLδth

}
+

2C3

3
u′2

S2
L

}
(7)

where Scc = 1.0, k̃ = 3u
′2/2 and ε̃ ∼ u

′3/l are used and these values are understood to be
taken at the leading edge of the flame brush. It has been shown elsewhere (Ref. [22]) that
the predictions of Equation (7) compare well with experimental data [7,41–43] for ST for
premixed flames with a characteristic Lewis number close to unity.

For the sake of completeness, it is useful to consider the other well-known parame-
terizations of ST/SL [7–9,19–22]. Peters [19] proposed the following expression for ST/SL
based on the leading order balance of the strain rate, kinetic restoration and molecular
dissipation of flame surface ratio transport equation in the context of the level-set method:

ST
SL

= 1− 0.195
l

δz
+

√(
0.195

l
δz

)2
+ 0.78

{
u′l

SLδz

}
(8)
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where δz = αTu/SL is the Zel’dovich flame thickness with αTu being the unburned gas
thermal diffusivity. It is worth noting that Equation (8) is obtained as a positive meaningful
root of a quadratic equation, and thus, it is not physically meaningful to modify any model
parameters and length scales in isolation in this model expression.

Gülder [20] proposed a parameterization of ST/SL based on a large volume of experi-
mental findings in the following manner:

ST
SL

= 1 + 0.62
(

u′

SL

)0.75( l
δz

)0.25
(9)

Zimont [21] also proposed a similar expression given by:

ST
SL

= 1 + 0.5
(

u′

SL

)0.75( l
δz

)0.25
(10)

It is important to note that the parameterizations in Equations (7)–(10) are proposed
for unity Lewis number conditions, and they do not explicitly account for non-unity Lewis
number effects. Moreover, ST/SL = AT/AL is implicitly assumed in these parameteri-
zations, but this relation is only approximately valid for statistically planar unity Lewis
number flames and is rendered invalid for non-unity Lewis number conditions.

Bradley [44] proposed a parameterization of ST/SL including the non-unity Lewis
number and stretch rate effects in the following manner based on experimental findings:

ST
SL

= 1.53
(

u′

SL

)0.55( l
δz

)0.15
Le−0.3 (11)

The model expressions provided above are summarised in Table 1 for convenience.
For statistically planar flames in a canonical configuration, there is no ambiguity in terms
of the evaluation of AL because it is the cross-section of the simulation domain [45]. It is
important to appreciate that the experimental evaluations of AT and AL are not always
straightforward [45]. It has been discussed recently that AT can be estimated accurately
from DNS data using the following expression [45]:

AT =
∫

V
|∇c|dV (12)

Table 1. Summary of normalized turbulent burning velocity ST/SL model expressions.

Model Model Expression

SK model
Kolla et al. [22]

ST
SL

=

√
18Cµ

(2cm−1)β′

{
(2K∗c − τC4)

{
u′ l

SLδth

}
+ 2C3

3
u′2
S2

L

}
SP model
Peters [19]

ST
SL

= 1− 0.195 l
δz
+

√(
0.195 l

δz

)2
+ 0.78

{
u′ l

SLδz

}
SG model
Gülder [20]

ST
SL

= 1 + 0.62
(

u′
SL

)0.75( l
δz

)0.25

SZ model
Zimont [21]

ST
SL

= 1 + 0.5
(

u′
SL

)0.75( l
δz

)0.25

SB model
Bradley [44]

ST
SL

= 1.53
(

u′
SL

)0.55( l
δz

)0.15
Le−0.3

However, the evaluation of AL gives rise to several possibilities. It is possible to
evaluate AL in the following manner:

AL =
∫

V
|∇c|dV (13)
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Another alternative expression for AL can be obtained as:

AL =
∫

V
|∇c̃|dV (14)

Experimental investigations often considered the area of c = 0.1 and 0.5 isosurfaces
for the evaluation of AL [25,41,46–48]:

AL = Ac=0.1 or AL = Ac=0.5 (15)

Borrowing the same concept, AL could alternatively be calculated based on the area of
c̃ = 0.1 and 0.5 isosurfaces as:

AL = Ac̃=0.1 or AL = Ac̃=0.5 (16)

The implications of the assumptions of the evaluation of AL using Equations (12)–(16)
and the performances of ST/SL parameterizations based on Equations (7)–(11) will be
assessed based on DNS data in Section 4 of this paper. It is worth noting that the turbulent
burning velocity in Bunsen flames is often evaluated by using a conventional flame angle
method (see Ref. [9] and references therein), which attempts to identify AL based on the
contour of c or c̃ in the evaluation of ST . This approach is equivalent to AL definitions given
by Equations (15) and (16). However, the assumption of conical shape due to curvature at
the flame tip and estimation of the flame angle based on the tangent to the c or c̃ contour
introduces additional uncertainties in experimental measurements.

3. Numerical Implementation

A DNS database of turbulent premixed Bunsen flames with characteristic Lewis num-
bers Le = 0.34, 0.6, 0.8, 1.0 and 1.2 has been considered in this analysis. The simulations
have been conducted using a well-known 3D compressible DNS code SENGA+ [49] where
all the spatial derivatives for internal grid points are evaluated using a 10th-order central
difference scheme, but the order of accuracy gradually drops to a one-sided 2nd-order
scheme at the non-periodic boundaries [49]. An explicit 3rd-order low-storage Runge-Kutta
scheme [50] is employed for the time-advancement using a generic single-step Arrhenius
type irreversible reaction. For the purpose of an extensive parametric analysis in SENGA+,
governing equations of mass, momentum, energy and reaction progress variable c are
solved in non-dimensional form which are provided elsewhere [51]. The simulation do-
main is taken to be a cube with each side of 2dn where dn is the diameter of the nozzle,
and a schematic diagram of the computational domain is presented in Figure 1a. The nor-
malized mean inflow velocity UB/SL, normalized root-mean-square inlet velocity u′/SL
and normalized integral length scale of turbulence (i.e., l/dn and l/δth) and the grid size
along with inlet values of bulk Reynolds number Re = ρ0UBdn/µ0, Damköhler number
Da = lSL/u′δth and Karlovitz number Ka = (u′/SL)

1.5(l/δth)
−0.5 are listed in Table 2

where l is the integral length scale of turbulence, and δth = (Tad − T0)/max|∇T|L is the
thermal flame thickness. The grid spacing is sufficient to resolve the thermal flame thick-
ness δth and the Kolmogorov length scale η for all cases considered here. The simulations
have been carried out for different values of characteristic Lewis number of the mixture (i.e.,
Le = 0.34, 0.6, 0.8, 1.0 and 1.2). For the purpose of isolating the effects of Le, the Zel’dovich
number β = Tac(Tad − T0)/T2

ad (=6.0) and heat release parameter τ = (Tad − T0)/T0 (=4.5)
are kept unaltered for all cases where Tac, T0 and Tad are the activation temperature,
unburned gas temperature and adiabatic flame temperature, respectively. The Prandtl
number and the ratio of specific heats assume standard values (i.e., Pr = 0.7 and γ = 1.4).
All the cases in Table 2 nominally represent the flamelets regime combustion [52], and their
position on Borghi–Peters diagram is shown in Figure 1b. The Lewis number 0.34 case
is representative of a lean hydrogen–air mixture of equivalence ratio of 0.40. The Lewis
number 0.6 and 0.8 cases are representative of hydrogen-blended methane–air mixtures
(e.g., 20% and 10% (by volume) hydrogen blended methane–air flames with overall equiva-
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lence ratio of 0.6), and the Lewis number 1.2 case is representative of a hydrocarbon–air
mixture involving a hydrocarbon fuel which is heavier than methane (e.g., ethylene–air
mixture with equivalence ratio of 0.7) [9,10,33,53]. In the Le = 0.34 case, the inlet velocity
was increased from 6SL to 18SL to avoid flashback, which led to an increase in Re [51].
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Table 2. The turbulence inlet flow parameters for the considered cases.

Case Le Re Grid Size UB/SL u’
inlet/SL l/dn l/δth Ka Da

A 0.34 1197 250 × 250 × 250 18.0 1.0 1/5 5.20 0.45 5.00

B 0.6 399 250 × 250 × 250 6.0 1.0 1/5 5.20 0.45 5.00

C 0.8 399 250 × 250 × 250 6.0 1.0 1/5 5.20 0.45 5.00

D 1.0 399 250 × 250 × 250 6.0 1.0 1/5 5.20 0.45 5.00

E 1.2 399 250 × 250 × 250 6.0 1.0 1/5 5.20 0.45 5.00

A mean velocity distribution with a hyperbolic tangent-like profile is used for the inlet
boundary condition. The digital filter-based method uses filtered random data in order
to obtain realistic pseudo-turbulent velocity correlations [54]. In order to overcome the
efficiency problems related to the generation of synthetic turbulent inflow data on large-
sized distributed grids, several modifications have been implemented: (a) the Gaussian
filter in temporal space in this process was substituted by an autoregressive AR1 process
requiring only two time levels; (b) the two-dimensional filter kernel after (a) is replaced by
the tensor product of two one dimensional filters, which reduces the cost of the filtering
operation for a single grid point from O

(
N2) to O(N), where N is the number of grid

points related to the length of the filter in one direction; (c) identical random seeds for
generating inflow data in buffer regions that overlap with neighbouring local domains
are used, which avoids the necessity of message passing communications; (d) instead of
filtering the inflow data for each local domain located in the inflow plane with its allocated
CPU, the filtering is done by all available processors. These measures provide an efficient
generation of inflow data which takes the order of 1% of the time required for advancing
one time step.

All boundaries apart from the one containing the inlet are taken to be partially non-
reflecting outflow and are specified using the Navier–Stokes Characteristic Boundary
Conditions (NSCBC) technique [55]. The reacting scalars are initialized using an un-
strained premixed laminar flame solution, which is specified as a function of radial distance
from the centre of the inlet. The statistics in this analysis are recorded after at least two
flowthrough times and two initial eddy turnover times. For the purpose of the evaluation of
Reynolds/Favre averaged values (i.e., q and q̃), the primitive variable q is averaged in time
and also in the azimuthal direction using at least 20 statistically independent snapshots for
every Le case considered here. Further information on this database can be obtained from
Refs. [51,56–61].

4. Results and Discussion

The instantaneous views of c = 0.8 isourfaces (from the product side) coloured by local
values of non-dimensional temperature θ for the cases considered here are shown in Figure 2.
It can be seen from Figure 2 that the extent of flame wrinkling increases with decreasing
Le, although the inlet turbulence intensity u′/SL remains the same. Moreover, the flame
wrinkles which are associated with a convex (concave) shape towards the reactants in
the Le < 1 cases are associated with high (low) temperature values, and this tendency
is particularly prevalent for the Le = 0.34 case. By contrast, high (low) temperature
values are obtained where flame wrinkles are concave (convex) towards the reactants in
the Le = 1.2 case. This behaviour is well-known and is consistent with several previous
analyses [13,15,18]. The focusing of diffusion of fresh reactants into the reaction zone
is stronger than the defocusing of heat in the flame surface elements which are convex
towards the reactants in the cases with Le < 1. This gives rise to the simultaneous presence
of high values of reactant concentration and temperature at the convexly curved zones
towards the reactants, which leads to further increase in reaction rate magnitude and
temperature in these zones. Thus, these regions in the Le < 1 flames propagate faster
than the corresponding unstretched planar flames. By contrast, defocusing of diffusion
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of fresh reactants into the reaction zone is stronger than the focusing of heat in the flame
surface elements which are concave towards the reactants in the cases with Le < 1. As a
result, these zones in the Le < 1 cases are subjected to the simultaneous presence of low
reactant concentration and low temperature, which reduces the propagation rate in these
regions. This tendency strengthens with decreasing Le, and the combination of high flame
propagation rates into the reactants for the convexly curved regions and low propagation
rates at the concavely curved zones gives rise to increased flame wrinkling with decreasing
Le for the cases with Le < 1. In the Le = 1.2 case, the focusing of diffusion of fresh
reactants into the reaction zone is weaker than the defocusing of heat in the flame surface
elements which are convex towards the reactants. This acts to reduce both the reaction rate
magnitude and temperature in the regions which are convex towards the reactants in the
Le = 1.2 case. Just the opposite mechanism leads to high reaction rate magnitude and high
temperature in the regions which are concave towards the reactants in the Le = 1.2 case.
The combination of low flame propagation rates into the reactants for the convexly curved
regions and high propagation rates at the concavely curved zones leads to reduced flame
wrinkling in the Le = 1.2 case in comparison to the corresponding Le = 1.0 case.
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The increase in the extent of flame wrinkling with decreasing Le is reflected in the
increases in AT/AL with a decrease in Le when all flow parameters remained unchanged,
which can be substantiated from Figure 3 where AT/AL is evaluated for different choices
of AL (i.e., AL =

∫
V |∇c|dV, AL =

∫
V |∇c̃|dV, AL = Ac=0.1, AL = Ac̃=0.1, AL = Ac=0.5 and

AL = Ac̃=0.5). The AT/AL values in Figure 3 show that
∫

V |∇c|dV > Ac=0.5 > Ac=0.1 and∫
V |∇c̃|dV > Ac̃=0.5 > Ac̃=0.1 for all cases considered here irrespective of the characteristic

Lewis number because the value of AT remains unchanged for a given case. It can further
be seen from Figure 3 that the values of AT/AL based on c provided higher values than the
corresponding definition based on c irrespective of the value of Le.
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The higher values of AT/AL for smaller values of the Lewis number also leads to
increases in ST/SL with a decrease in Le. This can indeed be substantiated from Figure 4,
which shows that ST/SL for a given definition increases with decreasing Lewis number
Le. The increasing trends of AT/AL and ST/SL are consistent with several previous
analytical [3–6], experimental [7–10] and computational [11–18] analyses. Consistent with
Figure 3, it can further be seen from Figure 4 that ST/SL for AL =

∫
V |∇c|dV is the smallest

and ST/SL for AL = Ac=0.1 is the highest for a given case among the different choices
of AL definitions. The higher values of ST/SL for AL = Ac=0.1 than for AL = Ac=0.5 are
consistent with previous experimental findings [25,46–48] for turbulent premixed Bunsen
burner flames. The value of ST/SL for AL = Ac=0.1 was found to be 1.74 times that
of the corresponding value for AL = Ac=0.5 for Kobayashi’s experiments [25], whereas
Tamadonfar and Gülder [46] reported a ratio of 2–3.6 for the ST/SL values for AL = Ac=0.05
and AL = Ac=0.5, and Smallwood et al. [47] reported a ratio of 1.2 to 1.5. The DNS data
presented here closely correspond with the ratio reported by Smallwood et al. [47] based
on their experimental data. Once again, Figure 4 suggests that ST/SL based on c yields
higher values than the corresponding values based on c̃ irrespective of the value of Le.
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along with the predictions of SK, SP, SG, SZ and SB models (see Table 1).

The values of R = (ST/SL)/(AT/AL) for the cases considered here are shown in
Figure 5, which shows that the ratio R increases with decreasing Le. It is worth noting
that the ratio R = (ST/SL)/(AT/AL) =

∫
V

.
ωcdV/ρu AT is independent of AL, and thus,

this quantity is independent of the method of evaluation of AL. A unity value of R =
(ST/SL)/(AT/AL) indicates the perfect validity of Damköhler’s first hypothesis [62]. It
can be seen from Figure 5 that R remains greater than unity (i.e., R > 1) in the unity Lewis
number Bunsen flame case (characterized by a global negative mean curvature), and the
detailed physical explanations for this behaviour can be found elsewhere [59] and thus will
not be repeated here. Figure 5 further suggests that R increases significantly with decreasing
Le for the sub-unity Lewis number (i.e., Le < 1) cases. The ratio R signifies the ratio of
consumption rate per unit area between turbulent and laminar flow conditions. Thus, the
increasing trends of R with decreasing Le are the manifestations of thermo-diffusive effects
induced by the non-unity Lewis number. Under positively strained Le < 1 flames, the rate
of reactants diffusion into the reaction zone dominates over the diffusion of heat out of this
zone, which gives rise to an increase in R with decreasing Le. This tendency strengthens
further with decreasing Le and was reported in previous analyses [15,17,18]. By comparing
Figures 3–5, it becomes evident that the increase in ST/SL is caused to a larger extent by
the increase in

∫
V

.
ωcdV than the increase in AT/AL, and both effects together amplify

each other.
The flames become thermo-diffusively unstable for Le < 1 where high fuel concentra-

tion and high temperature values are found at the flame surface elements, which are convex
towards the reactants (see Figure 2), and this combination locally augments the reaction
and propagation rates much greater than the corresponding value for the same reaction
progress variable in an unstretched planar flame. By contrast, the flame elements that are
concave towards the reactants propagate slower than the corresponding unstretched planar
flame due to the combination of low reactant concentration and temperature for Le < 1 (see
Figure 2). The combination of high flame propagation rates at the convexly curved regions
and relatively low flame propagation rates at negatively curved regions acts to increase the
extent of flame wrinkling and makes the convexly curved regions stable. These mechanisms
act to increase the flame surface area (see Figure 3) and the overall burning rate per unit
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flame surface area (as can be seen from the large value of R in Figure 5) with a decrease
in Le. As a consequence, turbulent burning velocity exhibits an increasing trend with
decreasing Le (see Figure 4). The aforementioned mechanisms become more prominent
when Le < Lec where Lec is the threshold Lewis number under which cellular instability
becomes triggered [51,63]. For the thermochemistry used here, the cellular instability is
obtained for Le < Lec ≈ 0.6 [51]. Thus, the Le = 0.34 case shows much higher values of
AT/AL, ST/SL and R = ST AL/SL AT than the rest of the cases considered here.
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By considering Equation (4) and scaling ρε̃c using ρε̃c ∼ ρ0SLΣgen/Le and (δz|∇c|)s ∼
O(1), one gets:

.
ωc ∼ ρ0SLΣgen/Le (see Ref. [17]) where Σgen = |∇c| is the general-

ized FSD [64]. Volume integrating both sides of
.

ωc ∼ ρ0SLΣgen/Le yields: ST/SL ∼
Le−1(AT/AL). It can be seen from Figure 5 that Rmod = Le(ST/SL)/(AT/AL) remains
close to unity for all cases considered here, which is consistent with previous findings (i.e.,
ST/SL ∼ Le−1(AT/AL)) [15,17,18] for the non-unity Lewis number flames. It is worth
noting that based on leading edge theory, Lipatnikov and Chomiak [39] proposed a relation
which suggests that ST/SL ≈ [1/ exp(Le− 1)](AT/AL). However, the numerical values of
[1/ exp(Le− 1)] and Le−1 remain comparable for Le = 0.6, 0.8, 1.0 and 1.2, but the values
are significantly different for Le = 0.34. Therefore, ST/SL ≈ [1/ exp(Le− 1)](AT/AL) (or
exp(Le− 1)(ST AL/SL AT) ≈ 1.0) is not maintained for the Le = 0.34 case and thus will not
be considered hereafter in this paper.

The predictions of different models for ST/SL are compared to the normalized tur-
bulent burning velocities obtained for different definitions of AL in Figure 4. The values
used for K∗c /τ and cm in the case of the SK model are listed in Table 3. It can be seen
from Figure 4 that the models proposed by Kolla et al. [22], Peters [19], Gülder [20], Zi-
mont [21] and Bradley [44] (Equations (7)–(11), alternatively SK, SP, SG, SZ and SB models
in Table 1) yield comparable values to that of ST/SL when AL = Ac=0.1 is used in the
unity Lewis number case, for which these models were originally designed and bench-
marked. The quantitative agreement is the best for the model proposed by Gülder [20],
Bradley [44] and Kolla et al. [22] (i.e., Equations (7), (9) and (11), alternatively SG, SB and
SK models), and the models by Peters [19] and Zimont [21] (i.e., SP and SZ) overpredict
and underpredict the magnitude of ST/SL, respectively, when AL = Ac=0.1 is used. All
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of these models overpredict ST/SL when AL =
∫

V |∇c|dV, AL =
∫

V |∇c̃|dV, AL = Ac̃=0.1,
AL = Ac=0.5 and AL = Ac̃=0.5 are used for the unity Lewis number case. It is worth noting
that the predictions of the models proposed by Peters [19], Gülder [20] and Zimont [21]
(Equations (8)–(11), alternatively SP, SG, SZ and SB models in Table 1) do not change for
the non-unity Lewis number cases because u′/SL and l/δth remain identical for all the
cases considered here, and these model expressions do not account for the effects of Le. The
prediction by the model proposed by Kolla et al. [22] varies with Le, and the magnitude of
ST/SL prediction by this model decreases with decreasing Le, due to the variation in cm
and K∗c /τ (see Table 3). The prediction of the model by Bradley [44] (i.e., Equation (11) or
SB model) predicts an increase in the magnitude of ST/SL with a decrease in Le for a given
set of values of u′/SL and l/δth, and the prediction of Equation (11) remains comparable to
ST/SL when AL = Ac̃=0.1 is used for the cases with Le = 0.6, 0.8 and 1.2 but overpredicts
the values of ST/SL when AL =

∫
V
|∇c|dV, AL =

∫
V
|∇c̃|dV, AL = Ac=0.1, AL = Ac=0.5 and

AL = Ac̃=0.5 are used. However, the model by Bradley [44] (i.e., Equation (11) or SB model)
underpredicts all possible definitions of ST/SL considered here for the Le = 0.34 case. It is
important to note that Equations (7) and (11) predict the unphysical zero value of ST for
laminar conditions (i.e., u′/SL = 1.0), and adding 1.0 on the right hand side of Equations (7)
and (11) (i.e., SK and SB models) gives rise to overpredictions of ST/SL when AL = Ac=0.1
(or AL = Ac̃=0.1) is used for the cases with Le = 0.6, 0.8 and 1.2. This also does not affect
the underpredictions of ST/SL for the Le = 0.34 case.

Table 3. Thermochemical parameters used in the model by Kolla et al. [22].

Le K*
c/τ cm

0.34 0.52 0.92

0.60 0.67 0.87

0.80 0.71 0.867

1.00 0.78 0.825

1.20 0.79 0.816

As the models of ST/SL by Kolla et al. [22], Peters [19], Gülder [20] and Zimont [21]
(Equations (7)–(10), alternatively SK, SP, SG and SZ models in Table 1) are originally proposed
for unity Lewis number flames with an implicit assumption of ST/SL = AT/AL, it is worth
considering the performances of these models when the multiplier Le−1 is used to account for
non-unity Lewis number effects, as shown in Table 4, because Rmod = Le(ST/SL)/(AT/AL)
assumes a value close to unity (see Figure 5). The expressions for the models by Peters [19],
Gülder [20] and Zimont [21] in Table 4 (i.e., SPL, SGL and SZL models in Table 4) are
modified in such a manner that for large values of u′/SL (i.e., u′/SL � 1), the expressions
in Table 1 multiplied by Le−1 are obtained, and the original expressions in Table 1 are
recovered for Le = 1. Moreover, these modifications ensure that ST = SL is recovered for
the laminar condition (i.e., u′/SL = 0).

The predictions of the modified expressions for the models by Kolla et al. [22], Pe-
ters [19], Gülder [20] and Zimont [21] (SKL, SPL, SGL and SZL models in Table 4) are
compared for non-unity Lewis number flames considered here in Figure 6. It can be seen
from Figure 6 that the SGL models show a good agreement with ST/SL when AL = Ac=0.1
is used for most of the non-unity Lewis number flames but underpredicts for the Le = 1.2
case. The SPL model slightly overpredicts ST/SL when AL = Ac=0.1 is used for the
Le = 0.34, 0.6 and 0.8 cases but shows reasonable quantitative agreement with Le = 1.0
and 1.2 cases. The ST/SL values for AL = Ac=0.1 are underpredicted for Le = 0.34 cases
by the SKL model (see Table 4), although it shows good agreement for Le = 0.6, 0.8, 1.0
and 1.2. The SZL model expression shows good agreement with ST/SL obtained from
DNS data when AL = Ac=0.1 is used for the Le = 0.6, 0.8, 1.0 and 1.2 cases, but ST/SL is
underpredicted for the Le = 0.34 case.
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Table 4. Summary of modified normalized turbulent burning velocity ST/SL model expressions.

Model Model Expression

SKL model ST
SL

= 1
Le

√
18Cµ

(2cm−1)β′

{
(2K∗c − τC4)

{
u′ l

SLδth

}
+ 2C3

3
u′2
S2

L

}
SPL model ST

SL
= 1− 0.195Le−1 l

δz
+ Le−1

√(
0.195 l

δz

)2
+ 0.78

{
u′ l

SLδz

}
+
(

1−Le
Le

)
u′/SL

u′/SL+1

SGL model ST
SL

= 1 +
[

0.62 Le−1
(

u′
SL

)0.75( l
δz

)0.25
+
(

1−Le
Le

)
u′/SL

u′/SL+1

]
SZL model ST

SL
= 1 +

[
0.5Le−1

(
u′
SL

)0.75( l
δz

)0.25
+
(

1−Le
Le

)
u′/SL

u′/SL+1

]
MSKL model ST
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Figure 6. Variations of ST/SL for premixed turbulent Bunsen flame cases with Le = 0.34, 0.6, 0.8,

1.0 and 1.2 for AL =
∫

V

∣∣∣∣∇−c ∣∣∣∣dV , AL =
∫

V

∣∣∣∇∼c ∣∣∣dV , AL = A−
c=0.1

, AL = A∼c=0.1
, AL = A−

c=0.5
and

AL = A∼c=0.5
along with the predictions of SKL, SPL, SGL, SZL, MSB and MSKL models (see Table 4).

A modified version of Kolla et al. [22] (i.e., SKL model) can be proposed in the
following manner so that the expression for ST/SL for AL = Ac=0.1 can be reasonably
predicted for non-unity Lewis number flames while satisfying ST/SL = 1.0 for u′ = 0:

ST
SL

=
1
Le

√√√√ 18Cµ

(2cm − 1)β′

{
(2K∗c − τC4)

{
u′l

SLδth

}
+

2C3

3
u′2

S2
L

}
+

Le2

[u′ l/SLδth + 1]
for AL = Ac=0.1 (17)

Equation (17) will henceforth be referred to as the MSKL model in this paper. The
predictions of Equation (17) are also shown in Figure 6, which shows that the MSKL model
offers comparable performance to that of the SKL model. Similar to Equation (17), the SB
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can be modified (henceforth referred to MSB model) in the following manner so that ST/SL
assumes a value of 1.0 for u′ = 0:

ST
SL

= 1.53
(

u′

SL

)0.55( l
δz

)0.15
Le−0.3 +

1
[u′ l/SLδth + 1]

(18)

The prediction of the MSB model remains comparable to that of the SB model. The
MSB predicts ST/SL reasonably accurately when AL = Ac̃=0.1 is used for the cases with
Le = 0.6, 0.8 and 1.2 but overpredicts the values of ST/SL for other definitions of AL.
Similar to the SB model, the MSB model also underpredicts all possible definitions of
ST/SL considered for the Le = 0.34 case considered here.

The L2-norm of the relative error values EDNS =
√

∑N
k=1
∣∣(xDNS

k − xModel
k

)
/xDNS

k

∣∣2
(where xk refers to the value of ST/SL for the kth case and ‘DNS’ and ‘Model’ superscripts
are used for DNS and model expression values, respectively and N is the total number
of different cases considered here) of the model expressions of ST/SL listed in Table 1 are
shown in Figure 7, which shows that SK, SP, SG, SZ and SB models exhibit comparable EDNS,
but EDNS values are high for definitions AL =

∫
V |∇c|dV, AL =

∫
V |∇c̃|dV, AL = Ac=0.5

and AL = Ac̃=0.5. The corresponding EDNS values of the model expressions for ST/SL
listed in Table 4 are shown in Figure 8. A comparison between Figures 7 and 8 reveals
that the modified expressions in Table 4 significantly decrease the EDNS values when
AL = Ac=0.1 is used for the evaluation of ST/SL.
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Figure 7. Variations of EDNS =
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and
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for the predictions of SK, SP, SG, SZ and SB models (see Table 1).
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It is worth noting that the DNS database used for this analysis considers only a
single modest value of turbulence intensity and a single pressure level. Therefore, it is
worth considering the predictions of the model expressions summarized in Table 4 for
experimental conditions for non-unity Lewis number conditions for different pressures
and higher turbulence intensity, which were recently analysed by Lipatnikov et al. [10].
These experimental conditions by Lipatnikov et al. [10] are summarized in Table 5. The
predictions of the model expressions in Table 4 are compared to ST/SL values reported by
Lipatnikov et al. [10] in Figure 9 and the corresponding L2-norm of relative error values

EExpt =

√
∑N

k=1

∣∣∣(xExpt
k − xModel

k

)
/xExpt

k

∣∣∣2 (where xk refers to the value of ST/SL for the

k−th case and ‘Expt’ superscript is used for experimental values) are shown in Figure 10.

Table 5. Summary of the experimental conditions from Lipatnikov et al. [10].

Conditions Mixture u′/SL l/δth τ p Le

C1 H2-air, φ = 0.45 2.7 63 3.7 1.0 bar 0.35

C2 H2/O2/He, φ = 0.45 2.6 21 3.0 1.0 bar 0.91

C3 CH4-air, φ = 1.0 2.7 69 6.5 1.0 bar 1.00

C4 H2-air, φ = 0.45 4.6 152 3.7 3.0 bar 0.35

C5 H2/O2/He, φ = 0.45 6.3 33 3.0 3.0 bar 0.91

C6 CH4-air, φ = 1.0 4.2 145 6.5 3.0 bar 1.00

C7 H2-air, φ = 0.45 7.0 179 3.7 5.0 bar 0.35

C8 H2/O2/He, φ = 0.45 9.0 19 3.0 5.0 bar 0.91

C9 CH4-air, φ = 1.0 5.4 203 6.6 5.0 bar 1.00
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∣∣∣2 for experimental conditions C1–

C9 for the experimental database by Lipatnikov et al. [10] (see Table 5) for the predictions of SKL,
SPL, SGL, SZL, MSB and MSKL models (see Table 4).

It can be seen from Figure 9 that the MSKL, SKL and SPL models predict ST/SL values
obtained from experimental conditions [10] reasonably well for conditions C1, C2, C5 and
C8. The performances of the SGL and SZL models remain comparable to those of the
MSKL, SKL and SPL models for C1 and C2 conditions, and the SGL model predicts the
experimental value of ST/SL satisfactorily for the C5 condition, but both SGL and SZL
models underpredict ST/SL values significantly for other cases. The MSKL and SKL model
expressions overpredict ST/SL values for C3, C4, C6, C7 and C9 conditions. Among these
conditions, only under the C4 condition, the predictions of the SPL and SZL models remain
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comparable to those of the MSKL and SKL models and experimental value of ST/SL, but
in other conditions, the SPL, SGL and SZL models underpredict ST/SL values. It can
indeed be seen from Figure 10 that the SKL, SPL, SGL and MSKL model expressions yield
relatively small values of EExpt. It is worth noting that the original model expressions by
Kolla et al. [22], Peters [19], Gülder [20] and Zimont [21] (i.e., SK, SP, SG and SZ models)
underpredict significantly for conditions C1, C2, C4, C5, C7 and C8 and return higher
values of EExpt than the SPL, SGL and SZL models and thus are not explicitly shown
in Figures 9 and 10. The model MSB underpredicts for all the conditions considered in
the experiment.

As is explained in Section 2, most models for turbulent burning velocity were de-
veloped for unity Lewis number conditions. As can be seen in Figure 4, while all these
models do quite well for Le = 1, most models used in the present work fail for non-unity
Lewis numbers. The models are made to work for non-unity Lewis numbers by taking
advantage of the scaling (i.e., ST/SL = Le−1 AT/AL) that is observed in Figure 5, which
shows that Rmod = LeST AL/SL AT ≈ 1. However, this along with the assumptions in
the closure equations is not a precise expression and could have led to the overshoot and
undershoot of the predictions. It is worth noting that the experimental methodologies of
the measurements of ST and the projected flame brush area AL are different from case to
case and from the DNS-based methodologies. It has also been noted by Driscoll [26] that
the parameterization of turbulent burning velocity might also be geometry dependent to
some extent (note experiments in Ref. [10] were carried out for spherical flame kernels and
not for Bunsen burner flames). These uncertainties may contribute to the discrepancies
between model predictions and ST/SL values obtained from DNS/experimental data.
However, a careful comparison between Table 5 and Figure 9 reveals that several models
provide reasonable predictions when the characteristic Lewis number remains close to
unity. Moreover, it can be seen from Figure 10 that the newly proposed modifications to the
existing parameterizations of turbulent burning velocity do reasonably well in an average
sense, even for non-unity Lewis number flames.

Based on the results shown in Figures 4 and 7–10, it seems that the SGL, SPL and SZL
model expressions provide reasonable estimates of ST/SL obtained from both DNS and
experiments for a wide range of values of Le and different pressure levels, even though
there are quantitative discrepancies for some cases. It is worth noting that the experimental
methodologies of the measurements of ST and the projected flame brush area AL are
different to the DNS-based methodologies. Furthermore, Le(S T/SL)/(AT/AL) ≈ 1.0 is
approximately valid in a scaling sense, but it is not a precise expression. These uncertainties
may contribute to the discrepancies between model predictions and ST/SL values obtained
from DNS/experimental data.

5. Conclusions

The statistical behaviour of the turbulent burning velocity ST has been analysed
based on a Direct Numerical Simulation database of turbulent premixed Bunsen flames for
different values of characteristic Lewis number Le ranging from 0.34 to 1.2. It has been found
that the turbulent burning velocity normalized by the laminar burning velocity ST/SL and
the turbulent flame surface area normalized by the projected flame brush area AT/AL for a
given set of flow parameters increase with decreasing Le. Further, the value of ST depends
strongly on the definition of the projected flame brush area AL, and six different alternatives

(i.e., AL =
∫

V

∣∣∣∇−c ∣∣∣dV , AL =
∫

V

∣∣∣∇∼c ∣∣∣dV , AL = A∼
c=0.1

, AL = A−
c=0.5

and AL = A∼
c=0.5

)
have been considered here. The variations of the numerical value of ST can be up to 50%
depending on the definition of AL. It has been found that the highest values of ST/SL and
AT/AL for a given Bunsen premixed flame case are obtained when the projected flame

brush area AL is based on the area of
−
c = 0.1 isosurface, and the smallest value is obtained

when AL is evaluated based on the volume-integration of
∣∣∣∇∼c ∣∣∣. The choice of higher value

of
−
c or

∼
c for the evaluation of AL has been found to give rise to smaller values of ST/SL
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and AT/AL values in this configuration, and the quantitative variation has been found to
be as large as 50% in the cases analysed here. This is found to be consistent with previous
experimental findings [25,46–48] for turbulent premixed Bunsen flames. Moreover, it has

been found that ST/SL and AT/AL values based on
−
c assume greater values than the

corresponding values based on
∼
c . The predictions of different models for ST/SL [19–22,44]

have been compared to the corresponding values obtained from DNS data. It has been
found that most available parameterizations of ST/SL provide comparable predictions

when AL is evaluated based on the area of the
−
c = 0.1 isosurface. However, most of these

models were originally proposed for the unity Lewis number [19–22], where Damköhler’s
first hypothesis (i.e., ST/SL = AT/AL) [62] is implicitly assumed. However, Damköhler’s
first hypothesis (i.e., ST/SL = AT/AL) is rendered invalid for the non-unity Lewis number
flames, and the existing parameterizations tend to underpredict ST/SL values for flames
with Le < 1, and this tendency strengthens with a decreasing Lewis number. It has been
found that Le(S T/SL)/(AT/AL) remains of the order of unity which has been justified
using scaling arguments. This relation has been utilized to extend parameterizations of
ST/SL (which were originally proposed for the unity Lewis number) for non-unity Lewis
number conditions while satisfying the limiting condition ST = SL for u′ = 0. These
revised parameterizations based on the models proposed by Peters [19], Gülder [20] and
Zimont [21] have been found to be more successful than the other models in terms of
ST/SL predictions across the datasets considered when AL is evaluated based on the

area of
−
c = 0.1 isosurface especially for Le � 1 flames compared to the original model

expressions. The performances of these revised parameterizations have been assessed for
a recent experimental dataset [10] for different values of Le. It has been found that the
expressions, which provide satisfactory quantitative agreement with DNS data, also exhibit
small values of L2-norm of the percentage error with respect to the experimental data [10].
However, the performance of these model parameterizations needs to be assessed for
different flame configurations under higher turbulence intensity and also in the presence of
detailed chemistry and transport, which will form the platform for further investigations.
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