
Vol.:(0123456789)1 3

PFG (2023) 91:171–188 
https://doi.org/10.1007/s41064-023-00238-y

ORIGINAL ARTICLE

DGPF

A Globally Applicable Method for NDVI Estimation from Sentinel‑1 SAR 
Backscatter Using a Deep Neural Network and the SEN12TP Dataset

Thomas Roßberg1   · Michael Schmitt1 

Received: 5 December 2022 / Accepted: 20 March 2023 / Published online: 13 April 2023 
© The Author(s) 2023

Abstract
Vegetation monitoring is important for many applications, e.g., agriculture, food security, or forestry. Optical data from 
space-borne sensors and spectral indices derived from their data like the normalised difference vegetation index (NDVI) 
are frequently used in this context because of their simple derivation and interpretation. However, optical sensors have one 
major drawback: cloud coverage hinders data acquisition, which is especially troublesome for moderate and tropical regions. 
One solution to this problem is the use of cloud-penetrating synthetic aperture radar (SAR) sensors. Yet, with very differ-
ent image characteristics of optical and SAR data, an optical sensor cannot be easily replaced by SAR sensors. This paper 
presents a globally applicable model for the estimation of NDVI values from Sentinel-1 C-band SAR backscatter data. First, 
the newly created dataset SEN12TP consisting of Sentinel-1 and -2 images is introduced. Its main features are the sophis-
ticated global sampling strategy and that the images of the two sensors are time-paired. Using this dataset, a deep learning 
model is trained to regress SAR backscatter data to NDVI values. The benefit of auxiliary input information, e.g., digital 
elevation models, or land-cover maps is evaluated experimentally. After selection of the best model configuration, another 
experimental evaluation on a carefully selected hold-out test set confirms that high performance, low error, and good level 
of spatial detail are achieved. Finally, the potential of our approach to create dense NDVI time series of frequently clouded 
areas is shown. One limit of our approach is the neglect of the temporal characteristics of the SAR and NDVI data, since 
only data from a single date are used for prediction.

Keywords  Deep learning · Synthetic aperture radar (SAR) · Sentinel-2 · Normalised difference vegetation index (NDVI) · 
Vegetation monitoring · Pixelwise regression

1  Introduction

1.1 � Motivation

Vegetation monitoring is an important task and used, for 
example, in agriculture (Weiss et al. 2020), mangrove forest 
applications (Wang et al. 2019), and carbon sink estima-
tion (He et al. 2022). For large-scale or global monitoring, 
space-borne remote sensing is typically utilised, with a fre-
quent preference for multi-spectral optical sensors because 
of their easy interpretability and well-established analysis 
techniques.

A particularly common approach to vegetation monitor-
ing is the derivation of the normalised difference vegetation 
index (NDVI) (Rouse et al. 1974) from the red and infrared 
spectral bands

NDVI values range from − 1 to 1. Values below zero indi-
cate water surfaces, and values between 0 and 0.25 typically 
indicate barren land and above 0.25 vegetation (Filgueiras 
et al. 2019). The main advantage of the NDVI is the high 
sensitivity to vegetation photosynthesis and its wide usage 
in research. Another benefit is its low sensitivity to changes 
in illumination due to changing sun position (Reed et al. 
1994); however, cloud shadows seem to influence the NDVI 
to some extent (Jiang et al. 2018; Park 2012).

Despite the common use of optical space-borne sen-
sors, they also have a major drawback: they need an 

(1)NDVI =
infrared − red

infrared + red
.
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unobstructed view of the area of interest, and they rely 
on an external energy source for illumination. This limits 
their usefulness as images can only be obtained during the 
day and from cloud-free areas. This is especially a problem 
in heavily clouded areas like the tropics where the cloud 
coverage is above 75% (King Michael et al. 2013). Also, 
subtropic regions are affected by cloud cover in the rainy 
season which is often also the single growing season. For 
example, almost all images of an area in Burkina Faso are 
at least partly clouded in the rainy season between June 
and October (Belesova et al. 2017), as shown in Fig. 1.

One solution to this problem is the use of cloud-pen-
etrating radar sensors. Synthetic aperture radar (SAR) 
sensors are unaffected by clouds or mist and can capture 
images day or night and provide a spatial resolution simi-
lar to or slightly worse than optical sensors (Moreira et al. 
2013). These sensors are used for vegetation monitoring 
or the retrieval of crop parameters (Mandal et al. 2021, pp. 
177–228) and especially useful for biomass estimation 
(Sinha et al. 2015). Furthermore, similar to the analysis 
of multi-spectral data, different indices are modelled to 
enable easier analysis of the data, such as the radar veg-
etation index (RVI) (Kim and van Zyl 2000), the radar 
forest degradation index (Mitchard et al. 2012), the pola-
rimetric radar vegetation index (Chang et al. 2018), or the 
dual polarimetric SAR vegetation index (Periasamy 2018), 
allowing the use of radar data for different applications.

Even with the advantages of radar data, optical data still 
have benefits. First of all, literature on vegetation monitor-
ing using optical data is more abundant than with radar data 
(McNairn and Shang 2016; Xie et al. 2008). There also 
exists a plethora of established approaches to use NDVI 
time series for different applications, like cropland mapping 
(Estel et al. 2016), forest phenological parameter retrieval 
(Prabakaran et al. 2013), phenological change detection 
(Verbesselt et al. 2010), or land degradation and regenera-
tion detection (Eckert et al. 2015). This wealth of publica-
tions might also be increased be the easy use of optical data. 
Additionally, longer time series exist of optical data than 
of radar data. For example, the Landsat programme pro-
vides multi-spectral optical data since 1972 (Madry 2013). 
In contrast, radar data suitable for monitoring over land have 
only been available since 1991 with the data of the ERS-1 
satellite (Alpers et al. 2019). This is further compounded 
by the fact that radar data of different sensors are harder to 
combine than optical data of different sensors, where long 
time series are created from different sensors (Swinnen and 
Veroustraete 2008).

Due to these issues, combining the advantages of both 
sensor types by translating radar data to optical vegetation 
indices would be of great interest. Existing applications 
based on NDVI images and time series could be improved 
by making them independent of the cloud coverage and sun 
illumination. No adjustments or modifications would be 
needed to have the downstream tasks profit from the SAR 

Fig. 1   Sentinel-2 RGB images of an area next to the city Gaoua in 
southern Burkina Faso. Clouds prevent the monitoring of the area 
between June and October, the rainy and single growing season in 

that region (Belesova et al. 2017). Completely white images are fully 
covered with clouds
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data. All existing approaches could be enhanced easily 
and their performance increased by having more frequent 
NDVI images and denser, gap-free time series. Examples 
that would profit from this approach include land-cover clas-
sification (Gómez et al. 2016), or biomass estimation (Ali 
et al. 2017) amongst others.

1.2 � Related Work

The NDVI and the SAR backscatter cannot be directly 
regressed to each other. Whereas the NDVI is influenced by 
the spectral characteristics, chemical properties, and espe-
cially the chlorophyll content of a medium (Gitelson and 
Merzlyak 1997), the backscattered radar waves are influ-
enced by physical and electrical properties, e.g., roughness, 
geometry, and the water content of a medium (Moreira 
et al. 2013). However, the NDVI and radar backscatter are 
related to each other through a multitude of plant param-
eters (McNairn and Shang 2016). For example, the leaf 
area index (LAI) can be derived using NDVI values (for 
mangroves (Tian et al. 2017), for wheat (Duchemin et al. 
2006)) or radar backscatter (for mangroves (Kovacs John 
et al. 2013), for wheat (Harfenmeister et al. 2019), for corn 
and wheat (Vreugdenhil et al. 2018)). But also the amount of 
water in the vegetation can be correlated to both modalities: 
using NDVI values Castro et al. (2014) showed a correla-
tion between the fuel water content (FWC) of a meadow and 
Jiang et al. (2009) showed a relationship with the equivalent 
water thickness (EWT). For radar backscatter, this is shown 
for the vegetation water content (VWC) for English Rye 
Grass (Khabbazan et al. 2019), for wheat (Vreugdenhil et al. 
2018), and for oilseed-rape, corn, and wheat (Vreugdenhil 
et al. 2018). A third parameter influencing both radar back-
scatter and NDVI values is the biomass as shown for radar 
backscatter for different crops (Harfenmeister et al. 2019; 
Khabbazan et al. 2019; Vreugdenhil et al. 2018) and for 
NDVI values (Hansen and Schjoerring 2003). Finally, the 
land cover is also affecting both modalities as shown for 
NDVI values (Hansen et al. 2000; Huete 1997; Pettorelli 
et al. 2005) and radar backscatter (Balzter et al. 2015; Mah-
dianpari et al. 2017). This clearly shows that NDVI values 
and the radar backscatter are related to each other through a 
multitude of different mechanisms.

Some studies also show the relationship between radar 
backscatter and NDVI values directly. A correlation of 
NDVI values for croplands with C-Band radar was shown 
using Sentinel-1 data (Alvarez-Mozos et al. 2021; Holt-
grave et al. 2020) and Radarsat-2 data (Jiao et al. 2021; 
Moreno et al. 2012). For X-Band radar, this correlation was 
shown using TerraSAR-X data by Baup et al. (2016) and 
using COSMO-SkyMed data by Capodici et al. (2013) and 
by Segalini et al. (2014). This relationship was also found 
for forested areas: Frison et al. (2018) shows a correlation 

between the NDVI from Landsat 8 and the radar cross ratio 
of Sentinel-1 data for a temperate mixed forest.

Going beyond a mere correlation, three studies already 
demonstrated the pixel-wise estimation of NDVI values from 
radar data. Two studies use random forest (RF) regression 
for areas in Brazil: Filgueiras et al. (2019) investigate irri-
gated soybean and maize crops, whereas Santos et al. (2022) 
study a mixed area with forests, mangroves, savanna, crop-
lands, pastures, and man-made structures. The third study 
by Scarpa et al. (2018) is focussed on an agricultural area in 
Burkina Faso and utilises a small convolutional neural net-
work (CNN). All three studies estimate NDVI values derived 
from optical sensors (Sentinel-2 in Filgueiras et al. 2019; 
Scarpa et al. 2018, Landsat 8 in Santos et al. 2022). Model 
input for all studies is the Sentinel-1 SAR backscatter values 
together with auxiliary data, for example the elevation, land 
use, land cover, or the month. All models achieved a good 
performance for their investigated area. However, the inves-
tigated areas are small and relatively homogeneous. Since 
all three studies trained their models with data covering only 
single regions and lack experiments regarding the transfer-
ability of these models to other areas on the Earth, one can 
safely assume that existing machine learning models are not 
applicable on a global scale—even though Sentinel-1, -2, 
and Landsat 8 data would be available worldwide.

Overall this research shows that the estimation of NDVI 
values using radar backscatter data is feasible, even though 
the exact mechanisms and principles that allow this estima-
tion are not properly researched yet.

1.3 � Contribution

This paper has two main contributions. First, the dataset 
SEN12TP (Sentinel-1 and -2 images, time paired) is pre-
sented. It contains paired Sentinel-1 and -2 imagery with 
small time separation together with auxiliary data for all 
regions and land conditions worldwide. This dataset is cre-
ated using a sophisticated sampling strategy to ensure a bal-
anced and global distribution of the images and enables an 
accurate translation from radar to optical data regardless of 
geolocation. SEN12TP can not only be used for the NDVI 
prediction task outlined in this paper, but also for single-
time cloud removal, SAR-to-optical conversion, or optical-
to-SAR image-to-image translation.

Second, a globally applicable model to estimate NDVI 
values from SAR backscatter data is presented and experi-
mentally validated. The importance of the radar backscatter 
data and auxiliary data on model performance is determined. 
The evaluation on hold-out test data shows the high per-
formance and good level of spatial detail of the predicted 
NDVI maps. Additionally, we demonstrate the successful 
densification of NDVI time series using radar data. Over-
all, the final model is able to estimate NDVI values despite 
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cloud coverage and to monitor vegetation continuously, even 
in frequently clouded areas like the tropics. As a universal 
model, it can be applied to specific areas without the need 
for adaptation or fine-tuning, e.g., training it further with 
data of the area of interest.

2 � The SEN12TP Dataset

The SEN12TP dataset is created for the training of deep 
learning models that are supposed to estimate NDVI val-
ues from SAR backscatter. The dataset consists of paired 
imagery from radar and optical satellites. The images have 
to be of the same area and with only a small difference in 
acquisition time (on the order of one day), because a large 
temporal difference weakens the correlation of radar to opti-
cal data. This is due to changes in the observed area, for 
example growing or harvested vegetation. A similar dataset 
is SEN12MS (Schmitt et al. 2019), but as the image pairs 
in that dataset can have an acquisition time gap of up to 3 
months, it is not suitable to precisely relate SAR backscat-
ter and NDVI values. In the following subsections, first, the 
selection of the images is described, then the used remote-
sensing data characterised, and finally, the resulting data-
set analysed. All three steps were done using Google Earth 
Engine (GEE) (Gorelick et al. 2017).

2.1 � Selection of Image Regions

The regions of interest (ROI) for the dataset are selected in 
a sophisticated manner to create a balanced and geospatially 
uniformly distributed dataset. The main steps are the selec-
tion of candidate points, subsequent filtering, and finally the 
creation of ROIs from these points. These steps are also 
depicted in Fig. 2.

To ensure capturing all vegetation conditions globally 
all land-cover types, climates and seasons have to be taken 
into account and balanced to ensure an unskewed dataset. 
Candidate points are selected using the climate zone and 
land-cover class. For the climate zones, the Köppen–Gei-
ger classification is used (Peel Murray et al. 2007), as it 
is based on the vegetation found on the ground. To ensure 
including all land-cover types, the global land-cover 
product Copernicus Global Land Service (CGLS) 100 m 
version 3 is chosen (Buchhorn et al. 2021). Both climate 
zones and land-cover classes are simplified as described 
in Tables 1 and  2, respectively. Additionally, the CGLS 
land-cover classes unknown and water bodies and open sea 
were excluded as well as the polar areas north of 78◦ N and 
south of 60◦ S as they are not vegetated. The land-cover 
product is used in a downscaled resolution of 2 km to 
ensure that the surroundings of a sampled point contain 

pixels of the same class. If the original 100 m resolution 
of the CGLS classes would be used to sample candidate 
points for ROIs, there is a chance that only one pixel of 
the this land-cover class would be in the ROI. For exam-
ple, a small park in an urban area: it could be selected as 
candidate for a forest, but in fact, most of the ROI is an 
urban area. However, choosing a too large of a scale results 
in missed land-cover types with smaller spatial extents 
like small villages or forest stands. Therefore, the chosen 
resolution for sampling is a trade-off between including 
smaller objects and a perfectly balanced pixel distribution.

From the combination of simplified and downsampled 
land-cover classes and climate zones, a stratified sample of 
point is drawn. For each of the 112 combined classes (14 
climate zones times 8 land-cover classes), 25 candidate 
points are selected. As some combinations of climate and 
land cover like Tropical rainforest with Snow and Ice are 
not present in the data, only 6754 points could be sampled. 
From these, all neighbouring points which would lead to 
overlapping ROIs are excluded, resulting in 4082 points. 
For each of these filtered points, Sentinel-1 and -2 sens-
ing times between 28 March 2017 and 31 December 2020 
which are free of clouds and cover the entire ROI were 
retrieved. Using the retrieved sensing times, pairs of radar 
and optical images are selected which were taken within 
12 h from each other. This avoids temporal decorrelation 
between radar and optical values. To incorporate different 
seasons, the acquisition month of each image pair is used. 
The distribution of the combination of climate, land cover, 
and month is highly imbalanced; therefore, samples were 
randomly selected to ensure a balanced distribution.

With this balanced set of sample points, ROIs are cre-
ated. For this, a square with an edge length of 20 km is 
determined around each sample point. This leads to an 
imbalanced land-cover distribution, as only the centre of 
an ROI is required to be of the specified land cover. How-
ever, choosing ROIs with a smaller size would require a 
higher number of ROIs when aiming for the same dataset 
size. As this would become computationally expensive and 
prohibitively time-consuming using GEE, we refrained 
from doing so.

All ROIs contain at most 5% clouds and 5% no data 
areas. For this the cloud probabilities were calculated 
using the s2cloudless package (Zupanc 2017), which are 
contained in the GEE data collection COPERNICUS/
S2_CLOUD_PROBABILITY. From the cloud probabil-
ity, the cloud masks are generated with a cloud probabil-
ity threshold of 20%. Stricter filtering would exclude too 
many ROIs. Overall 2319 image pairs are selected that 
cover 484,400 km2 and 1236 distinct areas, given that from 
some areas, images from several months were selected. 
Their spatial distribution is shown in Fig. 3. 
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2.2 � Remote‑sensing Data

Multiple data modalities are selected to be included for 
SEN12TP with SAR and optical imagery being the main 
ones. Next to that, a digital elevation model (DEM) and a 
land-cover map is included, because for both modalities 
could be shown, that they improve the estimation of NDVI 
values from SAR backscatter (Santos et al. 2022; Scarpa 
et al. 2018). All data were downloaded from GEE. Images 
and bands with a lower resolution than 10 m were upsampled 
to 10 m using nearest-neighbour upsampling.

The GRD Sentinel-1 product COPERNICUS/S1_GRD 
provided in the GEE data catalogue consists of �◦ back-
scatter values in dB. The following preprocessing steps are 

applied as described in the documentation1: apply orbit 
file, GRD border noise removal, thermal noise removal, 
and radiometric calibration. The final terrain correction 
and orthorectification step normalises the radar response as 
if the response is received from a flat surface on the earth 
reference ellipsoid. Since the earth is not flat, the terrain, 
however, influences the radar backscatter (Small 2011). 
This could negatively impact the relation to the NDVI, 
due to different radar backscatter values being sensed for 
the same ground conditions depending on the terrain and 
radar geometry. To counter this effect, radiometric terrain 
correction (RTC) can be applied resulting in �◦ backscatter 
(Small 2011). This RTC is done on GEE using the model 
optimised for volume scattering on the ground as described 

Fig. 2   Overview of the selection 
process of the regions of interest 
(ROI) of the dataset. ROI can-
didate points are selected using 
the CGLS land cover and the 
Köppen–Geiger climate zones 
and are then filtered. For all 
final ROIs, data of multiple data 
collections are downloaded

Köppen-Geiger
climate zones

Reproject to 2km scale

Stratified sample

Filter neighbouring points to avoid
overlapping ROIs

Retrieve Sentinel-1 and S-2
sensing time

Filter time paired images

COPERNICUS/S1_GRD
COPERNICUS/S2_SR

COPERNICUS/S2_CLOUD_PROBABILITY
JAXA/ALOS/AW3D30/V3_2

ESA/WorldCover/v100

GEE 
data collections

Filter cloudy S-2 images and images
containing no data areas

Select balanced set of ROIs using month,
land cover type and climate

Download dataset

Selection of ROIs

CGLS-LC100
Collection 3

1  https://​devel​opers.​google.​com/​earth-​engine/​guides/​senti​nel1.

https://developers.google.com/earth-engine/guides/sentinel1
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in Vollrath et al. (2020). Including uncorrected �◦ as well 
as the corrected �◦ backscatter allows a comparison of both 
backscatter values.

As optical data, the Sentinel-2 Level-2A data collec-
tion COPERNICUS/S2_SR is used. It contains 12 spec-
tral bands of the Bottom Of Atmosphere (BOA) reflectance 
where atmospheric effects are corrected using sen2cor 
(Main-Knorn et al. 2017). Additionally, the cloud probabil-
ity from COPERNICUS/S2_CLOUD_PROBABILITY is 
added as a thirteenth band.

The 30 m resolution ALOS World 3D DEM (version 
3.2) product (Takaku et al. 2020) is included because of its 
global coverage and high accuracy (Uuemaa et al. 2020) 
from the GEE collection JAXA/ALOS/AW3D30/V3_2. As 

land-cover product, the 10 m ESA WorldCover v100 product 
from ESA/WorldCover/v100 is selected, because of its 
high accuracy and resolution as well as its global coverage 
(Zanaga et al. 2021).

2.3 � Final Dataset

Downloading the SAR, optical, DEM, and land-cover data 
for all ROIs results in dataset size of 221.6GB. One example 
of the dataset is shown in Fig. 4 to visualise the different 
data modalities.

Despite the balanced sampling, the distribution is unbal-
anced: for example, only 3% of all pixels belong to Snow 
and Ice, but 26.5% belong to Grassland and 25% belong to 
Trees. The imbalance stems from the selection of points: the 
sampling points have a balanced land-cover distribution with 
the surrounding 2 km square area considered. However, the 
surrounding area of the ROI can be different and in theory 
only 1% ( 2 km × 2 km of 20 km × 20 km ) of each ROI is 
required to be of this land-cover class.

However, because Grassland, Trees, and Cropland are the 
most important land covers for vegetation monitoring and 
also the most common classes in the dataset, this does not 
pose a problem for our application. If this dataset is used 
for other applications, this imbalance has to be taken into 
consideration.

The distribution of sensing times of all optical and radar 
images is shown in Fig. 5. All sensor platforms have a sun-
synchronous orbit, and therefore, the sensing time does not 
differ much for each platform. Most images from each plat-
form are taken in a 2–4 h range, mostly due to differences 
between the local time zone and local solar time. Optical 
images are only acquired during the ascending orbit by the 
Sentinel-2 platforms, as the best illumination is around noon 
and images cannot be acquired at night during the descend-
ing orbit. Both orbits can be used for sensing radar data: 
the descending orbit takes data in the morning around 7AM 
local time, whereas the ascending orbit occurs in the evening 
around 7PM local time.

This affects the dataset in two ways: First, pairs of 
optical and radar data cannot have the same sensing time. 
The minimum time difference of image pairs is around 
6 h. Second, diurnal weather cycles affect data differ-
ently for ascending and descending radar orbit, mainly 
due to water on the vegetation. This water changes the 
radar response without changing the vegetation condition 
and thereby complicates the retrieval of vegetation param-
eters from radar data. In the tropics, the water stems from 
precipitation which is more frequent in the afternoon and 
evening (Kazuyoshi and Wang 2008) and leads to water 
throughfall. Dew affects images of areas with moderate 
climate in the morning (Khabbazan et al. 2019). There-
fore, the model has to compensate the effect of water on 

Table 1   Mapping of the climate classes to the simplified classes

For explanation of the abbreviations, refer to Peel Murray et  al. 
(2007)

Table 2   Mapping of the Copernicus Global Land Cover classes 
(CGLS-LC100 Collection 3) to the simplified classes

The classes are described in Buchhorn et al. (2021)

Simplified class Original classes

0 Unknown 0
1 Shrubs 20
2 Herbaceous vegetation/grassland 30
3 Cropland 40
4 Urban and built up 50
5 Bare, sparse vegetation 60

moss, lichen 100
6 Snow and Ice 70
7 Permanent water bodies and 80

open sea 200
8 Herbaceous wetlands 90
9 Forests 111–116

121–126
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the vegetation which might cause a significant bias and 
an imperfect pairing relation of optical and radar data.

The dataset is available on Zenodo2. To load the images 
a PyTorch dataloader is available on Github3.

3 � NDVI Estimation from SAR Backscatter

With the SEN12TP dataset created as described in the pre-
vious section, a deep learning model to estimate NDVI 
values from radar backscatter can be trained. The convo-
lutional neural network architecture used for this task is 
described in Sect. 3.1. After that, the training regime and 
data preprocessing steps are reported in Sect. 3.2.

Fig. 3   Global distribution of the selected ROIs, split into training (blue squares) and test regions (red squares). Underlayed are the simplified 
Köppen–Geiger climate classes. For the colour legend, refer to Table 1

Fig. 4   One sample of the dataset. Displayed are the Sentinel-2 derived RGB and NDVI image, the Sentinel-1 SAR data as false-colour image (R: 
VV, G: VH, B: VV/VH), the ALOS World 3D DEM, and the ESA WorldCover v100 landcover map. Each image has a size of 2.5 km × 2.5 km

2  https://​zenodo.​org/​record/​73420​59.
3  https://​github.​com/​ocean​ites/​sen12​tp.

https://zenodo.org/record/7342059
https://github.com/oceanites/sen12tp
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3.1 � Deep Learning Model

To estimate the NDVI from SAR backscatter data, a slightly 
adapted U-Net architecture is used (Ronneberger et  al. 
2015). This is one of the most established architectures 
for semantic segmentation and pixel-wise regression pur-
poses, and is also commonly used in remote sensing (Yuan 
et al. 2021). U-Net models consist of two parts: an encoder 
branch and a decoder branch. The encoder extracts meaning-
ful features, and to do so, reduces the spatial resolution of 
the input, in our case SAR backscatter values. For this, the 
spatial neighbourhoods of each pixel is considered using 
convolution kernels. The decoder calculates the output 
NDVI values from the extracted and compressed features. 
To avoid losing spatial detail in the output, skip connections 
are added between the encoder and decoder which transfer 
high-frequency details.

The original U-Net used two output channels with no 
activation function to create probability maps of the back-
ground and foreground class. In contrast, we use only one 
output channel which is passed into a sigmoid activation 
function. This ensures that the model output ŷ is limited 
to [0, 1]. To get the predicted NDVI values yNDVI , this 
output has to be transformed to [−1, 1] using the equation 
yNDVI = 2(ŷ − 0.5) . Additionally, instead of up-convolution 
layers, bilinear upsampling with standard convolution layers 
was used in the decoder. This avoids checkerboard artefacts 
in the output image (Odena et al. 2016). The model archi-
tecture is depicted in Fig. 6. To train the model, the L1 loss 
is utilised, because the amount of spatial detail is better than 
with the MSE loss (Zhao et al. 2017).

To evaluate the model and compare the prediction with 
the optical derived values, multiple metrics are used. In the 
following, ŷ denotes the Sentinel-1-based NDVI prediction, 
y the Sentinel-2 derived NDVI, and N the number of pixel 
values which are compared. The mean absolute error

(also L1 loss) and the mean squared error

are commonly used for regression tasks in deep learning. 
The main difference is the effect of outliers in the data to 
which the MSE is more sensitive at the expense of the dis-
tinction of small value differences. The root-mean-squared 
error (RMSE)

(2)MAE =
1

N

(N−1)∑

i=0

||yi − ŷi
||

(3)MSE =
1

N

(N−1)∑

i=0

(
yi − ŷi

)2

(4)RMSE =
√
MSE

is used to convert the MSE to the same unit as the MAE.
To allow a comparison with Scarpa et al. (2018), the peak 

signal-to-noise ratio (PSNR), the Pearson correlation coef-
ficient � , and the structural similarity index measure (SSIM) 
(Wang et al. 2004) are also reported. The PSNR is calculated 
using

with the maximum interval of the data MAXI , which equals 
two in our case as the NDVI is inside [−1, 1] . The Pearson 
correlation coefficient � is calculated using the mean of the 
target values my and of the predictions mŷ

The SSIM incorporates the luminance, the contrast, and the 
structure of many windows of two images. For each window 
x, y of the two images, it is calculated as

where �x , �y are the pixel sample means, �2
x
 , �2

y
 the vari-

ances, and �xy the covariance of the image windows x, y. c1 
and c2 are factors to ensure the numerical stability. They are 
calculated using L, the dynamic range of the pixel values 
and k1 , k2 as small values as cn = (knL)

2 with k1 = 0.01 and 
k2 = 0.03 as default values. To get the final SSIM, the SSIM 
over all windows is averaged using the mean.

3.2 � Training Procedure and Data Preprocessing

To input the data into the model, it has to be preprocessed 
and normalised which is done in multiple steps.

First, to ensure a fair evaluation, the 20 km × 20 km , 
ROI images are split up spatially into a training, validation, 
and test set. This spatial split ensures that the model is not 
trained with images which are also used for evaluation. 80% 
of the ROI images are used for training, and both validation 
and test set consist of 10% of the scenes.

For training, the large ROIs are split up into smaller 
patches with a size of 256 px × 256 px . A stride of 249 px 
is chosen to split each 2000 px scene into 8 × 8 tiles. Then, 
patches containing clouds or areas with missing or invalid 
data are removed on the fly, since some scenes contain 
small clouds or missing data areas. Filtering bad data 
areas is done in this two step fashion, because creating a 
perfectly clean dataset with large ROIs is infeasible. Only 
a small number of tiles are excluded in this step, which 

(5)PSNR = 10 log10

(
MAX2

I

MSE

)

(6)𝜌 =
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shows the high data quality of the dataset: for the train set, 
only 2172 of the 134 080 (1.6%) tiles of the train set are 
excluded. After filtering the data, it is clipped to remove 
outliers and anomalous sensor values. Values exceeding 
the clipping threshold are set to the threshold value. The 
multi-spectral channels of the Sentinel-2 data, the VV 
and VH polarisations of the Sentinel-1 data, and the DEM 
are clipped to [0, 10000], [−25 dB, 0 dB] , [−32.5 dB, 0 dB] , 
and [−450m, 9000m] , respectively. The SAR clipping val-
ues are the same as in (Meraner et al. 2020), the DEM 
clipping values are the approximate lowest and highest 
possible elevation of the earth. The Sentinel-2 values are 
clipped at 10 000, because this equals a reflectance of 
100%. Finally, all values, including the land-cover clas-
sification, are normalised to be in the range [0, 1] using 
min–max-normalisation.

The NDVI is calculated on the fly from the Sentinel-2 
images with the red band B4 and the infrared band B8 
as in Eq. (1). As the model output is bounded to [0, 1], 
the NDVI is transformed to be in that interval for loss 
calculation.

For model training, the Adam optimiser (Kingma and 
Ba 2014) with an initial learning rate of 0.001 is used. 
Learning rate scheduling is used and the learning rate mul-
tiplied by 0.5 every seven epochs resulting in a learning 
rate of 0.0005 after seven epochs, 0.000 25 after 14 epochs 
and so on. Early stopping is used to avoid overfitting by 
ending training when the performance does not improve 
anymore. For each epoch, the MAE of the validation set 
was calculated. When after a patience period of ten epochs 
no improvement of the MAE was achieved, training was 
stopped. The batch size is set to 32 and not data augmenta-
tion was used.

All models were implemented using Python 3.7, PyTorch 
1.10, and PyTorch Lightning 1.3.5. Training was conducted 
on two GPUs and took approximately 27 min and 38 min per 
epoch using an NVIDIA RTX A6000 or an NVIDIA Quadro 
RTX 8000, respectively.

4 � Experiments

The model is trained with the SEN12TP dataset and the 
results are evaluated. The usefulness of the radar backscatter 
and auxiliary data for NDVI estimation are investigated and 
quantitative results presented in Sect. 4.1. Then, in Sect. 4.2, 
the radar-derived NDVI is qualitatively evaluated for differ-
ent example regions. To compare this model with existing 
research, its performance is compared with another study 
in Sect. 4.3. Finally, the model is applied to a time series of 
radar images and the optical and radar-derived NDVI time 
series compared in Sect. 4.4.

4.1 � Backscatter and Auxiliary Input Performance

To compare the importance of the radar backscatter and 
auxiliary input data for NDVI estimation, models trained 
with different inputs are compared. For this, the predic-
tions of the SEN12TP test set are calculated and com-
pared to the actual optical NDVI using different metrics 
(cf. Sect. 3.1). This allows a fair evaluation of the model 
performance, as these scenes are not used during training 
or validation and contain completely new and unseen data 
for the model. For this evaluation, the scenes were not split 
up into smaller patches like in during training to avoid 
border artefacts. A batch size of 1 had to be used, as only 
one 2000 × 2000 px large image fit into the GPU memory. 
Each model was trained five times with different splits of 
the dataset to get the average model performance.

For the first set of experiments, the performance is 
evaluated using radar backscatter data without ( �◦

VV
 , �◦

VH
 ) 

and with radiometric terrain correction ( �◦
VV

 , �◦
VH

 ), and the 
elevation retrieved from the DEM. The elevation data are 
included here, as it is a requirement for the terrain correc-
tion and is therefore available at least for all experiments 
using �◦

VV
 and �◦

VH
.

All models using both radar polarisations VV and VH 
achieve a good performance very similar to each other 
with a low error MAE = 0.12 . There are only insignificant 
performance differences between the different models with 
the exception of the model trained with ( �◦

VV
 , �◦

VH
 ), which 

is slightly better, as shown in Table 4. Using only one 
radar polarisation increases the error, in the case of �◦

VH
 to 

MAE = 0.14 , in case of �◦

VV
 to MAE = 0.15.

For the next set of experiments, auxiliary data in form 
of the ESA WorldCover landcover map are included. This 
decreases the error to MAE = 0.10 . Similar to to experi-
ments without the land-cover map, adding the DEM or 
applying radiometric terrain flattening does not improve 
the performance. Results are given in Table 5.

In the last set of experiments, no backscatter data are 
used, only the auxiliary data from the ESA WorldCover 
and DEM. This is meant to provide a lower end baseline. 
The performance using the WorldCover is MAE = 0.15 
and worse than using only backscatter data or using back-
scatter and land-cover data together. Using only the DEM 
the performance is even worse with a MAE = 0.26 (see 
Table 6).

To have an understanding of the performance of our 
model for different landcovers, we evaluate the performance 
for each land cover class separately. The model shows a sim-
ilar performance for almost all of the land-cover classes, 
with an MAE between 0.10 and 0.11. Only for Open Water, 
a slightly better performance is achieved ( MAE = 0.099 ), 
and for Barren/sparse vegetation, the performance is slightly 
worse ( MAE = 0.115 ). The full results are shown in Table 7.
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4.2 � NDVI Image Prediction

Using the trained model, NDVI images can be predicted for 
all areas of the world from SAR backscatter. When evalu-
ating the model on the test set of SEN12TP, a low error 
with a good level of spatial details is achieved, as shown in 
Fig. 7. Especially for forested, grassland, and cropland areas, 
the NDVI is predicted with high accuracy. Even some fine 
details like roads or urban areas can be predicted properly. 
Despite the generally very good results, some remaining 
shortages of the predicted NDVI images become apparent. 
One problem is the loss of some spatial details making the 
predicted NDVI images seem slightly less sharp than their 
original counterparts. One example for this phenomenon is 
the delineation between field plots. All delineations between 
land-cover types, however, are captured well due to the 
inclusion of the WorldCover landcover map. Water bodies 
and wetlands also present a problem, as their NDVI values 
are predicted with quite large errors.

4.3 � Comparison to a Regional Model

To assess the performance of our approach in comparison to 
another, previously published approach, we compare it using 
the same area of Scarpa et al. (2018). This study uses data 
from a small region in the southwest of Burkina Faso to train 
their model. Part of this area they designate as test region to 
evaluate their model performance. Because the training and 
test data are next to each other, their model is very likely 
only applicable to that region or similar ones and will likely 
achieve a suboptimal performance for other regions.

In contrast, our model trained using the globally distrib-
uted SEN12TP dataset is globally applicable and does not 
need fine-tuning for specific regions. The closest image our 
model has seen during training, validation, or testing has 
a distance of more than 150 km from the region used by 
Scarpa et al. (2018).

To compare both approaches, we downloaded the SAR, 
DEM, and WorldCover data from Google Earth Engine of 
the area. We did not use the originally provided data out 
of two reasons: first, we wanted to ensure the same data 
preprocessing as used for the data to train our models. Sec-
ond, we noticed a slight shift between SAR data and NDVI 
label pixels in the provided dataset by approximately half a 
pixel. We avoided this using the georeferencing of the NDVI 
images of Scarpa et al. (2018) for the data downloaded by 
us. The original NDVI images were also used by us to cal-
culate the metric values to ensure a fair evaluation.

A quantitative comparison of our results with the results 
of Scarpa et al. (2018) is shown in Table 8. Our trained 
model achieves a higher SSIM for all input modalities. This 
higher level of spatial detail can also be seen in the predicted 
NDVI images, together with a lower amount of noise, as 

shown in Fig. 8. In contrast to our high spatial performance, 
their model achieves a higher Pearson correlation. For the 
PSNR, our model is better when using only radar backscat-
ter, but their model is better using backscatter and elevation 
data. The best-performing model of all possible inputs is 
our model using backscatter, elevation, and land-cover data. 
However, this comparison is not fully fair, as Scarpa et al. 
(2018) did not evaluate the effectiveness of using land-cover 
information. The results still demonstrate that our model is 
able to achieve a similar or even better performance than a 
area-specific model trained for a small region.

4.4 � Densification of NDVI Time Series

For many applications, time series of vegetated surfaces are 
more interesting than an image of a single date. Therefore, 
we predicted the NDVI for all Sentinel-1 images of the area 
used in Fig. 1 for the year 2019. As model input, we used the 
�◦ SAR backscatter, the DEM, and the WorldCover data. We 
predicted the NDVI using the same five models as used for 
the evaluation which enables us to calculate the mean and 
standard deviation of the predicted NDVI values. Together 
with the NDVI retrieved from all Sentinel-2 images, we cre-
ated multiple time series for several example points with 
different land covers. The time series show a high corre-
spondence between the mean predicted NDVI values and 
the optical retrieved values from cloud-free images as can 
be seen in Fig. 9. The increase of the NDVI during the rainy 
season between June and October is captured by the radar-
derived NDVI predictions. In contrast to the optical values, 
a higher temporal resolution is achieved, because all images 
can be used and not only cloud-free ones.

The standard deviation is small for most of the predicted 
pixels, showing a high agreement and certainty between the 
models. One lower outlier of the mean predicted NDVI at 
the beginning of August is especially notable. This outlier is 
observable for all four examples and is most pronounced for 
Shurbland where it coincides with a large standard deviation.

5 � Discussion

5.1 � General Validity of the Model

The results summarised in Tables 4 and 5 and illustrated in 
Fig. 7 show the general high performance of our approach, 
unbiased by the land-cover type (cf. Table 7). The successful 
prediction of the NDVI from radar data indicates that there 
is indeed some relationship between NDVI and radar data 
despite the different sensing principle and wavelength used. 
This is in accordance to the research literature which could 
also relate radar backscatter with biophysical parameters and 
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NDVI values (cf. Sect. 1.2). A relation in the data of both 
sensors could be exploited to translate the values.

One problem of the predicted NDVI maps is the spatial 
resolution: the predicted NDVI is blurrier compared to the 
Sentinel-2 derived NDVI as visible in Fig. 7. This is caused 
by the lower resolution of the SAR input data. The used Sen-
tinel-1 data have a spatial resolution of 20 × 22m (Level-1 
product, IW mode, after multi-looking) (Collecte Locali-
sation Satellites 2016), whereas the Sentinel-2 data have a 
spatial resolution of 10 m (Drusch et al. 2012), even though 
both products are provided with a 10 m pixel spacing in the 
GEE data catalogue. Another factor deteriorating the spatial 
detail is the speckle noise of the radar which makes it hard 

to predict small objects. Combining these two factors results 
in a blurrier NDVI of the prediction compared to the optical 
retrieved NDVI and a loss of fine spatial detail.

Another problem in the predicted NDVI maps are wet-
lands and water surfaces. In these areas, the predicted 
NDVI is very imprecise (cf. Fig. 7). One possible reason 
for this might be the low amount of water pixels in the 
dataset with 4.9% (cf. Table 3). The interaction of radar 
waves with water might also be another cause. First, radar 
waves do not penetrate the water but are reflected at the 
water surface. Second, the signal energy is reflected away 
from the sensor, so that only very little energy is received 
back at the sensor and the weak received signal does not 
contain any information of what is below the water sur-
face. In contrast, optical light penetrates into the water 
to some extent and is also reflected back to the sensor 
by the plants, algae, bacteria, and other particles on the 
water surface and in the water. Therefore, optical sensors 
can be used to retrieve meaningful information about the 
water composition, and the amount of chlorophyll con-
taining species. This drawback of our approach does not 
impose many restrictions on monitoring vegetation on land 
which are mainly agricultural or forested areas. To avoid 
an erroneous retrieval of NDVI values, all water bodies 
can be masked using the existing water body layers such as 
the MODIS/Terra Land Water Mask (Carroll et al. 2017). 
The only problem could be paddy fields, which are similar 
to wetland areas, as rice is an important crop grown on 
paddy fields. However, other studies showed the feasibility 
to monitor paddy rice fields using SAR data (Inoue et al. 
2014). Therefore, our model and dataset could be adapted 
and improved for this special case to allow the retrieval of 
NDVI values from these areas as well.

Table 3   Number of pixels of the ESA WorldCover v100 classes and 
the percentage of each class for all pixels of the dataset

One pixel has a size of 10m × 10m

Worldcover class Pixels %

Unknown 904262 0.009738
Trees 2326728588 25.057427
Shrubland 671429746 7.230883
Grassland 2460118101 26.493950
Cropland 1118180228 12.042109
Built-up 213225367 2.296305
Barren/sparse vegetation 1192675400 12.844376
Snow and ice 236883642 2.551090
Open water 456079612 4.911695
Herbaceous wetland 350554397 3.775254
Mangroves 18496664 0.199198
Moss and lichen 240308465 2.587973
Sum 9285584472 100

Fig. 5   Distribution of the sens-
ing time at each ROI in the local 
timezone. All Sentinel-2 images 
are taken at the ascending orbit
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5.2 � Influence of Auxiliary Model Inputs

The choice of the model inputs changes how accurate the 
NDVI can be derived, as shown in Tables 4, 5, and 6. The 
two polarisations of the radar backscatter are the most 

important input data as they achieve the highest performance 
when using a single modality. This good performance can be 
increased when the land-cover map is also fed to the model 
as auxiliary input. Using the two SAR polarisations sepa-
rately shows a higher relative importance of the VH polari-
sation compared to the VV polarisation. The performance 
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Fig. 6   U-Net architecture based on Ronneberger et  al. (2015). Fea-
tures are extracted from the model inputs in the Encoder and trans-
formed by the Decoder to the model output. To extract abstract fea-
tures, the data size is reduced in the encoder. Spatial details are added 
in the decoder by the skip connections to end up with a spatially 

accurate prediction. Unlike the original paper, the feature maps are 
enlarged by a bilinear upsampling. Conv, BN, and ReLU denote con-
volutional layer, batch normalisation, and ReLU activation function, 
respectively. The number of filters a convolutional layer has is shown 
below each layer, next to it are the width and height wxh

Table 4   Performance of models 
trained with radar backscatter 
data and the ALOS World 3D 
DEM elevation data on the test 
set

�◦ denotes the backscatter with radiometric terrain flattening, �◦ the one without. For each model, five mod-
els were trained and the average and the standard deviation of the model performances reported. ↑ denotes 
that higher values are better, and ↓ denotes that lower ones are better

Model inputs MAE ↓ MSE ↓ PSNR ↑ SSIM ↑

Mean Std Mean Std Mean Std Mean Std

�◦
VV

 , �◦
VH

0.1210 0.0008 0.0320 0.0005 20.9645 0.0722 0.5467 0.0050
�◦

VV
 , �◦

VH
0.1221 0.0008 0.0324 0.0006 20.9181 0.0770 0.5445 0.0030

�◦
VV

 , �◦
VH

 , DEM 0.1222 0.0016 0.0333 0.0009 20.7948 0.1166 0.5431 0.0040
�◦

VV
 , �◦

VH
 , DEM 0.1226 0.0009 0.0335 0.0009 20.7760 0.1172 0.5427 0.0028

�◦

VH
0.1408 0.0016 0.0413 0.0009 19.8616 0.0925 0.5068 0.0028

�◦

VV
0.1518 0.0030 0.0470 0.0019 19.2982 0.1754 0.4988 0.0061

Table 5   Performance of models 
trained with radar backscatter 
data and the ESA WorldCover 
landcover map as auxiliary data

For each input combination, five models were trained. ↑ denotes that higher values are better, and ↓ denotes 
that lower ones are better

MAE ↓ MSE ↓ PSNR ↑ SSIM ↑

Model inputs Mean Std Mean Std Mean Std Mean Std

�◦
VV

 , �◦
VH

 , WorldCover 0.1021 0.0020 0.0235 0.0003 22.3022 0.0589 0.6090 0.0051
�◦

VV
 , �◦

VH
 , WorldCover 0.1028 0.0028 0.0238 0.0009 22.2516 0.1561 0.6088 0.0086

�◦

VV
 , �◦

VH
 , WorldCover, DEM 0.1058 0.0038 0.0248 0.0014 22.0791 0.2399 0.5937 0.0106
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of using solely �◦

VV
 data is on par with using only the World-

Cover as input; however, both achieve only a substandard 
performance. The low performance when using the land-
cover information without the radar backscatter shows that 
it is only supporting the model, but not being the main infor-
mation source of the model.

The improved model performance when using the ESA 
WorldCover can have multiple reasons. One reason could 
be the influence of a prior knowledge of the underlying land 
cover. It is likely that different mathematical relationships 
between SAR backscatter and NDVI exist for different land-
cover types, as it is an important feature for NDVI estimation 
(Santos et al. 2022). For example, high intensities in urban 
environments will certainly propagate into lower NDVI val-
ues than high intensities in croplands. If the model does not 
have to learn the distinction between the different land-cover 
classes itself, but receives prior knowledge about them, this 
leaves more model capacity for the actual implicit regres-
sion models. Another reason could be the high resolution 
and sharp edges included in the land-cover map, which help 
to add spatial detail, at least at the edges of different land 
covers.

Adding the DEM as model input does not improve model 
performance. The radar backscatter is influenced by the ele-
vation and the terrain due to the side looking nature of the 
sensor. Two identical areas with the same vegetation and 
land cover will have a different backscatter if the terrain is 
different (e.g., slope and aspect) (Small 2011). This weakens 
the relationship between radar backscatter and NDVI values, 
and should reduce the model performance. However, a simi-
lar performance is achieved independent whether these ter-
rain effects are corrected for or not and adding the DEM as 
model input does not have an effect on model performance 
either. The reason for this might be that the model is able 
to learn the influence of the terrain on the backscattered 
signal and correct for it. This suggests that terrain flattening 
as preprocessing step or including the DEM as model input 
might be unnecessary when deep neural networks are used. 
Additionally, the elevation correlates with the NDVI only 
very little, as shown in Table 6 by the poor performance 
when using only the DEM as model input.

5.3 � Creation of Dense NDVI Time Series

As shown in Fig. 9, the model prediction seems to be useful 
for filling gaps due to cloud coverage in NDVI time series of 
a location. Thereby, at each date, the SAR image is used for 
NDVI estimation and the NDVI of the prediction is extracted 
neglecting any information contained in the temporal char-
acteristics of a surface. Another approach to acquire dense 
NDVI time series would be to first extract a time series of 
SAR values and then estimate the NDVI of all dates of the 
series as done for example by Zhao et al. (2020). When com-
paring these two approaches, ours is more flexible, since 
only one SAR image is needed and not a whole time series. 
Therefore, our method enables a real-time application where 
the NDVI is predicted for the most recent image and is not 
only applicable in retrospect when the whole time series is 
acquired and NDVI prediction is carried out in a sequence-
to-sequence manner.

The standard deviation of the NDVI predictions of the 
different models could be an indicator of the certainty of the 
estimations. It could be used to detect and exclude outliers 
and predictions with a low confidence which would increase 

Table 6   Performance of models 
trained only with auxiliary data 
but not radar backscatter

For each input combination, five models were trained and averaged. ↑ denotes that higher values are better, 
and ↓ denotes that lower ones are better

MAE ↓ MSE ↓ PSNR ↑ SSIM ↑

Model inputs Mean Std Mean Std Mean Std Mean Std

WorldCover, DEM 0.1538 0.0046 0.0492 0.0029 19.1095 0.2541 0.5350 0.0073
WorldCover 0.1546 0.0048 0.0499 0.0037 19.0502 0.3172 0.5327 0.0151
DEM 0.2631 0.0026 0.1042 0.0020 15.8426 0.0835 0.3734 0.0110

Table 7   Mean absolute error (MAE) per ESA WorldCover class on 
the test set

The performance is averaged over five models, each using �◦ back-
scatter data, the WorldCover, and the DEM as input. For each model, 
first, the MAE per land-cover class is calculated and then the mean 
calculated. The class Unknown is discarded, because only 0.01% of 
the test pixels belong to that class

Worldcover class Mean MAE

Trees 0.104186
Shrubland 0.106922
Grassland 0.104518
Cropland 0.103508
Built-up 0.106082
Barren/sparse vegetation 0.115451
Snow and ice 0.108554
Open water 0.099051
Herbaceous wetland 0.104841
Mangroves 0.105674
Moss and lichen 0.105813
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Fig. 7   Comparison of the NDVI calculated from Sentinel-2 data with 
the Sentinel-1 radar backscatter derived NDVI using the proposed 
model on images of the hold-out test set. The model uses as input the 
two Sentinel-1 polarisations �◦

VV
 and �◦

VH
 , the ESA WorldCover land-

cover map, and the ALOS World 3D DEM. Also shown are the RGB 

representation of the area and the error between optical and radar-
derived NDVI. The Sentinel-1 data is displayed as false-colour image 
(R: �◦

VV
 , G: �◦

VH
 , B: �◦

VV
∕�◦

VH
 ). The location of each image is shown 

on the map above; the number next to each location denotes the row 
of each prediction image below
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the overall quality of the time series and avoid wrongly pre-
dicted NDVI values.

6 � Summary and Conclusion

This study demonstrates the feasibility to translate SAR 
backscatter values to NDVI values with one globally appli-
cable model. This allows gap-free vegetation monitoring 
even in heavily clouded areas worldwide. We also showcased 
the densification of NDVI time series using the predicted 
values as an outlook experiment. To achieve this, we created 
a global and balanced dataset of radar and optical imagery 
with a maximum time difference of 12 h together with aux-
iliary data. The dataset consists of images of all climates, 

land-cover types, and months of the year. It is used to train 
a modified U-Net architecture to translate radar backscatter 
values to NDVI values. Next to the Sentinel-1 C-Band SAR 
data, the ALOS World 3D DEM and the ESA WorldCover 
v100 land-cover product are used to improve the accuracy 
and spatial detail. The model reaches a high performance 
and low error ( MAE = 0.10 ) with a good amount of spatial 
detail ( SSIM = 0.61 ). The comparison with a model trained 
with local data of a small region (Scarpa et al. 2018) shows 
a similar performance of our model for that region even 
without any fine-tuning or region-specific adaptions. We 
also show that NDVI time series can be retrieved from the 
model prediction which are similar to time series from the 
optical data but with a higher temporal resolution. Whilst 
our approach neglects information contained in the temporal 
behaviour of a surface, its application only needs an SAR 
image of a single date allowing an easy application.

Fig. 8   Visual comparison of the optical and radar-derived NDVI 
for the data of Scarpa et  al. (2018), located in the Houet province, 
Burkina Faso, Africa. The optical NDVI is from the 4 June 2016. 
Both models use the Sentinel-1 radar backscatter from 30 May 2016 

together with the elevation data for NDVI estimation. Figures  8b 
and 8c are taken from Scarpa et al. (2018). The test site mainly con-
sists of three land-cover types:  Cropland,  Grassland, and  
Shrubland. For a full legend of the WorldCover classes, see Fig. 7

Table 8   Performance 
comparison of our model to the 
model of Scarpa et al. (2018)

The average performance of our models trained with five different data splits is averaged (mean) and the 
standard deviation stated. Different data were used for the models: SAR ( �◦

VV
 , �◦

VH
 ), SAR+ ( �◦

VV
 , �◦

VH
 , 

DEM), SARW ( �◦

VV
 , �◦

VH
 , WorldCover), and SAR+W ( �◦

VV
 , �◦

VH
 , DEM, WorldCover). The best perfor-

mance comparing our model to the model of Scarpa et al. (2018) using the same input data is emphasised. 
The best overall performance for each metric is marked in bold. ↑ denotes that higher values are better; ↓ 
denotes that lower ones are better

Input data Model Pearson ↑ PSNR ↑ SSIM ↑ MAE ↓

Mean Std Mean Std Mean Std Mean Std

SAR Ours 0.5785 0.0150 18.41 0.24 0.5684 0.0018 0.1010 0.0028
SAR Scarpa et al. (2018) 0.6118 – 16.83 – 0.3942 – – –
SAR+ Ours 0.5415 0.0414 17.53 0.97 0.5563 0.0075 0.1165 0.0169
SAR+ Scarpa et al. (2018) 0.6207 – 18.27 – 0.4218 – – –
SARW​ Ours 0.6139 0.0373 17.82 0.90 0.5706 0.0105 0.1086 0.0134
SAR+W Ours 0.6370 0.0360 18.72 0.37 0.5786 0.0062 0.1001 0.0061
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Fig. 9   NDVI time series for different points of the area in Fig.  1. 
Shown are NDVI time series derived with our model and calculated 
from Sentinel-2 optical data of four image pixel with different land-
cover classes. Five model predictions were created using the SAR 
data �◦ , the DEM, and the WorldCover as input. The mean of the 

predicted values is denoted with a diamond, and the bar shows the 
standard deviation of the models. The land-cover information is taken 
from the ESA WorldCover v100 map. Cloud covered values are de-
emphasised
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