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Kurzfassung

Identitätsmanagement stellt Nutzer, Dienstbetreiber, Organisationen und Regie-
rungen immer wieder vor große Herausforderungen. Um diesen Herausforderun-
gen zu begegnen, sind viele Identitätsmanagementsysteme entwickelt worden. Die
Verfahren reichen dabei von zentralisierten über föderierte bis hin zu nutzerzen-
trierten Varianten. Diese sind großteils in der ein oder anderen Form aktiv im Ein-
satz. Selbstbestimmte Identitäten (englisch: self-sovereign identity (SSI)) sind die
nächste Evolution in dieser Reihe von Ansätzen. Die Verwendung von Blockchain-
und Distributed-Ledger-Technologien verspricht dabei die Umsetzung tatsächlicher
Nutzerzentriertheit, durch eine Dezentralisierung und Entmachtung klassischer
Identitätsprovider. Ziel ist es dabei, die persönliche Verwendung von Identitätsda-
ten im Digitalen den physischen Ausweisen der realen Welt anzugleichen.

In dieser Arbeit wird ein Konzept für selbstbestimmte Identitäten entwickelt, wel-
ches nicht nur persönliche Identitäten im Internet und die elektronische Identifi-
zierung (eID) von Bürgern abdeckt, sonder auch die Identitäten von Geräten im
Internet-of-Things (IoT) und Systemen im Cloud-Computing-Umfeld einschließt.
Durch die Entwicklung eines solchen, möglichst umfassend einsetzbaren Kon-
zepts, soll es ermöglicht werden, dass das Entstehen weiterer Identitätssilos ver-
mieden werden kann. Die hierzu entwickelte Referenzarchitektur beschreibt ein
System, welches auf vielfältige Use-Cases angewendet werden kann. Dazu werden
unter anderem Prozesse entwickelt, die es ermöglichen verschiedene Identitätsma-
nagementsysteme miteinander zu verbinden. Entweder durch das Bereitstellen von
Übersetzungsdiensten, die Regeln bereit stellen, um Zusicherungen eines Identi-
tätsmanagementsystems in die eines anderes zu übersetzen, oder durch Gateways,
die verschiedene Identitätsmanagementsysteme verbinden.

Zur Evaluation wird das Konzept anhand von drei Prototypen aus den Szenarien
Internet, IoT, eID angewendet. Zusätzlich wird gezeigt, dass das Konzept prinzipiell
geeignet ist, die individuellen Prototypen in einem gemeinsamen großen Szenario
zu verbinden.
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Abstract

Identity and access management regularly challenges users, service operators,
organizations, and governments. Solutions to those challenges exist in identity
management systems, which range from centralized to federated and user-centric
designs. Most of the systems in use today follow one of those approaches. Self-so-
vereign identity (SSI) is the next step in evolving identity management systems. It
uses the decentralization of blockchain and distributed ledger technologies to re-
place classic identity providers. Decentralization offers the possibility of realizing
actual user-centric use of digital identities with a system similar to how physical
ID cards are handled.

This work develops a concept for self-sovereign identity management, which en-
compasses personal identities on the Internet and for electronic identification (eID),
as well as devices from the Internet of Things and the cloud computing world. In-
cluding all of those scenarios into one concept aims to prevent the establishment
of more identity silos. The reference architecture developed in this work describes
a system that can be applied to all those scenarios. An essential role in prevent-
ing identity silos is establishing processes that foster interoperability. The concept
shows two options: localization services, which help services interpret assertions
from other identity management systems, and gateways, which connect different
systems as proxies.

To evaluate the concept, the Internet, IoT, and eID scenarios are implemented as
prototypes. They show how the concept can be applied to each use case. Addition-
ally, it is shown how a combined scenario with all three prototypes could work.
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A general push for comprehensive digitalization paired with resilient, decentral-
ized networks and the exploration of distributed ledger technology (DLT) with a
focus on so-called blockchains has captured the imagination of many enthusiasts,
spawned much new research, and fueled the development of new business ven-
tures [117]. In this environment with many diverse ideas and new technologies,
there are many potential research topics [79]. One persistent problem with regu-
lar computing, cloud computing, the Internet of Things (IoT), and the blockchain
is the management of identities [146]. Identity management (IDM) has been ex-
amined and discussed many times, but a generally applicable and interoperable
system still needs to be developed. Blockchain technology and DLT may offer new
approaches and solutions to those long-existing problems [48].

The IoT adds connectivity to many existing devices and introduces numerous addi-
tional devices like sensors, relays, or control appliances. They all need to connect
to services hosted on the Internet to be used to their full potential. In order to
keep this influx of new devices and services in check and provide proper security
throughout the whole process chain, new identity management approaches are
needed. This is especially important as the data collected by IoT devices usually
contains a high amount of personal information, which could allow the building of
profiles of anybody who is recorded by such devices [171].

Identity management, sometimes synonymously called identity and access man-
agement (IAM), describes the technical and organizational aspects of ensuring that
only those entities (e. g., people) can access resources (e. g., web services) that are
allowed to do so. Later on, this work distinguishes between identity management
and identity and access management by using the first term to describe the man-
agement of identities without any direct connection to access decisions and uses
the latter term to refer to the complete process of managing identities and which
resources they can access. Part of the IAM process is the identification, authen-
tication, and authorization of entities by other entities or services. Within those
three steps, identification uniquely identifies an entity within a given setting or
scope. Standard identification methods are usernames, email addresses, or tele-
phone numbers. The next step, authentication, is used to confirm that an entity
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is correctly identified. The most common authentication method currently used
on the Internet is providing the matching password to a user ID in a site-specific
IAM system [78]. After authenticating an entity, authorization determines which
resources can be accessed by the entity. There are many ways to implement au-
thorization, starting with access control lists (ACLs), which explicitly list which
user is allowed to access which resource, a solution that can get confusing quickly
if there are many users and resources. Group-based or attribute-based systems
enhance plain ACLs. The first encapsulates users into groups, which are then
associated with access rights. The latter requires users to possess or present a
specific attribute to access a resource.

As is apparent, IAM is an integral part of modern-day IT security. Without it, it
is not possible to provide paid-for or private services over a publicly accessible
network like the Internet. This is why there are many ideas, implementations,
and standards out there to improve IAM systems’ usability, security, and com-
patibility [190]. Still, the predominant IDM solution used today for identification
and authentication with each service is based on combinations of usernames and
passwords. This system is also regularly criticized as being responsible for many
breaches because it is hard for people to remember good passwords without reusing
them across services. This trend will primarily be confirmed with the continued
rise of IoT devices and services, which will introduce a massive amount of typically
low-powered devices that need to be managed securely.

This is why current research is, among other things, looking at using blockchain
or, more generally, DLT to ensure that IDM keeps up with the demands of the
Internet, IoT, cloud computing, and government.

The core concept that makes blockchains interesting tools is their ability to run a
distributed database. To keep consistency, a network of non-trusting peers can run
this database and still achieve consensus about ordering writes to the database.
The first widely noted implementation of this concept is called Bitcoin [135]. Bit-
coin implements a digital cryptocurrency in a way that solves the problem of being
able to copy digital currency at will without introducing a trusted third party. With
digital representations of money, creating a copy indistinguishable from the origi-
nal is possible. If a trusted entity does not manage the digital money, it could be
copied by users as much as they like. Within blockchains, a similar problem is
called the problem of double-spending, i. e., spending the same money twice.

Bitcoin solves double-spending by having a decentralized database in which every
transaction (i. e., transfer of coins) is recorded. Using this database, every peer in
the network can verify whether a coin has already been spent or whether the sender
of that coin is still the righteous owner. Those digital coins can be associated with
anything. They might be exchanged for money as they are in Bitcoin or used to
show some other form of possession or property.

Expanding the concept of transferring some coins or property between users is
the concept of smart contracts. Popularized by the blockchain Ethereum, smart
contracts allow the peers of a network to form a consensus not only on which coin
has been transferred between which peers but also allow the execution of arbitrary
code within a transaction, which may trigger further transactions [28]. Using this
model, the blockchain becomes the foundation of a distributed network computer.
This worldwide computer can then be used to implement cryptocurrencies [169],
voting platforms, and much more.

The key to the interest and excitement about blockchains is not necessarily its
computational strength or storage capacity, which are small and expensive com-
pared to conventional servers or cloud systems, but the transparent validation of
transactions by all peers. This system allows parties that do not necessarily trust
each other to form contracts they are bound to, and no one can cheat the other.
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1.1 Motivation and Objective

Self-sovereign identity management (SSI) is the advancement and combination of
federated identity management and user-centric identity management. Its goal is to
put the user in control of their identity by using a federated identity management
(FIM)-like setup with decentralized identity providers (IdPs). This can give users
ultimate control of their identity and any attached attributes.

Federated identity management is – in part – already decentralized. It is usually
structured around multiple IdPs, that manage their users’ identities and attributes
and service providers (SPs) that provide resources to those users. IdPs and SPs
are spread across multiple organizations but inter-connected through a so-called
federation. The federation dictates the legal, organizational, and technical aspects
of exchanging identity information through a contract signed by all participants.
Exemplary aspects governed by a federation’s contract can be who may join the
federation, the actuality and quality of data provided by IdPs, methods used for
exchanging data between IdPs and SPs, or usage restrictions and privacy guidelines
for SPs consuming identity information.

There are currently three main areas where FIM is used. Figure 1.1 shows their
characteristics side by side.

• First and foremost, there is academia. FIM enables every participant to
use the federation’s services with the identity run by their home institution.
For example, students can enroll in online courses at other universities, re-
searchers can access resources from other institutions, and all members can
use services run by the federation for team management, communication, or
documentation. Within academia, there are usually nationwide educational
federations managing all national IdPs and SPs, international federations that
combine many of those national federations to provide federated access across
borders, and some project-specific federations.

• Secondly, FIM is used in selected enterprise environments. There it is used
to access services of cooperating enterprises or commercial service providers
that offer FIM to integrate their services with the enterprise’s IT infrastructure
more closely. Here, federations are usually smaller and consist of only a few
participants.

• As a last example, FIM is also used by commercial services offered to the
public, where it is usually labeled as a “social login” for consumers. In this
case, it is used to lower the barrier to entry of an online service by not having
to register a new account, but being able to link an already existing account.
Those federations tend to consist of only one IdP and many SPs. They also al-
low anybody to add an SP that utilizes their IdP’s specific federation. Services
like this are run by many major Internet cooperation, e. g., Google, Facebook,
or GitHub.

Neither of those applications of FIM is genuinely decentralized, as each requires
participating users to have access to an IdP. In the three uses of FIM outlined above,
this IdP access is naturally limited and acts as a method for making authorization
decisions, as membership of IdP and SP in the same federation frequently enables
most users of the IdPs to access all SPs. The identities provided by those IdPs are
also not truly in the user’s possession. Usually, after their contract with the IdP
is discontinued they lose access to this identity and related services. This is more
related to implicit authorization management than actual IDM.
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Figure 1.1: Different applications of federated identity management

On top of that, while the system seems decentralized initially, the federated struc-
ture imposes an inherent centralization. The party controlling the federation can
decide who can join and dictate requirements for doing so. This is acceptable in
some enterprise scenarios and probably also in academia but limits the system’s
usefulness on the Internet, where each large organization runs its own federation.

These shortcomings of FIM, alongside general privacy issues associated with the
IdP being always part of every login, are partly responsible for developing user-
centric identity management (UCIM). The idea of UCIM is to put the user in com-
plete control of their identity and associated attributes by separating the man-
agement of attributes into dedicated attribute authorities (AAs). Attributes are
managed by the user and confirmed by third parties (e. g., the university confirms
the student’s enrollment or completion of a course). This removes the strong con-
nection between the user’s home organization and their identity. However, it fails
to do so completely, as it requires the user to choose an IdP that manages their
identity data. As a result, an IdP may go out of service and remove all the user’s
identity and connected attributes.

The concept of self-sovereign identity management tries to combat this by mixing
FIM and a decentralized database. To build a truly decentralized IDM system, the
identity should not be associated with any particular provider but only with the
entity it belongs to. A promising solution to host this identity database, which
belongs to no one in particular and works by strict predefined rules, is blockchain
and, more generally, DLT.

DLTs are very interesting as a basis for creating new IDM solutions. However, as
with every new technology, it takes time to determine which of the many cryptocur-
rencies or smart contract networks will survive in the long run. Because of this, it
is unrealistic to have people agree on a specific blockchain for future identity man-
agement. It is even possible that trying to find the ideal blockchain environment for
identity management is impossible due to contrasting requirements, such as the
time it takes for new attributes of an identity to propagate through the network,
the cost of creating an identity, or the computational limits of small embedded
hardware. Because of this, it is necessary to investigate the possibilities of cre-
ating a cross-blockchain framework or protocol that allows users to manage their
identities on one specific blockchain and across many blockchains.



Chapter 1. Introduction 5

Moving identity management to the blockchain provides significant challenges for
all participating parties. The following list emphasizes the three main participants
in any IDM system.

• First and foremost, the user’s view has to be considered. Without an iden-
tity provider managing the user’s identity, the sole responsibility of doing this
management lies with the user. Developing systems that allow users to man-
age their identities easily is one of the main requirements to get them to accept
any new system.

• SPs with blockchain and traditional applications must ensure the identities
conform to their requirements. Providing the proper technical tools and or-
ganizational frameworks to allow SPs to safely and reliably utilize attributes
provided by the users themselves is vital for SPs’ adoption of the system.

• IdPs have to adjust to no longer being able to control the user’s identity fully.
Systems where the user outsources complete control of their identity to an
identity provider again should be discouraged. Instead, the IdP should be
able to supplement its users’ identities with additional information.

The individual DLT solutions usually differ in two major ways: the consensus algo-
rithm and the ledger’s design itself [13]. Besides the DLT’s properties, the taxon-
omy created in [13], depicted in Figure 1.2, distinguishes between different com-
ponents and attributes of crypto-economic design. Those crypto-economic design
choices shape the interaction of the participants on the DLT.

Figure 1.2: Taxonomy of DLT and blockchains [13]

The consensus-forming algorithm of the most popular blockchains follows a proof
of work concept [66]. This requires the peers to invest a significant amount of
processing power in order to generate a new block. The main criticism of this ap-
proach is that the work done and subsequent energy spent is used for nothing
else than to form consensus [141]. Alternative systems include proof of stake or
simpler systems like round robin. The practical implications of the chosen consen-
sus algorithm are that it determines the resilience of the blockchain to withstand
attacks by misbehaving peers.

The agreed-on rule set that is used for transaction validation determines which
transactions are valid. While a simpler rule set limits the uses of the blockchain,
it is easier to show that transactions are executed correctly and do not have any
unintended (side) effects.
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Identity management is currently only present in fundamental forms within block-
chains. Accounts are usually identified by an address which is a long string of
alphanumeric characters. This address is usually generated by calculating the
hash of the corresponding public key. During transactions, the users can authen-
ticate themselves by providing the public key and signing the transaction with their
private key.

This concept has already been extended to include transactions that require sig-
natures from multiple accounts or n of m accounts to prevent a single person from
misusing a company’s funds, for example [50]. Nevertheless, basic authentication
boils down to controlling one or multiple private key files.

Further investigation reveals the following main difficulties of IDM with block-
chains:

• Distributed ledgers are mostly public databases that anybody can access over
the Internet. This is great because it allows anybody to participate easily, but
a public database is not necessarily the best place for identity management
and storing private information. Therefore, a method of storing or communi-
cating private information securely between peers is needed.

• User accounts, particularly their private keys, are usually stored in so-called
wallets. Access to these wallets needs to be secured. The most popular option
to secure access to wallets are passwords or passphrases, which must be
chosen sufficiently strong to prevent an attacker with access to the wallet
from stealing the digital currency, property, or identity associated with the
blockchain address.

• Inter-blockchain communication is a broad and mostly unexplored field of
work, which can yield significant synergies between specialized blockchains.

• While the absolute decentralization DLT offers is excellent for avoiding vendor
lock-in and censorship, many end users require help from customer support.
As the ledger only works by achieving consensus with all peers, there is no
easy way to recover funds, assets, or identities associated with an address to
which a customer lost legitimate access (e. g., theft or loss of passphrase).

This work aims to develop a solution for self-sovereign identity management using
DLT to improve UCIM and (dynamic) federated identity management. This process
involves technical aspects for specific situations and a broader method description
applicable to various applications. The following section describes the main focus
of this work.

1.2 Research Questions
The research questions posed due to the motivation and objective of improving
IAM using DLT are shown in the following list. In Section 7.2, the answers to those
questions are provided.

1. Self-sovereign Identity Management: Which techniques enable self-sover-
eign identity management to provide usability, freedom, and privacy guaran-
tees to users of web services and IoT devices, which conventional IAM sys-
tems (e. g., centralized identity management or federated identity manage-
ment) cannot provide?

2. Security Analysis: How is the type of security offered by distributed ledgers
(i. e., consensus on transaction ordering and prevention of double spending
in a network of untrusted peers) useful to IAM systems in general and SSI in
particular?
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3. Distributed Ledger Technology: Which characteristics of a distributed ledger
are required to be suitable for a privacy-conscious IAM system, and which
of the currently available blockchains and distributed ledgers possess those
characteristics?

4. Entity ↔ Identity Binding: How can a process be defined to securely and
permanently bind a digital identity (digital twin) to a (real world) entity?

5. Scalability: Which methodologies enable a distributed ledger to manage the
identities of many web services and a growing number of IoT devices?

6. Inter-organizational Trust: How can standardization enable organizations
to use DLT to trust each other’s assertions and data quality guarantees on an
international scale?

7. Interoperability: Which organizational approaches can ensure that a dis-
tributed ledger for SSI can be used by many parties for different use cases
and with different implementations?

8. Reference Architecture: How can an IAM system for SSI be implemented on
a distributed ledger?

9. Interface Definition: How does an interface to decentralized identity man-
agement need to be designed to be able to use it as a replacement for classic
IAM systems?

10. IoT Device Compatibility: Which adjustments must be made to use the self-
sovereign IAM system on very constrained (i. e., connectivity, power usage,
memory, or computational power) IoT devices?

11. Electronic Identification (eID) Compatibility: How can SSI be used in an
international electronic identification (eID) system, like it is proposed by the
European Union (EU)’s eIDAS?

1.3 Structure
To answer the research questions described in the previous Section 1.2, this work
follows a structured approach described as follows and visualized in Figure 1.3.

As a starting point, Chapter 2 provides the basics of IAM and develops the scenarios
used within this work. The basics introduce common IAM operations and concepts
like FIM and SSI. The selection and definition of scenarios follow them. Those are
analyzed and evaluated to gather requirements for a modern IDM solution. The
scenarios are chosen from various currently relevant IAM applications, i. e., the
Internet, IoT, and eID. All requirements gathered from the scenarios are grouped
and weighted to form a set of criteria that can be referenced throughout this work.

Those requirements are used in Chapter 3 to compare state-of-the-art research,
standards, and common solutions. Strengths and deficiencies identified by this
process are then used to determine the key aspects that warrant or necessitate
developing a new concept.

Chapter 4 describes the development of a new concept. It details the architecture,
concepts, and processes necessary to build an SSI solution for various scenar-
ios and applications. The concept aims to be adaptable to as many situations as
possible by constantly referencing the scenarios of Chapter 2. As a result of this
chapter, an actual implementation of the concept for a specific use case should be
possible.
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Figure 1.3: Structure of this work’s chapters and sections
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To test this, Chapter 5 explores multiple applications of the concept by developing
prototypes for selected scenarios from Chapter 2. The prototypes are designed to
test and validate the realization of SSI applications by following the concept’s deci-
sions. They are not intended to provide finished products or components thereof.

Chapter 6 explores the prototype implementations and compares the achieved re-
sults against the requirements of Chapter 2. Additionally, this chapter discusses
the possibility of combining the individual scenarios and their prototypes into one
connected SSI system.

In the end, Chapter 7 summarizes the process and highlights key achievements
and potential weak points. This chapter also inspires further research into the
topic of SSI.

1.4 Focus of Publications
Parts of this work have been published with the author’s participation as confer-
ence or journal papers. The following list contains those publications with content
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Februar 14-15, 2017. Hamburg: DFN / Universität der Bundeswehr
München, Fakultät für Informatik, INF 2 - Institut für Softwaretechnologie,
Professur: Hommel, Wolfgang, 2017, B1–B16
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This chapter looks at different aspects of identity and access management and a
selection of scenarios, which will form the base for establishing requirements for
developing a modern, widely applicable, and secure IAM system. These scenarios
are gathered by identifying tangible real-world examples from the following topics
of interest and will be examined for how they could be implemented to support SSI.

• Web Applications (Web Apps): Web applications are still the primary means
of content delivery on the Internet, and most of these web apps require some
IAM [78]. For example, to access non-public data, view premium content,
conduct purchases, or access a social network. Because there are so many
web apps and different providers, the number of identities a regular user has
to manage grows constantly. It is a source of common security problems like
weak passwords and password re-use. Scenario 1 will examine a scenario for
a web app that anybody can use over the Internet to post and receive data.
IAM is used in this scenario to support user accounts and to specify who can
access which data.

• The Internet of Things (IoT): Due to the rising number of “smart” and gen-
eral IoT devices [184], the management of these has come into focus of many
projects and research [30]. Some of this research also focuses on adopting
blockchain for IoT [120]. The particular challenges of IAM of IoT devices are
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their limitations, i. e., being battery-operated, with unreliable network con-
nection, or having limited or no persistent storage. Those challenges, not
found in desktops, notebooks, mobile phones, or servers, create additional
aspects for SSI.

IoT-specific requirements are described in Scenarios 2a–c. Scenario 2a dis-
cusses the integration of IoT devices into the web app scenario. The IoT de-
vice should be able to record, display, and act according to data present on
the web app. Scenario 2b adds requirements for more specialized IoT sen-
sors characterized by minimal power requirements, which should be able to
run on battery power for multiple months. Scenario 2c describes the infras-
tructure and IAM requirements for building an IoT network that covers an
extended area. In this scenario, the goal is to increase the range of connected
IoT sensors using a decentrally shared network infrastructure and discuss
IAM-related challenges. This last scenario also contains aspects of the next
topic of interest cloud & edge computing.

• Cloud & Edge Computing: Synergies of using centralized computation pro-
viders to run applications and tasks that require scalability have driven cloud
computing [104]. Cloud computing has been so successful that many compa-
nies rather use cloud service providers to run their applications than hosting
them on their own. This allows them to reduce costs for maintaining their
own data center. To keep the benefits of cloud computing but also reduce la-
tency and avert potential bandwidth limitations, an emerging trend is to move
services from the cloud physically closer to the customer’s location. This – so-
called edge computing – migrates the customers’ applications within the ser-
vice provider’s network of smaller but geographically highly distributed data
centers to suitable locations [164]. To cover requirements from this topic, Sce-
nario 3 extends the example application with cloud & edge computing-specific
requirements for IAM. This includes on-demand storage and computation on
shared resources near the IoT sensor or the application back-end.

• Electronic Identification (eID) Systems: The last and, due to particular
national and international regulations and laws, probably the most difficult
to evaluate topic of interest covers the inclusion of eID to use government-
approved identities in the example. With increasing public pressure, govern-
ments and regulators are – and have been for some time – creating initiatives
to make government and regulatory processes available to citizens using the
Internet [143]. These initiatives range from e-voting to general e-government
and digital health care, which all require strong guarantees of the security
of the identity of individuals and organizations. These initiatives can provide
the basis for all kinds of IAM applications, guaranteeing high data confidence
levels. Combining the other scenarios and integrating the eID system based
on a German eID project is shown in Scenario 4.

Before describing the scenarios in detail, a baseline for identity and access man-
agement systems is developed by analyzing common existing IAM architectures and
systems. This analysis shows which options are available for building IAM systems
and where individual strengths and weaknesses lie. It also defines important terms
that may be used inconsistently across the literature. The regarded architectures
and systems are from the following general categories:

• Identity and access management (IAM) in Section 2.2

• Federated identity management (FIM) in Section 2.3

• Self-sovereign identity management (SSI) in Section 2.4
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Building on the base IAM architectures and systems, Sections 2.5.1–2.5.6 describe
different scenarios from the topics of interest in which IAM plays a critical role.
Those scenarios derive requirements for an IAM solution supporting the respective
scenario.

In order to structure the determined requirements, they will be assigned to one of
the following requirement categories, which are based on the goal of the respective
requirement. This approach is based on the KAOS requirements acquisition and
categorization method [42].

• Satisfaction requirements are required to satisfy entities’ requests for key
IAM operations (i. e., identification, authentication, or authorization).

• Information requirements allow entities to get information about other en-
tities or the system’s state. Those requirements are useful to discover entities
and services, process attributes correctly, and join the system.

• Consistency requirements ensure that digital and physical parts of the sys-
tem are kept in a consistent state, or this state can be re-established. This is
especially important regarding digital twins.

• Security requirements aim to maintain the security of entities and the sys-
tem. As such, they include requirements preserving confidentiality, integrity,
and availability.

• Data protection requirements keep communication and information of and
by entities protected and private. To differentiate from the security require-
ments category, data protection requirements are focused on data minimiza-
tion, metadata avoidance, and tracking prevention.

• Robustness requirements help to recover from failures and restore the goals
of the previous requirement categories.

Requirements from the security and data protection categories may overlap, es-
pecially regarding confidentiality and integrity, which in many cases could be as-
signed to either category. In those instances, requirements that fit the security
category are assigned to the security category.

In addition to these categories, each requirement is assigned one of the following
priorities that show the relative importance of the requirements:

• Essential (1) requirements are the most important requirements. Without
those, the system will most likely not be usable at all.

• Important (2) requirements enable features or aspects of the system that are
most commonly used and expected to be present.

• Optional (3) requirements facilitate “nice-to-have” features, only important
in some less common situations.

The whole process of determining the baseline and gathering requirements from
the topics of interest is depicted in Figure 2.1. The figure also shows where some
scenarios are influenced by more than one topic.

After describing the concrete scenarios, aspects of IAM are analyzed and summa-
rized to generalize and group the requirements in Section 2.6.

2.1 Identity and Access Management Models
An overview of established IAM models is provided in this section to set the scene
applying the scenarios, which are described further down this chapter. The five
IAM models shown have evolved and were adapted to current demands. The first
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Figure 2.1: The process of deriving requirements from the chosen scenarios

four models are extensively described in [98]. At the same time, the last one has
only recently come into focus due to the development of entirely decentralized iden-
tity management systems associated with different blockchain projects [134].

• Application-centric identity management (ACIM) closely integrates user
account management with the application. The identity management system
is developed in parallel with the application itself and thus is tailored precisely
to the application’s requirements and cannot be used outside the application.
It is a quick and easy way to implement a basic identity management system.
However, it becomes pretty challenging to maintain at scale, e. g., because mi-
grating the user base to a new application is exceptionally cumbersome, and
expanding the service portfolio requires users to re-register for each additional
service.

• Centralized identity management (CIM) separates the identity manage-
ment system from the application. Because of this, multiple applications
can access and use the data from one identity management system simul-
taneously, making it easier to access multiple applications and allowing de-
velopers to use existing frameworks or solutions to integrate IAM into their
applications. One drawback of this model is that the available methods and
data structure might not suit the application ideally and requires awkward
adaptions.

• Federated identity management (FIM) enhances CIM by facilitating iden-
tity information exchange in one organization’s domain and between multiple
trusting organizations. The trust between the organizations is usually based
on legal agreements. This allows applications to outsource identity manage-
ment to another entity called the IdP. Organizations and users re-use their
existing accounts from IdPs to access SPs from multiple participating organi-
zations. In some contexts, the SP is also called relying party (RP). This flexible
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use of one identity also introduces a security issue, as a compromised ac-
count can be used to access many systems. Proper safeguards are, therefore,
essential to detect and prevent misuse.

• User-centric identity management (UCIM) tries to mimic how identities in
the real world are used by putting the user in the system’s center and allowing
them to have and choose between multiple identities based on the applica-
tion or situation. This grants more flexibility to the user because they can
choose the IdP freely and decide which personal information to share with
which IdP. This freedom of choice introduces additional complexity because
some services might require specific assertions, e. g., the name or address
of the user, which cannot reliably be provided by all IdPs, the user could
choose. Knowing which IdP to use in which situation is the user’s duty, just
like knowing when to show a driver’s license or gym membership card in the
real world.

• Self-sovereign identity management (SSI) removes the concept of an orga-
nization that acts as IdP for the user. In this model, users can create and
act as IdP using a decentralized platform for as many identities as they like.
They have complete control over which identities they use to access an ap-
plication, and the IdP cannot surveil which services are accessed. Because
some services might need guarantees about some attributes of a self-sover-
eign identity, these may be attested by a third party with a trust relationship
with the application relying on the attribute’s value. These attestations can
be linked to one identity by the user to show them to the requesting service.

In order to keep the list of management models short, within this work, the list
is reduced to the three most relevant models: centralized identity management,
federated identity management, and self-sovereign identity management.

The revised list no longer contains ACIM because, in practice, it has been super-
seded and substituted by CIM [78]. Implementing IAM only for one application is
an antiquated model, and it is nowadays more likely that an application developer
will use an existing CIM solution in combination with their application.

The second model omitted from the list, the UCIM, has been removed because
while it has been around for some time, it has not caught on in practice. Many of
its novel ideas have been inherited by the SSI without the conflict of trying to put
the user in total control but having only one (or very limited) choice of IdPs.

Each of the remaining models will be used to gather and compare requirements
for those IDM solutions. This collection will serve to collect a list of common iden-
tity management system requirements and later be a reference to identify areas of
change when transitioning from one of the management solutions to another.

2.1.1 Centralized Identity Management

While most IAM systems in private home environments are, in fact, CIM-based,
it is usually the case that each device or service runs its own CIM system. This
results in every computer, mobile device, or IoT device having separate accounts
and passwords, and updating an account on one system does not affect any other
system. On the web, CIM is familiar with many larger web services requiring their
username and password combination to access multiple services and applications.
For example, a Google account, can access the Google Play store, YouTube, Google
Drive, and multiple other Google services. The same is true for many other web-
based service providers.
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The problems created by storing credentials and attributes centrally are numerous.
Across the different systems, such information is stored redundantly without any
method for synchronization, verification, or reconciliation. No authoritative source
is guaranteed to provide the most up-to-date information. For personal accounts
on the Internet, the personal effort required to synchronize personal attributes like
name, home address, email address, or banking information between the various
online services used today is enormous.

Within organizations where the different services, like email, file sharing, or a wiki,
are centralized, access management gets very complicated. A central repository
managing all employees’ identities reduces management overhead. It prevents sit-
uations where an employee joins or leaves the organization, and each service ad-
ministrator has to create or delete the user’s account. Especially with an employee
leaving a company, if an administrator forgets to revoke the employee’s access, this
can result in unauthorized access. This is why most enterprises and organiza-
tions have moved from application-specific identity management systems to CIM
systems.

2.1.2 Federated Identity Management
FIM removes users’ per-service or per-organization identity and facilitates sharing
of identities between organizations. Instead, a universal identity and attributes are
stored with an IdP that may or may not offer other services directly. This IdP can
then be used by other SPs to authenticate and, depending on decisions based on
the attributes transmitted by the IdP, authorize the user to use their service. FIM
is described in more detail in Section 2.3.

2.1.3 Self-Sovereign Identity Management
SSI combines most aspects of UCIM with an easy to set up IdP. The main criticism
of UCIM is that while it is theoretically possible for everyone to create and run their
own IdP, it is not realistically feasible as it requires too much technical knowledge.
SSI uses the concept of decentralized computing and data storage. Both are pro-
vided by the DLT implementations as a way for everybody to act as their own IdP.
A more detailed look at SSI is provided in Section 2.4.

2.2 Identity and Access Management Basics
The following section describes IAM basics and defines the corresponding termi-
nology. As a start, Definition 1 specifies the term IDM.

Definition 1 (Identity Management) “Processes and policies involved in
managing the lifecycle and value, type and optional metadata of attributes [...]
in identities [...] known in a particular domain [...]” [95]

The addition of access management to IDM is called IAM. This term encompasses,
more broadly, any process or technique related to identification, authentication,
and authorization, as described in Definition 2. Frequently, however, IDM and
IAM are used almost synonymously.

Definition 2 (Identity and Access Management) The technical and organi-
zational framework for identifying, authenticating, and authorizing access to
services or systems.

The most commonly thought of entities for IAM systems are natural persons. They
must be identified, authenticated, and authorized frequently as part of everyday
tasks. A common task for IDM is the reliable identification of natural persons
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within different contexts. This task is further complicated because natural per-
sons usually have high mobility (i. e., they travel to different locations and use
different devices) and generally do not have any standardized way of identifying for
different services. While biometric identification (and authentication) is rising [17],
probably due to an increasing number of consumer mobile devices being equipped
with fingerprint readers or facial recognition software, the most used identification
schema for individuals is still based on usernames and passwords [173]. Within
this work, a person is always regarded to be a natural person, i. e., any physical
individual human being.

Definition 3 (Person) A natural person, i. e., any physical individual human
being.

Personal identities are a well-researched topic, and through literature, they are
usually based on the seven laws of identity by Kim Cameron [29]. These laws
formulate criteria that influence the creation of a universal identity layer for the
Internet and are summarized in the following list:

1. User Control and Consent: The system must only reveal the user’s personal
information with their consent.

2. Minimal Disclosure for a Constrained Use: When information about a user
is revealed, it must be within a defined context of who can read that informa-
tion and how long it will be retained.

3. Justifiable Parties: The IAM system must shield the user from disclosing
information to parties that have no justifiable necessity to request it.

4. Directed Identity: Identities must be either “omnidirectional” (i. e., public)
or “unidirectional” (i. e., private). Public identities are useful for organizations
and all identities that want to be discovered. In contrast, private identities
are only visible to the entity they are disclosed to and cannot be linked across
different entities.

5. Pluralism of Operators and Technologies: The identity system must not
limit the number of identity providers or the underlying technologies.

6. Human Integration: Communication between the human and the computer
must be designed to limit or prevent attacks on the user’s identity.

7. Consistent Experience Across Contexts: An universally used identity sys-
tem must provide the same or similar user experience across all use cases.

A key concept of society is collaboration between multiple persons. They form
organizations that set out to achieve some common goal, and in doing so, the
organizations can also represent their members. So to do business with other
organizations or show a person’s affiliation to an organization, the organization
must also be identifiable.

Definition 4 (Organization) Any legal person, as well as groups of persons
that are formed to pursue a common goal, can form an organization.

The main difference between the identity of a person and that of an organization is
that the identified “object” is tangible in the real world for persons. In contrast, an
organization may only exist on paper or through shared understanding. An entity
can be anything that can be identified individually within a given context.

Definition 5 (Entity) Any distinctly identifiable item, person, or organization
within a domain [95].
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In computer science, such entities may often be websites, IoT devices, or comput-
ers. This covers anything that could be inventoried, accessed, or addressed. Being
able to identify an entity is the basis for all further IAM, as authentication and
authorization would be meaningless if they are not connected to a specific entity.

An identity is defined as a “set of attributes [...] related to an entity” [95]. This
standard’s definition notes explicitly that an entity may possess multiple identities
and that multiple entities may share the same identity. The latter property of that
definition is somewhat counter-intuitive in everyday use, which is why, in this work
“identity” is used as an “identifier”, “unique identity”, or “distinguished identity”
as defined by [95], which specifies that an identity can be used to distinguish an
entity, within a specified domain unambiguously.

Definition 6 (Identity) An “attribute or set of attributes [...] that uniquely
characterizes an [...] [entity] [...] in a domain” [95].

This attribute set depends on the domain or context in which the entity is identi-
fied. For government forms and applications, the attributes that uniquely define a
citizen are first name, last name, date of birth, place of birth, tax id, and probably
the registered address. Within the domain of personal friends or colleagues, it is
usually just the first name or specific nicknames if collisions exist. Instant mes-
saging applications often use the mobile phone number as an attribute to identify
and connect the users.

These examples show that the chosen set of attributes necessary for identifying
an entity is very domain specific and needs to be chosen to minimize possible
collisions, i. e., that two different entities are presumed to have the same identity
while still being practical to use.

Identifying an entity is only the first step in securing IAM. Afterward, the entity’s
identity needs to be verified. The kind of verification necessary, again, depends
heavily on the domain, use case, and level of assurance (LoA) required. Authentica-
tion may be done by presenting some form of government ID, showing a certificate,
or providing the password corresponding to the username.

After identifying and authenticating an entity, the next important step is to define
what this entity can do, i. e., what kind of access it has. This is the process of
authorization. The primary subjects of access management are usually users,
and ISO/IEC 27002:2013 defines the objective of user access management: “To
ensure authorized user access and to prevent unauthorized access to information
systems.” [96].

A general life cycle for IAM was described by [11]. It is not specific to any con-
crete IAM implementation and can be implemented to some extent by most IAM
systems. It showcases the basic steps and procedures necessary to implement an
IAM system. Figure 2.2 shows a partitioned and slightly shortened version of this
lifecycle.

The deep blue “main path” in Figure 2.2 contains the shortest possible way through
the lifecycle and thus represents the minimal feature set of an IAM system. This
path contains the steps necessary to register an identity, associate credentials with
this identity to perform authentication and define access permissions. To com-
plete the cycle, it also contains removing credentials and the identity itself. The
teal colored “administrative functions” represent ubiquitous functions for chang-
ing access permissions for an identity. The light blue “convenience functions” are
optional functions consisting of mainly pause and undo functions that temporarily
disable and later restore access for the identity.
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Figure 2.2: IAM life cycle based on [11]

2.3 Federated Identity Management Basics
The following section describes FIM basics and defines the corresponding termi-
nology. It also shows prior research into the management and architecture of FIM.

Definition 7 (Federated Identity Management) An IAM framework that en-
ables services or systems from multiple organizations to authenticate entities
of cooperating organizations, which form an identity federation [32].

FIM can be used where authentication and authorization infrastructure should be
usable between multiple organizational domains. It allows users from one organi-
zation to access SPs at another organization without registering a new account with
the remote organization. Instead, they can use their home organization’s account
through the organization’s IdP. This results in a general reduction of redundantly
storing identity attributes (e. g., name, email, etc.) with multiple services and hav-
ing only to update changed information at the IdP. Consequently, the SPs benefit
from more up-to-date identity information that is usually transmitted from the IdP
with every authentication. This system requires the participating organizations to
mutually agree on the organizational terms and conditions of the cooperation as
well as on technical specifications for exchanging the required data.

Definition 8 (Identity Provider) A system that provides identifying and au-
thentication services of registered entities to other services within a specified
infrastructure or domain [32].

Definition 9 (Service Provider) A system that provides services to entities
from a defined infrastructure or domain [32].

One commonly used technical FIM workflow example is the SAML 2.0 Web SSO
Schema [38] depicted in Figure 2.3. This example shows the workflow of redirecting
the user’s request through the web browser from the SP to the IdP, performing the
authentication, and returning the result to the SP through another redirect.

This or similar workflows allow the consolidation of identity information with one
service. The SPs can focus on service delivery but must trust the identity informa-
tion provided by the IdPs.
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Figure 2.3: SAML-Web-SSO-Schema [38]

The technical protocols that facilitate such sharing of identity information need
to be supported by an organizational framework that establishes trust between
SPs, IdPs, and users. This organizational trust is much harder to accomplish than
purely technical trust because organizational trust usually involves legal contracts,
risk assessments, and business decisions that specify the quality and actuality of
identity data, determine which IAM parts can be outsourced to an IdP, and whether
giving up complete control over the IAM process is feasible as well as what SPs can
use the received data for.

The IT service management processes necessary for building, managing, and se-
curing an identity federation have been researched by Wolfgang Hommel [82]. Inte-
grating FIM services with existing IAM infrastructure systematically is a key com-
ponent of the architecture designed in this work. The results of Hommel’s dis-
sertation are used in this work to compare regular FIM architectures to the newly
established SSI architectures and to determine possible avenues to move IAM sys-
tems to SSI.

Further research into automation, scalability, trust, and interoperability of dy-
namic identity federations has been done by Daniela Pöhn [142]. Those dynamic
identity federations use a trusted third party as a broker to create dynamic and
on-demand federations. The benefit of dynamically building smaller federations
is the reduced set of organizations that need to agree on common definitions and
interfaces. This makes those dynamic federations more capable, as there are fewer
constraints. The trusted third party can negotiate many of the (technical) aspects
automatically. The results of this work are used to compare the dynamic identity
federation architecture that uses a central trusted third party to the SSI architec-
ture without any institutionalized trust.

2.4 Self-sovereign Identity Basics

As a relatively new IAM framework, SSI is currently not used in any wide-scale
application. However, there are multiple prototypes and testbeds, for example, from
the Sovrin Foundation, the Linux Foundation’s Hyperledger Indy, or the formerly
uPort now Serto.
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Definition 10 (Self-sovereign Identity Management) Is an IAM framework
based on multiple independent attribute sources providing verifiable creden-
tials to entities that collect them in a wallet to augment their individually owned
identity. To prove an entity’s identity or attributes, the relevant credentials from
the personal set are chosen and presented to other entities.

SSI is closely related to UCIM but executes the idea of putting the user at the center
of IAM more thoroughly. With UCIM, an IdP is still responsible for managing the
user’s attributes, but this IdP is not under the user’s control. This constellation
somewhat limits how far the user is actually at the center of this IAM framework.
With SSI, the users are their own IdPs.

This basic premise is achieved by decentralizing the IdPs and allowing each en-
tity to act as its own IdP in a peer-to-peer network. It does not imply that any
entity can credibly assume just about any attributes associated with its identity.
Attributes are collected from relevant parties for the use case and can provide the
entity with a verifiable credential. Other entities can verify the origin and content
of the credential when presented to them by the entity. This allows more natural
architectures of IAM to be represented digitally.

This IAM architecture is achieved by removing strict hierarchies that dominated
previous IAM architectures and frameworks. In the real world, persons, devices,
and organizations are identified differently depending on the transaction’s context.
An example of this decentralized IAM architecture used in everyday life is shown in
Figure 2.4. One person can assume multiple personas and act in different roles.
Within those personas, different credentials are used to show or prove identity
and personal attributes (e. g., name, address, citizenship, or associations) to other
entities. The credentials are issued by an authority but are usually carried by
the person they describe. This drastically differs from common IAM approaches,
where the issuing entity or some other third party usually must be contacted for
each authentication. The credential issuing and validating entity determine the
scope where the credential can and should be used. However, both entities must
not necessarily agree on the same scope, as shown in the later example of driving
licenses.

An employee ID, for example, can be used at the workplace that issued the ID
but also with other branches of the company, with contractors and cooperating
companies, or with customers. Outside this sphere, the employee ID is more or
less useless because nobody can tell a real ID from a fake one. However, within the
set of entities that know how to read the employee ID, it is a very straightforward
way to assert one’s position in the company.

For international travel, government-issued passports are usually used as identi-
fication documents. Because of the unique requirements of being readable world-
wide, providing robust identification and authentication, being hard to forge, and
thus being very valuable, they are usually not used outside of traveling through
borders. Given the high reliability and trustworthiness of the document, it could
be used almost everywhere to establish one’s identity. Nevertheless, it lacks infor-
mation like company association, which an employee ID can better portray.

An example of a credential usually only recognized by the issuing authority is a
sports club or gym membership card. It cannot be used for anything other than
showing that a person is a member, but it does so efficiently. If a passport had to
be shown to evaluate whether a person is a member of a gym or not, the person’s
name from the passport would need to be matched against a database of the gyms’
members’ names. This overhead is usually omitted, acknowledging a significantly
reduced forge resistance.
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Figure 2.4: Real-world identity with different persona and their respective creden-
tials used in different environments

Until now, the examples have shown scenarios where (usually) the credential is-
suer and the credential verifier are the same entity or related entities that know
about each other’s existence. The last example shows using a driver’s license to
get authorization to purchase alcoholic beverages by showing sufficient age. This
example describes a situation where an issuing authority is needed that is uni-
versally trusted by bars to establish the person’s age. At the same time, using a
driver’s license for this purpose is not its intended purpose. This additional use
case has been established over time.

SSI aims to recreate a similar architecture, but online and with more granular
control. Especially the last example of using a driver’s license to verify one’s age
shows a problem where the person is showing too many attributes (e. g., name,
address, driving class, date of birth) where the person’s age and an identifying
photo would be sufficient.

Key challenges of the approach taken by SSI remain similar to those of FIM: The SP
has to trust the IdP to have performed the authentication correctly and that each
transmitted attribute of the user is correct and up-to-date. While for FIM scenarios,
this challenge is met by forming formal federations, a similar but scalable and
decentral solution must be found for SSI. The Internet’s inherent international
infrastructure complicates this further with many varying cultural mindsets, legal
frameworks, and digitalization maturity.

Furthermore, putting the user in the position of an IdP imposes many problems
that IdP services usually face solely onto the user. This may create an environment
or solution that risks that common problems are blamed on users’ actions (or lack
thereof) – for example, the common problem of forgetting or losing credentials.
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Where there used to be a support page or phone number that would help to restore
users’ access to their account with the IdP, now nobody but the user is responsible
for the individual IdP and the individual restore process.

Further challenges will be discussed in the following sections, which describe the
scenarios in detail.

2.5 Scenarios
In this section, the scenarios mentioned and motivated by different topics of in-
terest at the beginning of Chapter 2 and Figure 2.1 are described in more detail.
For each scenario, a list of requirements is deduced, categorized, and prioritized
according to the schema described at the beginning of Chapter 2.

2.5.1 Scenario 1: Web Applications
The first scenario discusses a simple web application implementing a publish sub-
scribe messaging system for data processing and sharing. This or a similar ap-
plication structure can be found in many real-world applications, like social net-
works, forums, news sites, video streaming platforms, or – to some extent – even
blockchains like Ethereum. This example application will focus on publishing text
data, as more complex applications that may require image processing or video
streaming do not significantly add to the IAM requirements.

The IAM requirements of this web app are pretty basic at first glance. Figure 2.5
shows the general architecture and the user’s interaction possibilities: Users can
register an account, create channels, and publish data to them. Other users sub-
scribe to those channels and receive the published data. The user can also con-
figure some predefined or custom processing steps that can be used to validate,
transform, or aggregate the data before it is published. The channels where data
is published can either be public, meaning that anybody can subscribe to them or
private so that only selected other users can receive data through them. It should
also be possible to open channels to multiple publishers so that multiple users
can post new data to a channel. Those features require some permission and user
management.

Figure 2.5: General architecture of the publish subscribe web app

Closer inspection of those seemingly trivial operations yields further, less basic
questions that need to be answered by the service provider and its users. Starting
with registering an account, the service provider needs to determine what infor-
mation is required from the user. The more information known about a user, the
easier it is to connect the users and tailor the service to their needs. However, re-
questing more information increases the barrier for users to join and thus results
in fewer users or more unreliable data. Asking for the “right” information is diffi-
cult with a platform as generic as described here: What information about the user
is really relevant to provide the service adequately and determine user interests?
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This question may not be answerable when the user first connects to the service
and also depends on the functions the user would like to use. The kind of data they
add and read to and from the platform may also be heavily influenced by the type
of data that is already available and will develop over time. To register the user,
the service must recognize the user as an individual connecting to the service
on repeated visits. If necessary, this registered identity can be augmented with
more information (i. e., payment information, topics of interest, or other personal
information) later on.

To authenticate a registered user, the SP and the user establish credentials (e. g., a
specific password or certificate). Those credentials used by entities to authenticate
with the platform need to be tailored to the entities. This is especially apparent
because many IoT devices should be able to publish data to and retrieve data from
the platform. Additionally, web services and regular people must access the plat-
form through a web browser. Those categories of connecting entities are suited to
different kinds of credentials.

While there are disadvantages, regular persons might default to using a pass-
word as their credential. Alternatively, they might use systems like OpenID Con-
nect (OIDC) or security assertion markup language (SAML) as their authentication
credential. IoT systems and web services might use pre-shared keys (PSKs) or
certificate-based credentials. Supporting all those and potentially new, develop-
ing options poses a significant challenge. This is especially true because not all
credential systems offer the same level of security.

In some cases, the need to support multi-factor authentication (MFA) or at least
two-factor authentication (2FA) exists to enhance the authentication’s strength.
MFA can be implemented via various systems, e. g., interactive challenge-response
style systems, smart cards, or one-time passwords. The need for MFA can also be
determined by the service during the authentication, depending on a risk score
based on metadata or actions performed by the authenticating entity.

As authentication credentials may also be lost or even compromised, there needs
to be a way to occasionally revoke old and establish new ones. This is usually done
by revoking the old credential and establishing a new one, preferably using a third
credential or another out-of-band mechanism.

Access and authorization decisions must be handled by the service to ensure each
entity can only access the data it is allowed to access. These restrictions must be
managed, enforced, and checked to prevent any unintended disclosure of data.

The management of access permissions requires users to be able to display and
set those access permissions in a clearly structured way. To keep this permission
management assessable and useful for the users, the granularity and method of
assigning permissions must also be considered. On the one hand, if there are too
few options, the resulting options may be too limited to enact the required restric-
tions. On the other hand, if the options are very granular, the risk of unintended
configurations due to confusion rises.

When an entity’s account is deleted, multiple challenges are associated with treat-
ing the associated data. The service provider must determine which information
needs to be kept for record-keeping processes (e. g., billing, payments, taxation, or
audits) and which information, especially personal information, can and must be
deleted immediately. Suppose parts of the entity’s account data are deleted. In
that case, care must be taken to ensure that this will not break references within
the data that needs to be kept (e. g., deleting the entities name and user ID from
the database but indexing the entity’s bills by that ID, making it hard to find bills
associated with the entity). Keeping links within the data intact is obviously more
challenging if the data is gathered and linked from multiple and external sources,
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i. e., IdPs. As those external sources may disappear quickly, without warning, and
permanently there need to be contingency plans to prevent or mediate the data
loss.

When the service provider stores personal data and operates within the European
Union or has customers based there, the service provider must adhere to the Gen-
eral Data Protection Regulation (GDPR)[41]. The individual requirements of GDPR
and its corresponding local legislation cannot be analyzed from a legal point of
view in this work. Any discussion must not be considered legal advice. To ensure
compliance in each case, consulting a lawyer is advisable. Nevertheless, the main
effects of this regulation are outlined based on the scenario.

The central accomplishment of the GDPR is the specification of data subject rights.
Those include that the service provider must explicitly get permission to collect
customers’ personal information. The service provider must also tell the customers
how their personal data is being used and, upon request, must be able to provide
them with all data stored about them. Additionally, on request of the user, the ser-
vice provider must also provide ways to correct wrong personal information, delete
personal information, restrict the usage of personal information, object to a pre-
viously given consent about using personal information, and provide information
for submitting complaints.

A key to satisfying those data subject rights is always knowing what personal data
is stored and where it is stored. This is especially important if personal data is
stored in attributes that are not expected to contain personal data (e. g., a status
message) and includes any copies of the data that may exist without being recog-
nized as personal data storage (e. g., in backups).

Adherence to GDPR or other privacy legislation is integral to any web application
that wants to avoid litigation. Both the user and the company providing a service
should be able to determine who they are sharing what information with quickly.
In the context of privacy protection, privacy by design and privacy by default are
principles described by various legislative rule sets [67], including the GDPR. Pri-
vacy by design is also part of practical publications, focusing on technical and
organizational measures for protecting private information [105]. The core princi-
ples of privacy by design, which include privacy by default, as described by [31]
are: proactively building an architecture for IT systems that transparently pro-
tects and respects the individual users’ privacy needs from start to finish without
the user having to change or review any settings or having to relinquish system
functionality.

To incorporate those principles into the application described in this scenario,
the first step is to determine what kind of users’ private data is recorded and to
specify the purpose of the collection. Like many other platforms on the web, the
application requires an email address, username, and authentication credentials
(e. g., a password) for registration. All three values are personal data and must
be kept private by the application. If the user wants to share their username or
email address, they have to manually enable this option (e. g., for others to be able
to search for the user and contact them). Implicitly the user also shares their
username when creating a public channel. In this case, the user must be made
aware that anybody can see a public channel and that it is associated with their
username.

If the service can be offered without ever storing any personal information about
the entity, many previously described problems can be avoided. In this case, the
service provider must decide if offering account registration without personally
identifiable information (PII) is a feasible option. In general, this decision may be
influenced by certain information that the service provider must gather by law,
especially if the service charges the customer. Usually, though, each service re-
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quires at least an email address for registration, which is considered personally
identifiable information. As a result, providing anonymous access to a user while
still being able to contact them contradicts itself.

Some applications need support for multiple entities publishing data to the same
channel. In this case, those entities need to be identified and managed by an
administrative user of the channel. Additionally, the entities must be authenticated
and authorized before they can publish data to a channel.

One (real world) entity also commonly represents multiple personalities (e. g., pri-
vate and professional life). This entity would usually need multiple accounts to
represent the two (or more) personalities. Multiple accounts add to the overall
complexity and may lead to increased support efforts because credentials to the
account used less often may be lost regularly. The goal of this system is to allow an
entity to identify itself and its current personality using the identity and possibly
the same credentials.

The following sections contain an abstract collection of the IAM requirements from
the described scenario. Each requirement is given a short identifier, a three-letter
abbreviation of the requirement’s category and a running number. Additionally,
each requirement is named with a short descriptive title, followed by a short de-
scription and a prioritization (1–3 where lower is more relevant).

2.5.1.1 Satisfaction Requirements

SAT1 Authentication: The identification of an entity needs to be secured by authenti-
cating it. This authentication must prevent entities from impersonating another
entity without the service provider being able to detect this attempt. This require-
ment is essential (1) to prevent the impersonation of entities.

SAT2 Authorization: Allows the service to specify conditions the identity must meet to
use parts of the service. The most basic authorization is being able to authenticate
with the service, but more complex models can also be used. This requirement is
essential (1) to prevent misuse of the service.

SAT3 Identification: The service needs to be able to identify entities to be able to map
them to the application’s accounts and resources correctly. For example, the user’s
data must be stored associated with their account and channels in the scenario.
This requirement is essential (1), as matching entities to their accounts and re-
sources is necessary for all non-public operations taken by an entity.

SAT4 Identity provisioning: There must be a process in place to bind an entity’s identity
to a service’s account. This process must ensure the uniqueness of the identity
within the service provider’s scope and that all the necessary attributes of the
entity are available. This requirement is essential (1) to provide targeted services
that rely on identifying entities.

2.5.1.2 Information Requirements

INF1 Credential establishment: As part of the registration, a process is required to
establish the credentials used by the entity to authenticate with the service. This
requirement is essential (1), as without established credentials, authentication is
impossible.

INF2 Documentation: The protocols and methods to facilitate IAM functions must be
documented clearly. This documentation must include the used encryption, signa-
ture, and integrity-checking technology. This requirement is important (2) to allow
and encourage independent reviews and implementations.
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2.5.1.3 Consistency Requirements

CON1Identity de-provisioning: Corresponding to the provisioning process, the entity
and its identity must also be de-provisioned. All data no longer necessary must
be removed, and subsequent access of the identity must be prevented. This re-
quirement is essential (1) to comply with data protection legislation and remove
unnecessary data and access.

CON2Credential recovery: As credentials may be lost or destroyed, there needs to be
a way of re-establishing credentials. This requirement is important (2), as there
may be cases where recovery is not desired or necessary. Generally, though, most
systems will need it.

2.5.1.4 Security Requirements

SEC1Access controls: Access to resources must be manageable. This includes access
to the application or platform in general and to individual parts and actions. This
requirement is essential (1) to ensure privacy expectations and prevent misuse of
an application.

SEC2Credential revocation: If a credential is lost or deemed compromised, it needs
to be revoked as soon as possible to prevent any unauthorized use. This require-
ment is essential (1), to ensure lost or stolen credentials cannot be used to gain
authorization.

SEC3Mutual authentication: As part of every authentication process, not only should
the user authenticate to a server, but the server should authenticate to the user
first. This requirement is essential (1) to prevent the user from disclosing identity
information to another party (i. e., a human-in-the-middle (MITM) attack or an
impersonating service).

SEC4Security by default: Following the security by design principles leads to a product
shipped with a secure configuration by default (e. g., does not use unsafe protocols,
contain any hard-coded passwords or backdoors). This requirement is essential (1),
as any system that is not developed with security by design principles will not be
considered by many.

SEC5Security by design: As required by multiple software design and development
standards, especially an IAM system needs to take security seriously within the
design process. The specific security needs in operation may not always be known
during the design, which requires the resulting product to be configurable enough
to be as secure as necessary for the actual use case. This requirement is essen-
tial (1), as security by design is demanded for any new technology or products.

SEC6Multi-factor authentication: To enhance the security of an authentication pro-
cess, the system might require a second or more factors to complete authentication.
This requirement is important (2), as it is a commonly used feature. However, it is
not always necessary.

2.5.1.5 Data protection Requirements

DAT1Privacy by default: The system’s default configuration has to be as privacy-preser-
ving as possible. This requirement is essential (1) to ensure the system’s setup is
easy and has no pitfalls where there is mandatory configuration needed to secure
the user’s privacy.

DAT2Privacy by design: Separated from the GDPR requirement, any IAM must be de-
signed with the privacy of its users in mind. This requirement is essential (1) to
build trust in the system.
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DAT3 GDPR: A IAM system has to be compatible with the rules set forth in the European
GDPR. This requirement is important (2), as it will be necessary in most but not
all cases.

DAT4 Multiple identities: In the scenario, there may be the need for a user to send or
receive data in different contexts, i. e., the example shows a private and a corporate
context. To separate those contexts, the user has to be able to act as two different
identities. This requirement is optional (3), as not explicitly supporting different
identity contexts can be worked around.

2.5.1.6 Robustness Requirements

ROB1 Reliability: The IAM system must be reliable, i. e., resilient to failures. Situations
must be prevented where (administrative) users or entities are locked out of a sys-
tem because of a failure in the IAM system or its infrastructure. This requirement
is essential (1), as IAM processes serve as the basis of most other processes.

ROB2 Accessibility: Related to the approachability requirement, the service should also
be easily accessible. This encompasses (within reason) being able to use the service
on any desktop computer or mobile device independent of operating system or
hardware. This requirement is important (2), as some combinations of devices
may not always be feasible to support.

ROB3 Approachability: A general requirement for all services is having a low barrier
to entry. This ensures that more customers actually decide to use the service,
especially if the service is non-essential or has many competitors. As a result, the
IAM necessary for the service should not impede approachability. This requirement
is important (2).

ROB4 Usability: Any solution should be less or equally complex as existing IAM solu-
tions for end-users and administrators. This requirement is important (2) to pre-
vent using an over-engineered jack-of-all-trades solution as this will interfere with
acceptance, reliability, and security.

2.5.2 Scenario 2a: IoT Devices

The introduction of IoT technology to more and more homes and workplaces has
led to a rise in “smart” devices and appliances that are installed nearly everywhere.
Controlling physical applications (i. e., IoT devices) from the Internet is one of the
key components of many modern “smart” applications. There are a wide variety of
home automation and connected devices. In a consumer household, these devices
are usually mobile phones, personal computers, gaming consoles, TVs, wireless
speakers, wearables, thermostats, fridges, medical sensors, alarm systems, auto-
mated shutters, or similar.

While devices like thermostats and fridges are commonly in focus, when talking
about IoT, they are not the only devices that could be called IoT devices and need
to be managed as such. A large portion of the infrastructure used to communicate
on the Internet could also be classified as IoT technology. This includes modems,
wireless routers, network switches, power supplies, and proprietary connectors
connecting IoT devices with proprietary protocols to the Internet.

Definition 11 (IoT Device) An IoT device, or device for short, is any physical,
electronic device with a connection to a local or global network [10, 107, 127].
An IoT device is usually not explicitly turned on or off, can receive and send
data, and provides a service to other devices or users.
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In contrast with much simpler IoT sensors, which feature unique challenges on
their own and are described in Scenario 2b, the IoT devices covered in this sce-
nario need to be able to receive commands (e. g., via keyboard or touch screen,
remote control, or based on events), act on those commands, and be able to send
commands to other devices.

Some IoT devices may stay for many years in one place, while others are moved
frequently or constantly. All kinds of devices need to be managed, and due to the
increasing number and relatively high fluctuation, this kind of management has
to be incredibly efficient and flexible.

To manage and monitor IoT devices, they must be represented as digital objects
which describe their current status, parameters, and possible actions. This digital
representation is often called a digital twin [51].

Definition 12 (Digital Twin) The digital representation of a physical entity
that describes the physical entity and its properties in real time [51].

The following examples of consumer-focused IoT devices with interesting manage-
ment requirements or conditions are analyzed for the common IAM aspects. They
are chosen because of their different needs concerning key IAM features, like the
number of users, frequency of changes, and number of participating parties. Addi-
tional requirements for solely industrial IoT devices used in production lines or to
monitor shipping processes may require more accurate data and complex access
rules, but most IAM requirements should be transferable.

• Smart Light Switch: Light switches are quite simple in their operation of
switching a light on or off and indicating to the user in which state the light
switch currently is. More advanced versions of those switches allow for dim-
ming or choosing the light’s color. While relatively simple devices, their inte-
gration in a wireless network and managing access permissions is difficult.
A classic consumer IoT light switch is only accessed and managed by a few
people living in or frequently visiting the household.

• Smart Bike Lock: This IoT device is very similar to the smart light switch, as
instead of switching on and off a light, it locks and unlocks a bike. However,
it has the added challenge of being mobile and constantly in a hostile envi-
ronment. Those properties require extra care to tamper-proofing and reliable
personal area network (PAN), local area network (LAN), or wide area network
(WAN) connectivity.

• Smart Thermostat: A remote controllable device that allows the users to set
the desired room temperature. It is accessible by the same amount of people
who can access the light switch from the previous IoT device example. How-
ever, the thermostat’s settings are also monitored by the utility company for
billing purposes, and the users need to be able to check and set the thermo-
stat while they are away via the Internet.

• Package Delivery Box: The package delivery box allows couriers to drop off
packages at the user’s home while they are not at home. The box can be un-
locked by the owner, the courier, and others that the owner authorizes doing
so. This is the example that has the most frequent changes in identities be-
ing able to access the device, the most parties that might be involved, and the
most complex authentication workflows. It might be that the access granted
to the seller that will send some wares will delegate this access to a postal
service or courier, and they might delegate the access further to a specific
package deliverer.
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• Smart Fridge: A smart fridge that can monitor what foods are stored and
which will need to be replaced soon. The owner can authorize the device to
order items that must be replenished automatically. This example is the most
complex one, as it entails delegating the owner’s access rights to the whole
family and the device making financial decisions that may have significant
consequences but might not be noticed immediately.

As can be seen, by a couple of examples above, many applications for IoT devices
need to fit different constraints regarding size, power, or connectivity. A crucial
requirement for any IAM solution is broad applicability, regardless of the hardware
or software platform it is implemented on.

Further, following those examples of consumer IoT devices, the following common
IAM features are found:

1. Identifying the device, its digital identity, and its digital twin is important, as
there may be many similar devices, and the device’s location may change.

2. People (e. g., the owner, family, or friends) and other entities (e. g., service
companies) can be allowed to access the device.

3. Administration of the device is done locally by the owner or somebody the
administration has been delegated to.

4. The set of entities that can access the device might explicitly be known a priori
or be specified by (indirect) association with other entities.

5. The device can trigger actions with other entities (e. g., acting on behalf of one
of the users).

6. Constant connectivity to the Internet may not be guaranteed, but functions
that do not necessarily need Internet connectivity should still work.

The individual IAM requirements of the device will be determined by following the
life cycle of the device. The life cycle is based on the generic IoT device life cycle
described by [172], which is adapted for focusing on IAM:

• Plan and Design: During the plan and design phase, the beginning of the
IoT device’s life phase, design decisions must be made. Regarding IAM and
security, this process needs to evaluate if the hardware and communication
interfaces are compatible with the cryptography required for IAM. This phase
is especially important for IoT devices because of the strict constraints on
energy consumption and production cost.

• Provisioning: During the setup phase, the device is initialized and configured
appropriately for its use case. For IAM, this setup includes assigning the
device a unique identifier, which can then be used to identify it when it is
connected to other devices or services. Additionally, cryptographic material
(e. g., private keys) are loaded onto the device.

• Configuration: During the middle of the life phase of the IoT device, configu-
ration changes may be necessary to adapt the device to changed requirements.
This could be new keys or credentials.

• Update: Updates during the use of the IoT device can add new functionality
to the device. Focused on IAM, this may be new specifications, cryptographic
functions, or efficiency gains.

• Maintenance: During maintenance, issues detected with the IoT device can
be fixed. If tampering with the device has been detected or is suspected,
part of maintenance may require fixing the device’s housing and replacing
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potentially compromised secrets, like private keys. Due to the low cost and
mass production of many IoT devices, this may include replacing the device
entirely.

• Monitoring: As with any device or software, it is also essential to monitor the
operation of an IoT device. This needs to be done to detect problems early and
prevent wrong or lost data from the device. Events that might arise during
monitoring are tampering with the device, failing components like memory or
batteries, or unreliable communication.

• De-provisioning: When the IoT device is no longer needed or has to be re-
placed, it must be ensured that all potentially private data and secret keys
are securely erased during de-provisioning. The device’s identity has to be
revoked, and it should no longer be able to be used with other devices or
services.

• Retire: If the IoT device has been adequately de-provisioned, no further ac-
tions need to be taken to retire the device.

The remainder of this section will explore a scenario where those features are im-
plemented using SSI for a smart lock. That is a lock, which can be tracked, queried
for its state, and operated remotely via the Internet and up close via a PAN (e. g.,
Bluetooth) connection. Unauthorized use or attempts to open or tamper with the
device set off an alarm that notifies previously specified contacts. The following
sections will use this example, containing all the IAM challenges detected in the
IoT device examples and listed above, to detect common operations and require-
ments for IoT devices.

As a smart lock, this IoT device’s primary operations (i. e., opening and closing) rely
heavily on only being available to authorized users. Additionally, the smart lock
can be accessed digitally in two ways: via the Internet or a PAN (i. e., Bluetooth).
While easy identification of a device is useful for managing the devices, it may also
create a significant risk to privacy. Especially if the IoT device can be identified
without immediate physical access, i. e., via a PAN connection, this can allow an
attacker to create device lists and movement profiles. To avoid this, authenticated
identification should be commonly used.

The advantages of using a PAN protocol that supports pairing are also used for
the smart lock example. This way, the user can initially connect to a device and
discover its URL that can be used later to access the device over the Internet.
Once the device can be accessed via the PAN connection or the Internet, it can
be further configured using its web interface. In order to gain and specify access
restrictions, all requirements from Scenario 1 are adopted for this scenario because
the basic premise of registering users or entities is very similar to the processes of
the example web app.

The first new challenge of IoT devices that may exist in a vast collection of other,
eventually very similar devices is finding and identifying a particular device. Find-
ing and identifying an IoT device can be a problem in two ways:

1. Having the physical device in hand and searching for its digital identity and
the associated digital twin or

2. searching for the physical device for a given digital identity.

While this is not a classic problem of IAM, it is important to be able to make the
connection from the digital to the real world with items like IoT devices, which form
a bridge between the digital and the physical world.
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In the web app scenario (described in Section 2.5.1), where a web service is usually
identified by its URL, which – if it is not known – can usually be sourced from other
locations like advertisements, personal messages, or found using a web search
engine. The page’s authenticity can be checked (at least to some degree) by verifying
the web page’s X.509 certificate if the web page offers one. At least initially, the
URL of a specific IoT device can usually not be found using those processes.

A solution for finding IoT devices as addressable identities on a network can vary
from device to device, depending on its capabilities. One of the simplest ways
of identifying a physical device is a serial number that can be used to query a
database for more information and then connect to the digital identity. Because
this method contains an additional step of looking up information in a database, it
is limited in scalability and availability. This is also the case if the device’s unique
identifier is directly printed or marked onto the device (e. g., as a QR-Code). Without
a central database, it would be easy to clone or impersonate a device by copying
its identifier. Other common approaches to consumer IoT devices are offering a
custom application that can scan the local network for relevant devices, connecting
to the device via a (third party) web service, or displaying connection information
through the device’s display.

This scenario makes use of establishing a connection to the device via a wireless
PAN protocol. Searching and connecting to devices in a PAN environment is easier,
as protocols like Bluetooth are designed with appropriate processes that enable
devices to discover another and pair themself with another [33]. The pairing pro-
cess can also ensure that the identity of the other entity is established securely.
During the pairing, the devices can create and exchange identifiers for each other.
These identifiers can address the device and the corresponding digital twin. It also
allows the creation of unique identifiers for each connection between two entities,
which prevents correlation and improves privacy.

The reverse direction is finding the physical device to a given IoT device’s identifier.
The information provided by a digital twin can be much more descriptive than an
identifier for its identity. It can include connections to other objects or persons
which would help identify a given device’s location. The smart lock’s digital twin
would indicate which room’s door or bike it has been placed on and where they
are located. While having this information available would be of great help to find
and identify an IoT device, this amount of detail cannot be expected to be available
for all devices and, consequently, cannot be necessary for basic IAM functions. A
simpler alternative is to include an identification method like activating visual cues
(i. e., similar to indicating the location of a remote-locked car with its indicators).
This only requires a LED that can be triggered through the digital twin.

The peering process establishes identifiers and trust between two entities. A ev-
eryday use case of a smart lock is giving others (temporary) access to the lock. The
trust relation must therefore be extendable to more than two entities. If Alice (a)
trusts Bob (b) and he trusts the identity of the lock (c) and gives her access to the
lock, Alice needs to be able to pair to the lock, a process in which she establishes
new pairwise identifiers, and still be able to identify and trust the lock’s identity
as the one Bob has granted her access to. This situation can be formalized for all
entities E and the trust relation T as the transitive relation:

∀a, b, c ∈ E : (aTb ∧ bTc) =⇒ aTc (2.1)

Trust in the device’s identity is the basis for identifying and connecting to the
device but managing operations on the device requires additional delegation of
specific functions. Therefore, a new component of this scenario is the need for
quick and easy delegation of access permissions. Someone with permission to
open the smart lock, i. e., has a key, can pass this key on to someone they want to
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be able to open it. In the physical world, passing the key to another person also
implies that the person that had the key is no longer able to access the lock until
they get the key back. In a digital setting, it does not have to work that way. The
entity that delegates a permission generally retains it and can still use it. In any
case of delegation, the entity delegating permissions is usually still accountable for
their proper usage. This accountability has to be communicated clearly and must
be traceable.

Digital delegation can also be linked to conditions. For example, it can be prevented
that the receiver of a permission delegates it further. This is akin to preventing
someone that received a key for a lock from passing this key onto someone else.
In the smart lock example, additional constraints, which limit the use of delegated
permissions, might be location and time. This would allow specifying that the
unlock permission can only be used within a specific area and time frame.

Like with a physical key to a lock, (delegated) permissions for the smart lock have
to work without relying on a third party or network connection. The lock may be
placed in a location (i. e., a basement) that does not have the necessary connectivity
for either the lock or the entity operating the lock to access the Internet, but it still
needs to function correctly. In particular, locking and unlocking the lock must still
work, while the notification features cannot be provided without connectivity. As
a result, the IoT device must be able to determine the validity of permissions from
entities without having been informed about the particular entity.

As IoT devices exist as real-world physical items, they must be protected from phys-
ical attacks. This does not differentiate the smart lock from other locks, where the
primary attack vector is physical, but this is an attack vector that may be over-
looked in development. Contrary to regular locks, though, the smart lock can
detect and react if it detects a tamper attempt (i. e., notify a contact person, or
sound an alarm).

Tampering with the smart lock’s locking mechanism is not the most relevant tam-
pering attack regarding IAM. Instead, tampering with the IoT device’s identity is of
more interest in the general goal of this work. An attacker could try to read secret
keys from the device, allowing them to impersonate it and, for example, send false
alerts or gather information from legitimate users. This kind of tampering needs
to be detected by the device, and anyone who interacts with the device needs to be
made aware of the possibility of tampering with the device’s memory.

In an IoT device that handles more sensitive information (e. g., a log of each user’s
last interaction), in addition to being tamper-evident, the device should also be
tamper-resistant. This requires special hardware designs that prevent or at least
inhibit unauthorized access.

The following sections summarize the requirements developed in the scenario de-
scription above. The requirements from the previous scenario, described in Sec-
tion 2.5.1, also apply here, as determined above. These requirements are not ex-
plicitly repeated.

2.5.2.1 Satisfaction Requirements

SAT5Trust establishment: The system must support methods for establishing trust
in other entities’ identities. With established trust relationships, entities can se-
curely associate their data. This requirement is essential (1) for more complex IoT
scenarios involving multiple parties.
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SAT6 Access delegation: Access to certain functions of IoT devices, like the smart lock,
must be transferable to other persons or general entities. Delegation allows flex-
ible and decentralized management of permissions. This requirement is impor-
tant (2) to effectively manage a growing number of devices.

2.5.2.2 Information Requirements

INF3 Digital identification: With physical access to the IoT device, its digital identity
must be discoverable. This requirement is essential (1) to aid with the manage-
ment of many devices. Access to the device’s identity may be protected, and only
authorized entities may be able to discover it.

INF4 Physical identification: The physical device must be discoverable with access to
the IoT device’s digital identity. This requirement is essential (1) to aid with the
management of many devices. As with digital identification, access to the physical
identification of the device might be protected and only accessible to authorized
identities.

2.5.2.3 Consistency Requirements

CON3 Digital twin: Many use cases for IoT rely on mapping real-world entities to a digital
representation of them. This digital twin is used to control the entity and other
entities. This requirement is important (2), as keeping information available to the
physical entity synchronized to the digital representation is required to make the
right decisions.

2.5.2.4 Security Requirements

SEC7 Tamper-evident: Because of their placement in public, the physical security of
many IoT devices cannot be guaranteed. As they may be accessible to adversaries,
it is important that secret information (e. g., private keys or credentials) cannot be
extracted and compromised without it being noticed by the device. If tampering
is detected, the device must notify others about the detection. This requirement
is essential (1), as it creates the fundament for secure communication with IoT
devices.

SEC8 Delegation parameters: Delegation of permissions is important for scalable and
flexible permission management. However, some permissions should not be able
to be delegated or only for a limited number of steps, time, location, or user group.
This requirement is important (2) to retain control over permission management.

SEC9 Secure de-provisioning: If a device is no longer needed for a specific application,
all data must be securely erased from the device before it can be re-used elsewhere.
This requirement is important (2) to securely re-use hardware within different con-
texts.

SEC10 Secure setup: The initial setup of devices may offer an attacker a window of op-
portunity to claim ownership or register the device first. During the setup process,
there must not exist a possible race condition between the legitimate service owner
and any third party. This requirement is important (2) to ensure a secure setup.

SEC11 Tamper-resistant: This requirement extends the requirement for secure private
key storage to a more general requirement that demands the protection of all hard
and software components. This requirement is important (2), as it drastically in-
creases cost while never being able to mitigate all tampering attempts.
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2.5.2.5 Data protection Requirements

DAT5Protected application storage: A key security requirement is the protection of
encryption keys to prevent them from being read and used to intercept and decrypt
or impersonate the device’s traffic. Similarly, it is also important to protect the
application data on the device, especially if the device is replaced, sold, or sent in
for maintenance. This requirement is essential (1) because this application data
may also contain sensitive information.

DAT6Correlation resistance: By monitoring the traffic within a network, even without
being able to read its contents, conclusions about the communicating parties and
their messages might be deducted. To protect the device’s identity, it is necessary
to prevent information leakage via metadata. This requirement is important (2) to
prevent possible large-scale metadata collection by design.

2.5.2.6 Robustness Requirements

ROB5Offline authNZ: Actions that do not inherently need a connection to a network or
the Internet should work without. As most actions on an IoT device require authen-
tication, this means that authentication and authorization of other entities must
work offline. This requirement is essential (1), as overly relying on connectivity can
lead to unusable devices in case of poor connectivity or disturbances.

ROB6Scalability: One of the main appeals of IoT devices is that they are relatively cheap
and thus can be used in scenarios where large deployments of thousands of devices
are feasible. IAM operations for this many sensors need to consider scalability. This
requirement is essential (1), as the amount of IoT devices and services, in general,
is rising with digitalization.

ROB7Platform independence: The architectures used to implement IoT devices are very
diverse. An IAM solution must therefore be able to run without being dependent
on a specific platform or architecture. This requirement is important (2) to cover
as many use cases as possible.

ROB8Transitive trust: To scale trust between multiple devices and services, trust re-
lations must be transitive. This requirement is important (2), as it enables better
scalability and simplifies more complex business cases.

2.5.3 Scenario 2b: IoT Sensors
IoT sensors are special IoT devices that can be used for various monitoring ap-
plications. Simultaneously, a specific IoT sensor is highly tailored to its intended
application. Some examples of IoT sensors are weather stations, fire alarms, and
security systems.

Definition 13 (IoT Sensor) A sensor for IoT applications is any device that
sends collected data at regular intervals or at predefined conditions. The sensor
is not capable of receiving any messages. It is likely a Class 0 device [21] with
minimal memory and energy requirements, allowing for a long run time while
battery-powered.

IoT sensors are further characterized by being simple devices with only minimal
controls or interfaces deployed for long periods with minimal maintenance and
no remote-management application programming interfaces (APIs). Any receiving
functionality is omitted or disabled for these devices to save energy. The simple
controls may include only an “on-off” switch that connects and disconnects the
power source and maybe an additional reset switch. An example of a device used
as such a sensor is depicted in Figure 2.6.
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Figure 2.6: Example of a battery-operated IoT sensor with sensors for temperature,
pressure, and light

To gather an understanding of the range of applications of IoT sensors, some ex-
amples of applications are described in the following section. Each application
presents slightly different challenges: for example, with the frequency of commu-
nication, the expected run time on battery, or the possible necessary maintenance.

• Environmental monitoring: To support high-resolution monitoring of en-
vironmental factors, many sensors are deployed over an area of interest. It
can monitor agricultural areas like greenhouses, plantations, or irrigation
systems. In particular, this example implements a remote weather station
that is sampling temperature and humidity information and transmitting av-
eraged data every ten minutes. If some of the sensor’s measurements are
not received, the system’s functionality is not impeded. A system like this is
expected to run on battery without charging for multiple months.

• Security system: Another application for sensors are security or facility
management systems. They are deployed over a smaller geographical region
than the environmental sensors. Another example is a door sensor that no-
tifies an application if the door is opened or closed. It only sends changes in
the door state and hourly pings to ensure it is still operational. Dropping a
message from this sensor can immediately lead to a false representation of
the system’s state and needs to be avoided. A system like this is likely close
to a power source and thus does not rely on battery power and is not limited
by battery run time.
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• Fire alarm: Closely related to the security system sensor, but with ample dif-
ferences in deployment parameters, the third example application considered
is a fire alarm sensor. It notifies a central alarm control application if a fire
is suspected or detected. Without any alarm, it reports its operational status
to the control application daily. Missing an alarm message from this sensor
can have catastrophic effects and must be prevented. For convenience and
unrestricted positioning, the system is run with batteries, with an expected
run time of approximately 12 years.

This scenario describes IAM-specific requirements for a temperature and humid-
ity monitoring IoT sensor. As the IoT sensor is a special IoT device (described in
Section 2.5.2), those requirements apply here without explicitly being listed again.
The IoT sensor is the first entity evaluated for requirements of mainly technical
interactions, as opposed to interactions with human entities, featured in the web
app scenario (Section 2.5.1) and the IoT device scenario (Section 2.5.2).

All the example IoT sensors mentioned above are rarely set up as a single sensor.
Instead, many are usually deployed across potentially large areas of land or large
building sites. This poses a greater problem for the management of those sensors.
Within a company, multiple people need to be able to know about each sensor.
For example, the technicians provide maintenance to the sensors, managers need
an overview of where sensors are deployed, and security needs to determine if any
sensor they find is legitimately placed there. To keep an overview of all sensors and
their applications, it is essential to keep a record of each one and to manage access
to the sensors’ attributes. These kinds of operations would be done with the help
of a configuration management database (CMDB) for classical device management.

As the sensor is a simple device, there are no advanced access restrictions to the
sensor itself. The sensor’s design must protect the firmware and configuration, i. e.,
disabling debug interfaces, configuring the storage as read-only, or using secure
elements. What needs to be configurable is the location the sensor is sending its
measurements to and then who can access those measurements from that point
onward. The latter part of this can be handled by the application receiving the
data. The first part has to be handled prior, and its configuration needs to be
restricted to authorized identities.

As the target location of the data can change, it also needs to be able to be changed
by the end user. Further sensor customization, like adjusting the sampling inter-
val, does not need to be done often, after the sensor has been configured, tested,
and approved for the desired use case. In the examples, the location where the
data is sent may change because the sensors are moved to a new backend.

Because sensors are rather small devices, many of them can be deployed. In gen-
eral, it is a key concern for sensor operators to know their distribution and be able
to locate them. In the examples of a fire alarm or security systems sensor, knowing
the exact location is especially vital. Meanwhile, depending on the type of environ-
mental monitoring sensor, the accuracy requirement for determining its location
is more forgiving.

Locating a sensor can happen in two ways. Either the device is located in the
field, and its identity is unknown, or the identity is known but the device must be
physically located.

In the first case, the device has to be easily identifiable, and the identification
feature has to provide link directly to the device’s attributes. This direct link may be
restricted by access rights, as not everybody who gets physical access to a sensor
should be able to access all of its attributes. Some attributes may need to be
publicly accessible, e. g., a contact address to return a lost sensor.
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The second case is potentially more challenging to handle than the first one. It is
possible that the sensor’s location is stored as an attribute of the sensor’s identity,
but keeping this attribute current is difficult, and errors and inconsistencies while
setting the location attribute may further impede locating the sensor.

A common problem with sensors is ensuring the protection of their communica-
tion. The sensor is usually communicating with a gateway, that is able to receive
messages using special low-power wide area network (LPWAN) protocols. This setup
is schematically depicted in Figure 2.7.

Internet

Gateway

LPWAN Protocol

Appliation Server

Sensor

Figure 2.7: Example of IoT sensor communication

It is easy to use common transport security like HTTPS for the second part, from
the gateway to the application server. However, the first part of the transmission,
from the sensor to the gateway, is harder to protect. This is due to the fact that
memory, computation, and energy constraints prevent the sensor from using any
asymmetric encryption. Relying on symmetric encryption has drawbacks because
of difficult key distribution, which is only possible when the sensor’s firmware is
flashed, as the device cannot receive messages. This increases the risk of key com-
promises, exaggerated by the exposed sensor placement without reliable physical
security and the key being recoverable from the device’s memory. It also misses
perfect forward secrecy (PFS), as this usually requires an interactive key exchange,
which a transmit-only sensor is incapable of.

Besides the problem of data confidentiality, which might or might not be impor-
tant to the application of the sensor, another significant problem is ensuring the
integrity of the transmitted data. This includes preventing manipulating trans-
mitted data, inserting new data, or replaying transmissions. Each of those is also
difficult to ensure because of the stated limitations of being a transmit-only sensor
without any persistent writable memory, e. g., to store sequence numbers that last
through a reset of the sensor.

Availability is also a problem for sensors which is not solvable through changes on
the application level, as is the case for confidentiality and integrity. As the data
transmissions are based on a radio link and are extremely low-powered, jamming
the device is always possible.

After the transmission of the sensor has reached the gateway, the next difficulty
is for the gateway to determine the right application server. Discovery of the right
application server is difficult as the sensor has no configuration interface where an
address could be stored. Hard-coding an application server is only an acceptable
solution in very limited situations and risks jeopardizing long-term use because
application service providers may disappear or move. It is also not a viable solution
for end-users to re-flash their sensors to adjust the address of the application
server. This is especially important if the application server changes regularly or
there might be more than one application server, and the set of servers needs to
be changed easily.
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An example use case for the latter might be an extension of the usage of the door
sensor, which is first installed to report to a security application that monitors
usage of this door and might trigger a video recording of the door. Later, while
setting up a “smart” heating system, this same sensor should be used to determine
if the heating should be temporarily disabled because the door is open.

Securing the communication of a sensor also includes reducing the metadata that
is generated by each transmission. For example, it is beneficial if a potential at-
tacker cannot deduce the number and type of security sensors deployed on a prop-
erty by analyzing transmission metadata. While using triangulation to determine
the location of a signal source is probably always possible, it is also more difficult
than just recording transmissions.

All the sensor variants described above are potentially susceptible to theft or van-
dalism. For example, the weather station is usually placed in a publicly accessible
location. The security system sensor is equally at risk of physical damage, as it is
probably part of some kind of security system and thus a target of any potential in-
truder. The fire alarm system is also only safe in a home environment where access
is restricted, and the placement on the ceiling keeps it relatively safe. If deployed
in a public or semi-public place like malls or offices, there might be an incentive
to manipulate the fire sensor, e. g., to allow smoking in non-smoking zones. This
shows the need to detect or prevent physical attacks for each sensor application.

Another factor is the large variety of communication protocols available for sen-
sors. They might use cellular networks with 4G or 5G connectivity, Ethernet (IEEE
802.3 [88]), Wi-Fi (IEEE 802.11 [87]), Bluetooth [89], ZigBee [90], LoRaWAN [122],
or some proprietary protocol for layer one communication. To interconnect these
devices, bridges must be used. One caveat is that not all the protocols listed here
support the definition of an IoT sensor as a send-only device but require two-way
communication and pairing.

The following paragraphs summarize the requirements developed in the description
above. As IoT sensors are a special kind of IoT device, they also need the same
requirements shown in Section 2.5.2. Those requirements are not repeated here
explicitly. Instead, only new requirements are discussed.

2.5.3.1 Information Requirements

INF5Product specification: Using an ID assigned to the IoT sensor by the manufac-
turer, the sensor’s messages can be verified to originate from a genuine product
by the purported manufacturer. The manufacturer’s ID can also link to additional
information like measurement accuracy, ranges, or conditions. This requirement
is important (2) for automated communication between sensors and devices.

2.5.3.2 Robustness Requirements

ROB9Communication protocol independence: As shown in the scenario, a number of
competing or complementary communication standards used for communication
with IoT sensors. To not limit the applicability, it is important to be independent of a
specific standard and support simplex and duplex communication infrastructures.
This requirement is important (2), as it allows broad applicability of the solution
and also future-proofs it by allowing the communication protocol to be changed.

ROB10Resource efficiency: IoT sensors are frequently optimized for low cost and low
power consumption, limiting the amount of available computational resources and
memory. The requirements for these sensors must be achieved by being mind-
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ful of those restraints and using as few resources as feasible. This requirement
is important (2) to allow the solution to run on as many sensors and devices as
possible.

2.5.4 Scenario 2c: IoT Networks

The previous two scenarios described IoT devices that can act as send-only sensors
(Section 2.5.3) and Internet-connected devices (Section 2.5.2). In both scenarios,
the devices rely on a gateway to connect to the Internet – or any network – to
function as intended. This scenario explores the possibility of IoT devices creating
and managing their own network to fulfill their roles, especially focusing on how the
entities’ identities can aid this network management. The design of the distributed
network itself is not a key component of this scenario. Instead, the focus is kept
on the management of the IoT devices’ identities and the identity management-
related challenges: To facilitate network management functionality, entities need to
connect to a network and actively work on building and maintaining this network.
An important challenge for managing IoT devices in a network is the distribution
of keys, as discussed by [189]. A DLT-based approach to IAM in IoT networks has
been developed as part of this work [70].

This example scenario examines a situation where IoT sensors, as well as IoT de-
vices, are used in a geographic location that does not provide every device with the
necessary infrastructure to complete its mission and is thus motivated to partici-
pate in the distributed network. The communication technology used in this sce-
nario is based on the LoRa® wireless communication standard and uses a mesh
network approach described by [118]. To further differentiate the nodes in the
mesh network this scenario will use the following types of devices. Their names
are chosen to indicate their primary role within the network.

• Communicator: The communicator is a device that can be used by its appli-
cation or another device to send or relay messages to other devices, especially
with the goal of eventually reaching a gateway node. It is similar to an IoT
device from Section 2.5.2. Communication is primarily done through text
messages and can contain information like status, location, sensor readings,
or battery levels. The device itself must not necessarily feature any interface.
However, it may be connected to a smartphone or similar device through a
personal area network (PAN) to allow the user to input messages.

• Tracker: The tracker is a sensor designed to track measurements and make
them available to the network. It is similar to an IoT sensor from Section 2.5.3.
The information gathered by this device may be the location of equipment,
weather information at a point of interest, or capacity information for a park-
ing lot. The tracker itself cannot act as a relay, like the communicator, and
thus can have a reduced feature set optimized for power consumption.

• Gateway: While the network is self-sustainable, it is connected to the Internet
through one or multiple gateways. This allows the network to produce and
exchange information with applications outside the network. The gateway
must be able to handle messages from multiple communicator nodes and
maintain an active Internet connection.

An example of a setup with those types of devices is depicted in Figure 2.8. In a
diverse deployment of IoT devices, the proper routing of messages is not apparent,
and the reachability of every device cannot be guaranteed. The network of devices
has to organize itself while respecting different limitations like connection stability,
available bandwidth, power consumption, or latency.
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GatewayCommunicator Tracker

Figure 2.8: Example configuration and overview of an IoT network
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The following sections will provide a more in-depth description of the scenario and
the tangible use case to be solved. This use case will use the requirements gathered
for IoT devices from Section 2.5.2 as the base for the communicator nodes and
use the requirements determined for IoT sensors in Section 2.5.3 as the base for
tracker nodes. This will tie both of those systems together into a larger coherent
environment.

A distributed system’s design can be described by three main aspects following
the system model by [40]: physical, architectural, and fundamental. The physical
model specifies the types of computers that participate in the network, those are
constrained to IoT devices in this scenario. This restriction also defines the funda-
mental model with the key aspects of interaction, failure, and network security.

• Interaction is achieved through low bandwidth, long-range radio links, and
passing messages between the nodes using LoRa® as the physical layer com-
munication protocol. There is no shared clock, memory, or processing be-
tween the nodes provided by the network.

• Failures in the network are byzantine – occur arbitrarily – as the simple net-
work does not provide means to detect lost messages or disabled nodes. De-
tected failures or missing nodes are automatically adjusted by adapting the
routing of messages.

• Security within the network is provided by using state-of-the-art cryptog-
raphy for integrity and confidentiality. Availability is achieved through the
physical signal modulation that is resistant to deliberate or accidental jam-
ming but cannot be guaranteed.

The main challenge of the network is that it has to work in a decentralized way. It
does not need nodes with specific preset roles beyond the classification by device
type, which essentially describes the device’s capabilities. Key challenges for gen-
eral distributed networks have been identified by [40], resulting in the following list
of facets contributing to the network design. Each of those facets is described with
this scenario’s specifics and a focus on IAM in mind.

• The network has a high level of heterogeneity, as the hard and software
components used to build IoT devices are fairly diverse and consist of many
proprietary, non-standard, and experimental solutions. As a result, a wide
range of devices with varying amounts of hardware performance, using dif-
ferent programming languages and libraries, and competing standards exist.
This heterogeneity consequently limits the assumptions that can be made by
any IAM layer with regards to hardware, software, or communication method.

• The openness of the distributed IoT network is a fairly central point for the
network’s success. It can only provide large-scale information services if par-
ticipation is easy. Therefore, the APIs for joining, using, and extending the
network must be available publicly. The same is true for the IAM architecture
that supports identity operations for entities in this network. Ideally, it is also
compatible and usable in a transition phase or alongside other IAM systems.

• Any modern network (distributed or not) should be designed with security
being one of the main considerations. The key challenge for security in a dis-
tributed IoT network arises from the large heterogeneity of devices and partici-
pants, resulting in wildly varying capabilities regarding the use of (public-key)
encryption for confidentiality, hashing and signatures for integrity protection,
tamper resistance, and other environmental factors for maintaining availabil-
ity. While those restrictions should not hamper the overall security of IAM,
the IAM system’s design should allow for the usage of different cryptographic
methods, depending on the different use cases. This is also relevant to allow
the switching of algorithms if they should be found insecure.
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• Scalability is another aspect that has to be evaluated critically for the long-
term success of a distributed IoT network. The network described in this
section is built by nodes limited in transmission range, limiting the num-
ber of nodes that can be reached directly. Still, the identities of the entities
participating may be used globally and should scale to that scope.

• Failure handling and failure detection are huge problems for the distributed
network. The failure handling component is mostly related to the network
layer, though, and not the identity management. Still, precautions must be
taken to allow IAM operations to fail and recover orderly.

• As the distributed network is designed for IoT applications, concurrency is
largely irrelevant. Each node in the network can run independently and con-
currently with each other, but usually do not work on a shared task. Many
IoT devices, especially those optimized for low energy usage, only run one
thread and thus can only process one request at a time. The communication
infrastructure (i. e., the wireless frequency) may also not be usable concur-
rently, and devices may or may not check for collisions. The IAM side is fairly
unaffected by this.

• The kind of transparency provisions provided by the network envisioned here
is somewhat restricted on the network layer but should be reasonably strong
on the IAM layer. To differentiate transparency, [40] distinguishes between
the following types:

– Access transparency: Access to the IAM operations should be transpar-
ent regardless of whether the access is done locally or remotely.

– Location transparency: To establish any IAM exchange between two
entities, they must be able to address each other, but this can be done
transparent of network location, i. e., the entities do not need to know
the hardware or Internet protocol (IP) address (or a similar network layer
identifier) of the other entity.

– Concurrency transparency: Concurrent IAM sessions must be possi-
ble and should not interfere with each other within the limits set by the
available hardware resources. If this were not the case, this might be an
avenue to leak private information.

– Replication transparency: Should not be implemented at the IAM layer.
Instead, each entity should be identified individually. In case of outages
or load distribution between multiple entities, this distribution should
not be hidden.

– Failure transparency: In cases of failures on the IAM layer, they should
be handled transparently if possible. This may not be possible in many
cases, in which the user should be informed with sufficient information
about the error to be able to diagnose it.

– Mobility transparency: One of the key elements of a distributed IoT net-
work is that the mobility of entities is an inherently desired property of
entities. The physical location of an entity should therefore be transpar-
ent when conducting IAM operations.

– Performance transparency: Under normal circumstances, the load of
the entities should not affect IAM operations.

– Scaling transparency: The ability to scale transparently, i. e., without
impacting the entities, is a critical component of the general system’s
scalability.
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• Like the Internet, a distributed network generally does not offer any quality
of service guarantees. This limits possible claims about timeliness or adapt-
ability. Fortunately, those are usually not required or generally somewhat
forgiving for most IAM operations.

The challenges presented here show the diversity of problems such distributed
networks pose in general and for IAM in particular. The network used in this
chapter is described as a distributed network.

Definition 14 (Distributed Network) Within a distributed network, the par-
ticipating hardware and software components only communicate by message
passing via a connected network layer [40].

Definition 14 is pretty broad and can encompass many instances of distributed
networks. In particular, the architecture of the distributed network used in this
scenario differs from the more specialized and more narrowly defined peer-to-peer
(P2P) network. P2P networks are characterized by all peers having “the same func-
tional capabilities and responsibilities” [40], a feature that is not compatible with
the three node types (communicator, tracker, and gateway) distinguished in this
scenario. However, the distributed network borrows many of the other properties
of a P2P network [168]. In particular, the following traits – usually associated with
P2P networks and described by [40] – are used for this distributed network:

• Each device contributes resources to the network. This is true for this dis-
tributed network’s nodes, with the exception of the tracker. The tracker acts
as a device that is generating messages and is usually not listening for or for-
warding other messages. The data it provides may be considered contributing
resources, but trackers are not obligated to provide their information for all
other devices.

• There are no centrally managed systems. Without centrally managed systems,
it is more difficult for a party to restrict or limit access to the network, and it
eases the ad-hoc setup of the network.

• Providers and users of resources can expect a certain degree of anonymity.
This is a common requirement already described in Section 2.5.1 as privacy
by design and privacy by default.

• The algorithm for establishing connections between the nodes is especially
important. Algorithms for P2P and mesh networks are a highly researched
topic, and many proposals and evaluations exist. Because the focus of this
scenario is IAM, the used algorithm is less important, except that it should
not create any dependency. The network algorithm should be freely inter-
changeable.

While it is not exactly a P2P network, the distributed network’s topology is consid-
ered to be a mesh network, as nodes work to build and maintain connections to
adjacent nodes. Due to the different device types, this mesh network is unlikely
to be a fully connected mesh. Instead, there may be some aspects of star or tree
topologies around the more powerful communicator and gateway devices.

Within a distributed network that is run without any central authority, being able
to identify individual nodes or devices is essential. Allowing those devices to ex-
press aspects of their identity through SSI can improve the flexibility and applica-
bility of the network in various situations.
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A key feature – or challenge, depending on individual perception – of distributed
networks is that nodes may join and leave the network at any given time, and the
network must adjust to those changes. Also, parts of the network may become
split from one another at any time and will need to be able to handle the lost
connections. As a result, the main operations from the network’s perspective are:

• Integrating new nodes

• Removing failed or exiting nodes

• Determining, communicating, updating, and optimizing the routing table

• Merging two networks

All of those operations require the devices to identify each other and address indi-
vidual devices uniquely in their messages. Each device can build a routing table
based on which devices can be received from or sent to directly and which addi-
tional devices those neighboring devices can reach. To guarantee the stability of
the network, devices must be able to be identified with a certain degree of confi-
dence, and impersonating other devices or flooding the routing table with bogus
devices should be prevented; or at least mitigated.

The integration (or alternatively called registration) of a device with the network
requires the device to be able to connect to the network in the first place. On the
one hand, this requirement has to be solved by supplying the device with the proper
hardware (e. g., Ethernet, wireless local area network (WLAN), Bluetooth, LoRa®,
etc.) and hardware configuration (e. g., frequency bands, channels, ect.). On the
other hand, the device must be able to access the network, especially if the network
has some kind of access restriction, e. g., WLAN networks that are protected by a
PSK.

Removing a device from the network is difficult, especially if the device does not
log off properly. This may be the case if the device suddenly fails, the connection
is bad, or the device moves out of range. In some cases, the device may be able
to connect unreliably so that it is joining and leaving the network constantly. The
connection status of a device can be determined by noting the time of the last
activity and presuming the device to have left the network if a threshold value is
reached. Alternatively, active querying of the device can result in quicker status
updates.

Routing messages within P2P and mesh networks is a highly researched topic [99,
166, 195]. Many algorithms and evaluations of said algorithms, showing individual
strengths and weaknesses, exist. Choosing a suitable algorithm should bear the
limitations of IoT devices and the general goals of an IoT network in mind.

The same is true for merging previously split network segments back together. Dur-
ing those operations, there may be a lot of temporary traffic through the network
as nodes try to catch up one another. Without proper countermeasures, this may
overwhelm the devices positioned between the two segments.

In general, managing a P2P or mesh network is a team effort. It requires every
node to adhere to the rules of the network and provide the necessary services. As
such, in P2P networks, so-called leechers (peers that only use resources instead of
providing their share of resources) should be discouraged by the network’s design.

The specific use case implemented for this scenario is centered around an off-grid
wireless communication system. It does not necessarily have to be used in a remote
area without any other networks, but to limit additional challenges with differing
communication standards, that would be available to build such a system in an
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urban environment, it is assumed that the devices can only communicate through
one system and that Internet connectivity is achieved through one or comparatively
few gateway systems.

The use case uses LoRa® as the wireless communication system, as it offers long-
range communication with low-power consumption at a low bandwidth. It is a
communication standard used by many enthusiasts and features relatively cheap
hardware, many open-source libraries, code examples, and large-scale networks.
This is ideal for testing with small Arduino-based development boards, which are
readily available. The low bandwidth, constrained memory, and slow processors
also increase the necessity to consider efficiency in the system’s design. As a result,
it should be easily transferable to more powerful platforms and technologies.

The use case consists of a network of various entities which are placed or move
through an area of multiple kilometers:

• Sensors: Measure the temperature and humidity of the surrounding envi-
ronment and provide their measurements to other entities on the network.
The measurements should be traceable and the authenticity and reliability of
a sensor product should be asserted by the manufacturer and operator.

• Trackers: Roaming devices that can transmit their current position. The
position can also be augmented by additional data (e. g., temperature of cargo)
and protected against tampering or manipulation.

• Messengers: Devices that allow users to communicate via text messages
through an app on their smartphones.

• Gateway: A gateway that can forward messages to a service on the Internet.

• Web-service: A portal web service that can display data gathered from sen-
sors or trackers and measure the availability and reliability of the network
components.

The following sections summarize the requirements developed in the description
above. As this scenario builds on top of the previous two scenarios regarding IoT
devices (Section 2.5.2) and IoT sensors (Section 2.5.3), it also implicitly includes
the requirements from those scenarios. Requirements that would be repeated here
are not explicitly described again.

2.5.4.1 Satisfaction Requirements

SAT7 Automated integration/registration: A secure connection between two devices,
which previously did not know each other, must be establishable without user in-
teraction. Some general configuration of the network parameters and keys may
previously be necessary, however. This requirement is essential (1) for any dis-
tributed network to be able to self-organize.

2.5.4.2 Information Requirements

INF6 Neighbour discovery: An integral part of the distributed network is the detection
of neighboring nodes and the subsequent routing of messages through them. This
requirement is essential (1) to dynamically build the distributed system.

INF7 Service discovery: As a specialization of the requirement for neighbor discovery,
a node might want to discover nodes that can provide specific services. This might
be necessary because one service is no longer available because it got disconnected
or is no longer in range and should be automatically replaced by a similar service.
This requirement is optional (3), as it is not necessary for the network’s core func-
tionality but can provide more flexibility.
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2.5.4.3 Consistency Requirements

CON4Content verification: The content provided by nodes and consumed by others is
hard to verify. Nevertheless, a sensor providing measurements (e. g., the tempera-
ture at a specific location) should really provide this measurement to the specified
conditions. This requirement is important (2) to build reliable services.

CON5Netsplit/Join: If parts of the network are split off from another (e. g., because
a single connecting node fails or moves out of range), upon reconnection of both
segments, synchronization of relevant data has to occur. This requirement is im-
portant (2) if data about digital twins is stored throughout the network (i. e., on a
specialized database node).

2.5.4.4 Data protection Requirements

DAT7External tracking resistance: As devices move within the network, their physical
location can be associated with the location and movement of people related to the
device. This information could be used to build movement profiles. As a result, any
pure observer of the network and its messages should not be able to trace selected
devices. This requirement is important (2) and should be part of the requirement
for privacy by design.

DAT8Internal tracking resistance: Gateway and communicator nodes are at a central
position within the network. As a result, they can potentially observe most of the
traffic within a specific region of the network. They should not be able to gain
sensitive information about the content or nature of the communication. This
requirement is important (2) to increase trust in the network.

2.5.4.5 Robustness Requirements

ROB11DDoS protection: As the network is designed to be open and the hardware re-
quirements should be as low as possible, it is evident that a malicious attacker
can easily control more resources. The system must therefore tolerate disruptions
like flooding the network with new neighbors. This requirement is important (2),
as easy attacks on the network limit its usefulness.

2.5.5 Scenario 3: Cloud & Edge Computing

As part of an IoT ecosystem the data generated by the various sensors and de-
vices is often processed on a cloud infrastructure. If the processing is time critical
or the data should not be transported to a cloud service, a modern architecture
alternative, called edge computing, utilizes smaller data centers positioned closer
to the egress point of the IoT network. The processing systems in cloud and edge
computing scenarios are usually controlled by web applications. Those close the
loop between the IoT devices (the actors described in Scenario 2a), the IoT sensors
(described in Scenario 2b), and the connecting network (shown in Scenario 2c) to
the first scenario describing regular web applications (Section 2.5.1) via this sce-
nario. The data and information loop generated by this IoT network is illustrated
in Figure 2.9.

Cloud computing, in general, is a highly centralized service offering that uses mas-
sive data centers in a few locations worldwide to provide services to customers.
Because of the scale of those data centers, the services that customers can order
on demand can scale almost endlessly and create an illusion of infinite processing
power [57].
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Figure 2.9: IoT data and information loop. The focus of this scenario, the data
processing, is highlighted in blue.

Demand for computing resources rises constantly. For example, with the advent
of IoT technology, the number of Internet-connected devices has increases dras-
tically. As a result, the applications running classic cloud infrastructure may no
longer be sufficient for some use cases. An area where cloud computing can be
lacking considerably is latency, as data has to be uploaded to a remote data cen-
ter, processed there, and the results need to be downloaded afterward. To mitigate
the shortcomings of cloud computing, multiple approaches exist to create a dis-
tributed cloud computing environment. As those are most important for the data
processing described in the previous scenarios, the most prominent approaches
are described here.

To decrease the latency of cloud computing, the concept of fog computing adds
an intermediary layer between the cloud computing data centers, the IoT network,
and its sensors and devices. This is characterized by [19] as a very large number
of nodes sharing resources in a predominantly wirelessly accessed network with
solid capabilities for streaming and real-time applications and general heterogene-
ity. This geographically wide-spread distribution layer allows the system to achieve
less latency, more location awareness, and better mobility of devices.

Edge computing is very similar to fog computing, as it arguably describes the same
principles and goals. The authors of [62] describe edge computing as the move of
processing from cloud computing resources to the edge of the network, where the
edge devices may be smaller data centers or other mobile devices. In addition to
the latency improvements of this distribution of processing, the authors also show
privacy and data protection reasons for using edge computing.

For the remainder of this work – and in accordance with the decision of the authors
of [57] – the term edge computing is used as equivalent to fog computing. The
more important differentiation in terminology is the more mobile device-focused
developments of distributed computing: mobile cloud computing (MCC) and mobile
ad-hoc cloud computing (MAC)

MCC uses small cloud data centers – so-called Cloudlets – in the proximity (logical
and physical) of the mobile device to support resource-intensive operations with
low (LAN equivalent) latency [165]. Those Cloudlets should be able to be deployed
by individual operators similar to Wi-Fi access points, they should be easy to set
up and require only minimal maintenance [165]. The main benefit is to conserve
energy and general processing capacity of the mobile device [57].

MAC ditches the Cloudlets of MCC in favor of offloading processing to any other
mobile devices in the vicinity [191]. This increases the availability of resources,
as it no longer requires an operator to have set up a Cloudlet nearby or require
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sufficiently fast connectivity to a cloud data center. However, it also increases the
risk of data ending up in the wrong hands, so it requires special care for securing
the processing. The optimization goals for MAC – reducing energy consumption
and increasing the processing capacity of low-powered devices – are still the same
as for MCC [57].

Up until now, the scenarios described in this work were a web application for a
publish subscribe messaging system (Scenario 1), a smart lock (Scenario 2a), a
temperature and humidity sensor (Scenario 2b), and an off-grid communication
system (Scenario 2c). This scenario describes a processing system that provides a
useful combination of all abovementioned scenarios.

In this example, a number of shipping containers and their cargo is monitored
by sensors. They can detect abnormally high temperatures that may indicate a
fire within the container or its vicinity. Additionally, they can detect fluids leak-
ing from the cargo or otherwise accumulating inside the container. To secure the
cargo, those containers are locked by smart locks that can automatically unlock to
support firefighting efforts. Quick response to fire threats is especially important
on large container ships, where fire is an extremely dangerous hazard.

To connect the sensors and locks, a local network spanning the whole ship is re-
quired, as container ships travel largely through remote ocean areas without a
connection to standard network infrastructure. The only constant source of In-
ternet connection may be through very slow satellite Internet. This is an ideal
environment to set up a Cloudlet.

On shore, the containers are stored in vast yards or are further transported by train
or trucks. In the yards, Internet connectivity may be more reliable, so that cloud
computing can be used to process the information. While underway on trucks or
trains, connectivity may also be an issue, and operations may have to use a MAC
approach for data processing.

The different data processing situations – discussed in this scenario – are shown
in Figure 2.10.

In a remote location In a crowded environment On the move At the destination

Figure 2.10: Overview of the different data processing situations in a dynamic IoT
sensor and IoT device network

Those different situations show the challenge of keeping the general alarm and
warning system working regardless of where the container is currently located.
To accomplish this, the sensor has to always be able to communicate with the
lock of the container while utilizing external information and data processing to
determine if any actions are necessary. Additionally, the processing application
which decides if the situation warrants unlocking the container has to be available,
so it needs to anticipate the location of the container to be reachable via the cloud,
a Cloudlet, or MAC. To protect the contents of the container, it is also important
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to only automatically unlock the container if it is reasonably certain that there
is a problem (e. g., fire or water) inside and prevent any unauthorized party from
influencing this decision.

From an IAM point of view, the challenge boils down to supporting the highly dy-
namic infrastructure. Especially important are portable identities that can be used
on-the-fly regardless of being connected to the Internet or not. If the services (i. e.,
a communication network or data processing) needed by the IoT devices are not
free to use – which is highly likely in any business environment – all participating
parties need to be able to determine how payment will be processed. This could
be in the form of a credential carried by the sensor that specifies which other legal
entity will compensate the service provider for any (or a list of) services required
by the sensor. This reference credential “I will pay service charges incurred by this
entity at the condition described in a credential here” can allow for more complex
scenarios.

To prevent unauthorized charges or billing of services that were not actually pro-
vided, the sensor and the service provider need to agree on the conditions of the
service beforehand. The actual performance of the service should also be moni-
tored and reported to resolve any potential disputes.

The following sections summarize the requirements developed in the description
above. As this scenario encompasses the previous scenarios, their requirements
are implicitly adopted for this scenario as well. Therefore, only new requirements
are described below.

2.5.5.1 Information Requirements

INF8 Agreement monitoring: Agreements between entities must be able to be moni-
tored, and violations of the established terms and conditions must be recorded.
This requirement is important (2) to support business use cases.

INF9 Capability exchange: Exchange information about computing capabilities on-the-
fly to determine the best location to do the process offloading. The processing capa-
bilities of an entity are attributes of its identity. This requirement is important (2) to
find a suitable location to do cloud computing.

2.5.5.2 Robustness Requirements

ROB12 Standalone authNZ: Parts of the network of entities may be separated from most
other entities (i. e., the Internet). Even in this situation (and without prior prepara-
tion), the connected entities must identify each other correctly. This requirement
is important (2), as global connectivity cannot always be guaranteed.

2.5.6 Scenario 4: Electronic Identity (eID)
One ever-increasing topic for online identities is developing identities capable and
trustworthy enough to be accepted when dealing with governmental institutions,
e. g., for filing taxes, proving one’s identity when opening a bank account, or even
voting in elections. These government-supported identities are usually called eID.
Some kinds of eIDs utilize electronic identification cards (eICs) to store identity
information on a physical device. For example, the Austrian Bürgerkarte, the Bel-
gian identity card BELPIC, the identity card of the United Kingdom, or Germany [7,
149]. Many countries have an eID system in operation and are planning to build
and expand the functions and usefulness of the existing system continuously [111,
193]. At the same time, the actual implementation of the guidelines set by the EU
usually differs per country [119, 126]. Some of those countries are also looking at
SSI-based solutions [143].
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The eIDAS [157] legislation was passed within the EU in 2014. It aims to establish
eID in all member states and to make those systems work across borders to form
a digital single market. According to this legislation, all EU members must accept
eIDs from other members for public digital services since the fall of 2018.

As this system encompasses the eID systems of all EU countries, it features a
broad spectrum of individual implementations that must work together. Therefore,
eIDAS is the main focus of this scenario and is described in more detail. Of the
eIDAS-compatible eID systems, the German eID system is described more closely
in Section 3.5.

The requirements for the eID scenario are not gathered from individual eID sys-
tems or any individual country’s implementation but are established by analyzing
the scenario for eIDAS. It currently seems that eIDAS is the most complete legal
framework for eID by spanning multiple countries.

The goal of eIDAS is to allow natural and legal persons to use their national elec-
tronic identification scheme (eIDS) in cross-border applications with other citizens,
businesses, and public services in the other EU member states [157, Chapter 1].
It was first established as an EU regulation with the publication of the Official
Journal of the European Union under Regulation 910/2014 [157]. This regulation
specifies six applications for eID:

1. Electronic Signatures: Attaching or linking data to other electronic data the
signatory wants to sign [157, Chapter 3, Section 4].

2. Electronic Seals: Showing the origin of an electronic document by proving
the document’s issuer (i. e., a legal person) and integrity [157, Chapter 3,
Section 5].

3. Electronic Time Stamps: Proving that the time-stamped electronic data ex-
isted at the time specified by the time stamp [157, Chapter 3, Section 6].

4. Electronic Registered Delivery Services: Allows two parties to exchange
electronic data while being able to prove the data has been sent, received,
and remained unaltered in transit [157, Chapter 3, Section 7].

5. Website Authentication: Proves to the visitor of a website which entity is
standing behind the visited website [157, Chapter 3, Section 8].

6. Electronic Documents: Any regular – paper-based – document just in elec-
tronic form and having the same legally binding effects [157, Chapter 4].

Within those topics, one of the main goals is that citizens should be able to use elec-
tronic processes with the same legally binding status as traditional paper-based
processes, at least for public services. For example, regarding (digital) signatures,
the regulation states: “[...] a qualified electronic signature should have the equiva-
lent legal effect of a handwritten signature.” [157]. An electronic signature is qual-
ified if it is advanced (i. e., adheres to the regulation’s requirements), is created by
a qualified electronic signature creation device, and is based on a certificate that
was issued by a qualified trust service provider.

To accomplish this goal, eIDAS does not introduce a new eIDS but instead calls
for interoperability between national eID systems. However, the required interop-
erability is not easy to guarantee, mainly because of the differing approaches to
eID and the overall legal variations for eID in the EU member states. Some of those
differences are explored in [111].

The national eID systems in question may already exist or may be built for this
expressed purpose. For a national eID system to be included in eIDAS and be
recognized as a compatible eID system by the EU, the member states need to have
their implementation notified. This is a process by which the other member states
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validate that the proposed solution meets the EU’s requirements. Currently, the
eID systems of Austria, Belgium, Croatia, the Czech Republic, Denmark, Estonia,
France, Germany, Italy, Latvia, Lichtenstein, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, and
the United Kingdom, have been notified [138].

With so many countries participating, challenges have come up in different areas.
The most prominent ones are analyzed in the remainder of this section to highlight
those challenges and use them to deduce requirements for any new eID system.

Interoperability In general, the solutions used as national eID services can dif-
fer a lot. For example, the Netherlands and Italy use a system based on SAML,
Latvia uses a system compatible with OAuth 2.0 (OAuth), while most other nations
use custom standards based on X.509 certificates for authentication. This funda-
mental incompatibility in used technologies needs to be addressed by the national
eID systems through gateways or proxies.

Identity Data Set The attributes used to legally identify a citizen can vary from
country to country. In Germany, a citizen is usually identified by sure and given
name, place of birth, date of birth, citizenship, and home address. Banks, for ex-
ample, must store those attributes to identify customers according to anti-money
laundering regulations [65]. As a result, but still differing slightly, the German
Bundesamt für Sicherheit in der Informationssicherheit (BSI) specifies the given
name, birth name, date of birth, and place of birth as necessary attributes for
German citizens using the German eID infrastructure [24]. Other countries may
use different minimal data sets to identify citizens, including relying on a single
national identification number. Still, for any system to be compatible with eIDAS,
they must provide at least the family name, first name, date of birth, and a person
identifier [49]. The person identifier is a pseudonymous ID, which is unique for
each pair of user, IdP, and SP. The challenge for national eID systems is to supply
the required but potentially missing attributes and to handle attributes provided
by other systems which are not required within their own system.

Attribute Formats If the same attributes for citizens are available in two coun-
tries connecting through eIDAS they still might not be in a compatible format,
which would allow seamless processing of the attributes. Because there is no sim-
ple way to facilitate interoperability between the different eID systems for cross-
country usage, the identity information has to be translated in a way that renders
it usable in the receiving application. The EU offers documentation for authen-
tication with a focus on SAML [49]. How the individual translation to and from
the intermediary SAML should be done is currently not specified. However, the
STORK 2.0 project shows two possible options: A national Pan European Proxy
Service (PEPS), which would route and transform the traffic, or a MiddleWare that
is implemented as a virtual IdP and is run for each country [16].

Level of Assurances (LoA) Besides differing attribute standards and formats,
the guarantees that an attribute has been associated correctly with an identity
can vary in confidence. Higher confidence may be acquired by requiring users to
appear in person to verify attributes, while lower confidence may be based on other
sources. Not all applications and services need the same confidence of identifying
an entity correctly. The confidence that an attribute has been correctly established
is usually expressed as a LoA by the party issuing an assertion. Claiming an invalid
assertion for one’s identity with a higher LoA should be more difficult, or better,
next to impossible. The eIDAS regulation specifies three assurance levels: low, sub-



Chapter 2. Scenarios and Requirements 53

stantial, and high. Those levels are based on levels 2, 3, and 4 from [176]. Higher
assurance levels also always go hand in hand with more complex and difficult au-
thentication processes but may be necessary for certain critical applications.

Once-only Principle (OOP) Another part of the EU’s eID initiative is a concept
called once-only principle [52]. This principle aims to prevent redundant presenta-
tion and storage of citizens’ information at different government services. Instead,
the (frequently) required (standard) information should be gathered by the services
from other government services, which already possess the required information
in a privacy-conscious way. This should save citizens from submitting the same
documents repeatedly and increase usability of e-government.

The implementations of the OOP differ from nation to nation. Some use the so-
called government-centric model and store all information about citizens and busi-
nesses in a central database with a unique identifier and forbid the creation of any
other databases that would contain redundant information. An alternative model
is the citizen-centric one. Here the citizen can, instead of providing the required
data repeatedly, point a government service to another government authority that
has the data, which then can provide it to the service. OOP has been tested in two
projects the The Once-Only Principle Project (TOOP) [109] and the project Stake-
holder Community Once-Only Principle For Citizens (SCOOP4C) [139].

The following sections summarize the requirements developed in the description
above. As eID is closely related to and often used with web applications, this
scenario includes all the requirements posed in the first scenario (Section 2.5.1).

2.5.6.1 Satisfaction Requirements

SAT8Identity data set matching: In different countries, different identity data sets
may be used. As the eID should be usable in different countries, a mapping has
to be possible. This requirement is important (2) to build a digital single market,
as the EU envisions with eIDAS.

SAT9Message delivery services: In the space of eID, electronic registered delivery ser-
vices are necessary to ensure messages have been delivered to the recipient and the
recipient can be expected to retrieve and act upon them. This allows for sending
messages and data electronically equivalent to registered mail. While this require-
ment describes a service built with IAM, it is still added to the requirements list
as messaging entities, and confirming the delivery of messages can be useful in
any IAM setting. Delivery services should guarantee non-repudiation of sending,
receiving, and integrity of the message. This requirement is optional (3), as it is not
a core IAM feature but has many use cases, especially for using eIDs with eIDAS.

2.5.6.2 Information Requirements

INF10Identity data set: When identifying citizens or organizations, there is usually a
legally defined set of required attributes which must be supplied to sufficiently
identify the entity. The identity data specifies and contains those attributes. This
requirement is essential (1), as the contained attributes are (legally) required to
use (government) services.

INF11Level of assurance: Authentication strength and attribute checking can be done
at various confidence levels. Some services may require more strict checking than
others. LoAs help SPs and IdPs to communicate the required and provided confi-
dence levels. This requirement is important (2), especially for official government
services and authentication across borders.
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2.5.6.3 Consistency Requirements

CON6 Once-only: The users’ attributes should only be gathered, checked, and certified
once. For subsequent interactions, it should be exchanged appropriately, even with
different SPs and IdPs. This requirement is important (2) to increase usability and
reduce unnecessary redundancy, which can lead to inconsistent data.

2.5.6.4 Security Requirements

SEC12 Off-the-record (OTR): An authentication must only be usable between the two
entities that mutually identified each other before starting the authentication. This
requirement is essential (1) to prevent misuse and any incentive of recording or
passing the authentication data to other services.

SEC13 Trust service providers: To facilitate trust between different entities, qualified
trust service providers check the requirements and issue trust certificates to par-
ticipating entities. These trust services act similarly to certificate authorities (CAs)
and intermediary CAs. This requirement is important (2) to increase scalability of
trust among entities.

2.6 Requirement Summary
This section provides an overview of all requirements gathered in the various sce-
narios in Table 2.1. The table shows where a specific requirement was defined (def

=),
where it was included (∈), and its importance, as determined in the scenario where
it was defined.

Table 2.1: Summary of all scenarios’ requirements
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SAT1: Authentication def
= ∈ ∈ ∈ ∈ ∈ ↑

SAT2: Authorization def
= ∈ ∈ ∈ ∈ ∈ ↑

SAT3: Identification def
= ∈ ∈ ∈ ∈ ∈ ↑

SAT4: Identity provisioning def
= ∈ ∈ ∈ ∈ ∈ ↑

SAT5: Trust establishment def
= ∈ ∈ ∈ ↑

SAT6: Access delegation def
= ∈ ∈ ∈ l

SAT7: Automated integration/registration def
= ∈ ↑

SAT8: Identity data set matching def
= l

SAT9: Message delivery services def
= ↓

Continued on next page
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Table 2.1: Summary of all scenarios’ requirements (Continued)
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n INF1: Credential establishment def

= ∈ ∈ ∈ ∈ ∈ ↑

INF2: Documentation def
= ∈ ∈ ∈ ∈ ∈ l

INF3: Digital identification def
= ∈ ∈ ∈ ↑

INF4: Physical identification def
= ∈ ∈ ∈ ↑

INF5: Product specification def
= ∈ ∈ l

INF6: Neighbour discovery def
= ∈ ↑

INF7: Service discovery def
= ∈ ↓

INF8: Agreement monitoring def
= l

INF9: Capability exchange def
= l

INF10: Identity data set def
= ↑

INF11: Level of assurance def
= l
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CON1: Identity de-provisioning def
= ∈ ∈ ∈ ∈ ∈ ↑

CON2: Credential recovery def
= ∈ ∈ ∈ ∈ ∈ l

CON3: Digital twin def
= ∈ ∈ ∈ l

CON4: Content verification def
= ∈ l

CON5: Netsplit/Join def
= ∈ l

CON6: Once-only def
= l
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ty SEC1: Access controls def
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SEC2: Credential revocation def
= ∈ ∈ ∈ ∈ ∈ ↑

SEC3: Mutual authentication def
= ↑

SEC4: Security by default def
= ∈ ∈ ∈ ∈ ∈ ↑

SEC5: Security by design def
= ∈ ∈ ∈ ∈ ∈ ↑

SEC6: Multi-factor authentication def
= ∈ ∈ ∈ ∈ ∈ l

SEC7: Tamper-evident def
= ∈ ∈ ∈ ↑

SEC8: Delegation parameters def
= ∈ ∈ ∈ l

SEC9: Secure de-provisioning def
= ∈ ∈ ∈ l

SEC10: Secure setup def
= ∈ ∈ ∈ l

SEC11: Tamper-resistant def
= ∈ ∈ ∈ l

SEC12: Off-the-record (OTR) def
= ↑

SEC13: Trust service providers def
= l

Continued on next page
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Table 2.1: Summary of all scenarios’ requirements (Continued)
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DAT1: Privacy by default def
= ∈ ∈ ∈ ∈ ∈ ↑

DAT2: Privacy by design def
= ∈ ∈ ∈ ∈ ∈ ↑

DAT3: GDPR def
= ∈ ∈ ∈ ∈ ∈ l

DAT4: Multiple identities def
= ∈ ∈ ∈ ∈ ∈ ↓

DAT5: Protected application storage def
= ∈ ∈ ∈ ↑

DAT6: Correlation resistance def
= ∈ ∈ ∈ l

DAT7: External tracking resistance def
= ∈ l

DAT8: Internal tracking resistance def
= ∈ l
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ROB1: Reliability def
= ∈ ∈ ∈ ∈ ∈ ↑

ROB2: Accessibility def
= ∈ ∈ ∈ ∈ ∈ l

ROB3: Approachability def
= ∈ ∈ ∈ ∈ ∈ l

ROB4: Usability def
= ∈ ∈ ∈ ∈ ∈ l

ROB5: Offline authNZ def
= ∈ ∈ ∈ ↑

ROB6: Scalability def
= ∈ ∈ ∈ ↑

ROB7: Platform independence def
= ∈ ∈ ∈ l

ROB8: Transitive trust def
= ∈ ∈ ∈ l

ROB9: Communication protocol independence def
= ∈ ∈ l

ROB10: Resource efficiency def
= ∈ ∈ l

ROB11: DDoS protection def
= ∈ l

ROB12: Standalone authNZ def
= l

Key: def
= defined in this scenario, ∈ included from previous scenario,

↑ essential, l important, ↓ optional
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IAM is a sophisticated topic that features many facets. A huge amount of previous
research, standardization, and product development exists. This is emphasized by
the research in this area and the multitude of IAM solutions available. An overview
of modern IAM systems is described by [146], involving FIM with protocols such as
SAML, OAuth, and OIDC, as well as UCIM and SSI

In this work, only the SSI-related portion of the IAM landscape is examined in
detail. The other manifestations of IAM (e. g., FIM and UCIM) have already been
described in detail in other related works (e. g., [82] or [142]). Its applicability for
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one or more scenarios is required to narrow further state-of-the-art considered
for selection. As a result, solutions for web-based technologies, IoT applications,
mesh networks, and eID are favored. For the selected applications, relevant stan-
dardization, research, implementations, and real-world products are evaluated, if
available. An additional aid for selecting relevant state-of-the-art is created by clas-
sifying selections according to the IAM dimensions consisting of identity, access,
and management, each of which can be described by three characteristics:

• Identity is divided into device, personal, and organizational identities.

• Access differentiates between the process of identification, authentication,
and authorization.

• Management is split into different approaches centralized, federated, or self-
sovereign.

Figure 3.1 shows a 3D representation of those three dimensions. This representa-
tion is used throughout this chapter to illustrate the discussed solutions’ primary
application areas. While the IAM space can be extended with way more dimen-
sions, i. e., MFA, this will show the gaps in the basics of IAM system coverage.

Figure 3.1: IAM dimensions

The remainder of this chapter is structured as follows. First, web-based solutions
are described in Section 3.1. This serves as a baseline for modern IAM and is used
in the implementation described in Chapter 5 to select state-of-the-art technol-
ogy. Building on top of mainly centralized web-based IAM, Section 3.2 shows the
most important developments in FIM. The main focus of this work, SSI and related
work from research, standardization, and products, is described in Section 3.3.
Use case-specific state-of-the-art is described for IoT in Section 3.4 and for eID
in Section 3.5. A summary highlights the presented technologies and shows the
remaining work areas in Section 3.6.
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3.1 Centralized Web
One of the most important spaces for digital identities is the Internet. However,
most of the IAM systems on the Internet are centralized at each service and many
of those build on proprietary and individual solutions. This chapter considers
state-of-the-art systems, which are open, accessible, and standardized. Systems
that are not centralized but federated are described in Section 3.2.

Figure 3.2: IAM dimensions for typical web-based applications

In general, web applications cover the IAM space depicted in Figure 3.2. They focus
mainly on centralized identification and authentication of individual persons but
also provide identification and authentication for organizations, i. e., websites. The
authorization is mainly handled by the web applications internally and thus does
not require standardization. There are only a few notable standards in the space
of primarily centralized web-based authentication due to considerable fragmenta-
tion and individual solutions. One of the most widely used standards for online
identity is developed by the FIDO Alliance. Their standards are described in Sec-
tion 3.1.1. The foundation of security on the Internet, the X.509 certificate, and
the corresponding public key infrastructure (PKI) are summarized in Section 3.1.2.
Another interesting but ultimately no longer pursued approach that has similari-
ties to SSI by the Mozilla Foundation is presented in Section 3.1.3.

3.1.1 Fast Identity Online
Started in 2013, the FIDO Alliance consists of over 250 members from all over the
world and specializes in developing authentication standards for the Internet [59].
Since its foundation, the FIDO Alliance has published multiple standards regarding
2FA, MFA, and password-less authentication, always utilizing special hardware
devices that can be connected to computers or smartphones via USB, near-field
communication (NFC), or Bluetooth. The three primary standards are:

• the U2F standard defining how to integrate second-factor hardware devices
into existing password-based authentication at websites [55, 162],

• the UAF standard for eliminating passwords at the website alltogether and
authenticating purely with a compatible hardware device with local user au-
thentication [161],
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• and the CTAP standard, where CTAP1 is just another name for the U2F stan-
dard, and CTAP2 specifies the communication between hardware devices and
browsers for password-less or MFA authentication [102].

The standards developed by the FIDO Alliance are also referenced by other stan-
dardization organizations. Together with the W3C’s standard for WebAuthn and
the FIDO Alliance’s CTAP standard, a project for web authentication is developed
under the name FIDO2. The WebAuthn part of this project is located with the W3C
as it specifies Javascript (JS) APIs for browsers, which naturally fit the W3C scope.
The FIDO Alliance’s CTAP part of FIDO2 specifies the operating system’s and se-
curity hardware device’s properties. An overview of those standards is displayed
in Figure 3.3.

Figure 3.3: Overview of the FIDO Alliance’s standards and their connections

As the scenario described in Section 2.5.1 focuses on web authentication and au-
thorization, those standards are highly relevant for consideration in the implemen-
tation of this work’s concept. The standards described in this section also cover
the centralized personal identification and authentication sections of the catego-
rization of IAM aspects shown in Figure 3.2. The implementation will utilize the
WebAuthn API for the web scenario described in Section 5.3.

3.1.2 Public Key Infrastructure

Using PKI with X.509 certificates is the primary way of authenticating websites
and encrypting traffic on the Internet via the HTTPS protocol. The PKI of the Inter-
net is – in its simplest form – a hierarchical structure with several root CAs vetted
by auditing enterprises whose public keys are included in many operating systems
and browsers. Individual websites’ X.509 certificates are created by those root or
intermediary CAs, following further rules on how to validate the identity of web-
sites. A user’s browser can then trace the certificate chain of a website back to a
root CA that is known to be trustworthy because it is part of the browser’s or oper-
ating system’s certificate store. Using this tree-like structure scales exceptionally
well.

The certificates used in the Internet’s PKI follow the X.509 certificate standard,
which describes how to create those digital certificates. Basically, the X.509 certifi-
cates contain the entity’s public key and associated metadata, i. e., validity period,
issuing time, or cryptographic parameters, issued by CAs and stored encoded in
ASN.1 syntax [114]. Due to the availability of free X.509 certificates, especially due
to Let’s Encrypt [1], the number of websites utilizing X.509 certificates is constantly
rising, and the use of HTTPS is exceeding 80% of web traffic [54, 84].

This allows users to guarantee that if they enter the correct domain name into their
browser’s navigation bar, their browser will load and display the website’s contents
as intended by the website’s owner. If the web server and browser are configured
correctly, third parties can no longer intercept, read, or modify the page during
transit to the user, as would be the case without HTTPS and X.509 certificates.
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The Internet’s PKI covers the IAM dimensions of organizational identification and
authentication, as indicated in Figure 3.2. Certificates for identifying and authen-
ticating users are possible but less commonly used.

3.1.3 Mozilla Persona

In 2011 the Mozilla Foundation tried to pioneer the IAM options for the Internet
by developing and publishing BrowserID [131]. At the core of BrowserID the user
could prove control of their email address in what could be considered a form of
web-based SSI. The browser would store a cryptographic proof issued by the user’s
email provider that they control a specific email. This proof had to be renewed
regularly by logging in to the email provider. When authenticating the user to a
website, the user could choose which email to use and provide the website with
proof of control of the email as authentication. However, the system could not gain
any noticeable traction and was abandoned in 2016 [133].

This approach shows how to decentralize personal identification and authentica-
tion on the Internet, and that adoption is essential for long-term success.

3.2 Federated Identity Management

The premise of FIM is the partial decentralization of IAM, the basics of which have
been described in Section 2.3. Decentralization is achieved by creating identity fed-
erations consisting of IdPs and SPs. Users usually are identified by their home IdP
and can use this provider to log in to services at the SPs. During the authentica-
tion of the user at the SP, additional attributes describing the user can be supplied
by the IdP. The SP can use those for authorization decisions. For example, an IdP
might assert a user to be enrolled as a student at a university. A user can thus
use multiple services with one user account within one federation.

Figure 3.4: IAM dimensions for FIM applications

Within the IAM dimensions described at the beginning of Chapter 3, FIM can ex-
press personal identities in a federated environment and cover identification, au-
thentication, and authorization. With SAML and OIDC, there are currently two
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prominent systems for implementing FIM. Those are introduced in Section 3.2.1
and Section 3.2.2. Section 3.2.3 presents current research on relevant aspects of
FIM.

3.2.1 Security Assertion Markup Language

SAML is a well-established standard for FIM in higher education and enterprise
environments. The standard that is usually referenced if SAML is mentioned is
SAML 2.0 [38]. For example, it is used for large national and international research
and education federations, i. e., eduGAIN, and some commercial products.

Deployments with SAML are usually centered around identity federations [9]. Fed-
erations provide a legal framework and necessary centralized infrastructure for
processing and exchanging authentication information and users’ personal at-
tributes between the different parties.

Due to the need to aggregate and distribute metadata of each participant, the fed-
eration’s structure is usually pretty static and cannot be modified in “real-time”.
To alleviate this problem, multiple projects have researched and developed sugges-
tions to build a more dynamic federation system [6, 56, 148].

3.2.2 OpenID Connect and OAuth 2.0

While SAML is predominantly used in enterprise and higher education scenarios,
OIDC and OAuth [80] are usually used in the context of social logins, e. g., log in
with Google, Facebook, or GitHub [61]. OAuth – as the name implies – only handles
authorizations and enables passing authorization tokens to other applications.
It does not specify requirements for identification and authentication, however.
The predominant use case would allow a third party application to access specific
functionalities of an application (i. e., allow an application to read a user’s timeline
or post to Twitter [186]).

OIDC was developed on top of OAuth to fill the gap and use OAuth as an identifi-
cation and authentication framework [160]. In its actual use, OIDC is very similar
to SAML. Both feature components like the IdP and the SP – or RP as the SP role is
called within OIDC – and those components conceptually work almost the same in
both standards. On a technical level, OIDC is based on Javascript object notation
(JSON), and SAML is based on extensible markup language (XML), but both work
on the HTTPS protocol.

In theory, OIDC was designed to allow anybody to run their own IdP, which could
be considered UCIM. However, in practice, only established IdPs are used to access
RPs.

3.2.3 Research

The current research into FIM is focused on scaling SAML federations and making
federations more flexible. As a result, dynamic federations have been discussed
in multiple publications. A selection of these is presented here to display the di-
verse approaches without the intention of providing a comprehensive list. The core
idea is to open the relatively static metadata distribution, as is usually required
for SAML federations, to an on-demand system. This can produce the benefit of
allowing the metadata to contain situation-specific information instead of needing
to accommodate every other participant of the federation.
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The research utilizes a variety of solutions to achieve on-demand federations. The
approach by [6] replaces the static metadata file used in SAML federations with
a dynamic trust list. This list is dynamically updated by a trust engine, which is
supplied reputation information via a SAML extension.

A different approach is followed by [56], who extend SAML in such a way that it
can operate like OIDC. Users can then suggest IdPs to SPs and vice versa. To
account for different trust levels, the user-initiated connections between providers
can differ in their LoA and the amount of information shared.

In contrast to the preceding approaches, [83, 142, 145] specify and extend the con-
cept involving a trusted third party, which can broker trust relations on demand.
Utilizing a trust broker component requires fewer modifications to the SAML pro-
tocol and IdP and SP components. Additional functionality can be added to the
trust broker to manage LoAs and to help provide the necessary attributes.

As part of this work, [69] proposed using DLT for managing federation metadata.
The publication uses the term µ-federation to name the small individual federa-
tions that can be formed if metadata can be trusted and accessed by any partici-
pant. Metadata management through the DLT is done similarly to how certificate
revocation lists (CRLs) work to strengthen the trust in the data within the PKI.

Similarly, the research by [5] also uses blockchain technology to manage SAML
federations by using the blockchain as a metadata file and trust anchor list. En-
tries on the blockchain are managed through a middleware web application. The
authors also integrate their concept with a SAML implementation and test the per-
formance in a small test setup.

A method of bridging FIM and SSI is proposed by [192]. It includes an imple-
mentation that replaces the IdP with an SSI system while keeping the SP mostly
SAML-based. Systems like this could be used to migrate or connect users to SPs
that cannot quickly change their IAM infrastructure.

With a focus on FIM, [147] shows a universal framework to foster system interop-
erability. This framework provides processes for managing federations, including
handling security incidents. The interoperability is achieved through a trusted
third party, which is a central point of contact for IdPs and SPs.

This short list of research into dynamic federations shows that there has been
and still is interest in streamlining metadata management for SAML federations.
However, none of the proposed solutions have been adopted in a production envi-
ronment.

Usually, security incidents can be handled within one company or affect only a
selection of business customers or suppliers. In federations, especially in dynamic
ones, reacting to security incidents can be increasingly challenging. The feder-
ated system makes coordination of the necessary responses from every partici-
pant harder. To prepare federations as best as possible, the security management
framework Sirtifi for FIM environments aims to provide guidance [15]. This frame-
work is actively used by the national and international federations of eduGAIN and
can provide insights into how a distributed system can handle security incidents.
Its current updated version is [156].

3.3 Self-sovereign Identity
SSI is a relatively new term for a concept that has been in development for a long
time already. The move to decentralized identity management can be seen in the
evolution of IAM solutions from centralized to federated to user-centric. So far, the
user-centric approaches have not gained any large-scale adoption, as outlined with
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the example of BrowserID in Section 3.1.3. SSI takes a new try at decentralized
identity fueled by the gain in interest of decentralized systems promoted by the de-
velopment of blockchain and DLT, which is exaggerated by the success of platforms
like Bitcoin.

Figure 3.5: IAM dimensions for SSI

While other applications in organizations and IoT are not impossible, the main
focus of SSI is personal IDM in a decentralized manner. The IAM envisioned by SSI
covers all aspects of identification, authentication, and authorization, as depicted
in Figure 3.5.

The current state-of-the-art of SSI is explored in this chapter as follows. Sec-
tion 3.3.1 describes standards for SSI which are already published or in active
development. Solutions using those standards in the form of actual prototypes
or production implementations are introduced in Section 3.3.2. Ongoing research
into selected relevant topics is showcased in Section 3.3.3.

3.3.1 Standards

Even though SSI is a relatively young concept, there are already strong standard-
ization proceedings and first prototype implementations that are tested and used
in real-world scenarios. The four major standardization initiatives for SSI and their
relation to one another are shown in Figure 3.6. They specify the process of man-
aging keys, identifying entities, authenticating entities, and presenting verifiable
credentials between entities.

None of them are published as a complete standard by a standardization organiza-
tion and are all still being actively worked on by different working groups. Never-
theless, as they are the next best thing to actual standards in the SSI environment,
they will be called standards within the following chapters. The following sections
will describe those standards in more detail.
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Figure 3.6: Overview of SSI standards

3.3.1.1 Decentralized Identifiers

Decentralized identifiers (DIDs) offer a standardized schema for uniquely identify-
ing entities in a decentralized way. They feature privacy by design, interoperability,
and allow the identified entity to control its identifier fully. The standardization
of DIDs is currently pursued within the W3C Credentials Community Group. A
current version of the proposed standard can be found in [47].

DIDs focus on providing identifiers for any entity. It is noted that while the origin
of DIDs lies with SSI, their use is not strictly restricted to SSI, and DIDs may be of
use in other FIM environments.

DIDs are used as the standard for entity identifiers in multiple SSI projects and im-
plementations, for example, by the closely related Sovrin [155, 181] and Evernym,
as well as in an adapted version for the Ethereum blockchain with uPort [22].

The structure of DIDs is heavily influenced by URIs as defined in [125], URNs that
are specified in [106], and UUID URN namespace described in [116]. Following the
URI standard, a DID consists of the following three parts. Each part is separated
from the next by a colon (":").

• Schema: The first part of a DID is always did

• Method name: The second part specifies a unique method. This method is
associated with a schema to resolve a DID and fetch the corresponding de-
centralized identifier document (DDo) from a specific distributed ledger or any
other storage system. It has to specify how to perform create, read, update,
and delete (CRUD) operations for both DIDs and DDo. The method name can
include colons (":") to form a hierarchy.

• Method-specific ID: The third part contains an ID that is specific to the used
method. This ID can be extended to contain further parameters and key, value
pairs.

A DID can form a DID URL by appending parameters to a DID. The parameters
are separated by semicolons (";") from DID and each other. They can contain a
set of generic (e. g., service for service selection) and method-specific parameters.
These method-specific parameters are prefixed with the method name and a colon
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(":"). A DID URL may also contain parameters from DID methods other than the
one specified as the DID’s method. As such, a DID URL can look like the examples
in Listing 3.1.

1 Simple DID:
2 did:example:123456789abcdefghi
3

4 DID URLs:
5 did:example:21tDAKCERh95uGgKbJNHYp;service=agent;foo:bar=high
6 did:foo:baz:21tDAKCERh95uGgKbJNHYp;foo:baz:hex=b612

Listing 3.1: Examples for DIDs and DID URLs [47]

DID URLs can also be further extended after any parameters by (in that order):

• Paths: A forward slash ("/") indicates a path and can be used to address
specific resources at a DID.

• Queries: A query is indicated by a question mark ("?") and can be used to
address specific resources at a DID.

• Fragments: A fragment is indicated by an octothorp ("#") and can be used to
select a specific component from a DDo.

DDos store and publish metadata about the entity identified by the DID. It contains
metadata, like authentication methods and the corresponding public key, service
endpoints, and other attributes and credentials in JSON linked data (JSON-LD)
notation. The location where a DDo can be received is specified by the DID. An
example of such a DDo is provided in Listing 3.2.

1 {
2 "@context": "https://w3id.org/did/v1",
3 "id": "did:example:123456789abcdefghi",
4 "authentication": [{
5 // this key can be used to authenticate as did:...fghi
6 "id": "did:example:123456789abcdefghi#keys-1",
7 "type": "RsaVerificationKey2018",
8 "controller": "did:example:123456789abcdefghi",
9 "publicKeyPem": "-----BEGIN PUBLIC KEY...END PUBLIC KEY-----\r\n"

10 }],
11 "service": [{
12 "id": "did:example:123456789abcdefghi#service123",
13 "type": "ExampleService",
14 "serviceEndpoint": "https://example.com/endpoint/8377464"
15 }]
16 }

Listing 3.2: Example DDo [47]

The sections of a DDo are defined in the context definition at the start of the doc-
ument. There may be more than one context, but the standard specifies that the
https://www.w3.org/2019/did/v1 context always has to be the first context speci-
fied. The document referenced by the context key contains definitions of the keys
used in the rest of the document.

3.3.1.2 Decentralized Key Management System

In order to build a decentralized identity storage system based on DIDs, there needs
to be a way of managing the necessary keys used by the different entities to prove
ownership of a DID. In a completely decentralized system, key management poses
new challenges (e. g., because there is no authority that can reset a password or
help recover a key). To solve this challenge, the Rebooting the Web of Trust Work-
shop wrote a document [46] outlining how a distributed key management system
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(DKMS) can be built. The goal is to eventually develop a standard for decentral-
ized key management based on the National Institute of Standards and Technology
(NIST) SP 800-130 A Framework for Designing Cryptographic Key Management Sys-
tems [14] standard.

The specification [46] is short and only outlines how a decentralized key man-
agement solution should be built. This section describes the general idea of the
concept.

The idea uses DIDs as the base layer for managing identities. Those DIDs are used
to identify entities and are associated with defined operations that are stored on a
distributed ledger layer. On top of this layer, DKMS specifies two new layers: The
agent layer and the edge layer. The agent layer contains agents’ communication
with other agents to authenticate or prove possession of specific attributes. Those
agents rely on schema information stored in a distributed ledger, specifying how to
interpret values contained in DIDs and DDos.

Between the user on the identity owner layer and the software on the agent layer,
there is another layer, the so-called edge layer. This layer provides the user with
an easy-to-use interface to manage their DIDs. It must also store and manage the
corresponding private keys used with the DIDs. This system of layers is shown in
Figure 3.7.

Figure 3.7: DKMS layers adapted from [46]

A design goal for this distributed system is to prevent any single point of failure. For
example, there is no single entity (i. e., a popular IdP) that, if compromised (e. g.,
because of a hack), affects the security of many other entities’ accounts. The lay-
ered approach provides interoperability, as the software that implements a layer’s
functions can be replaced by similar software (e. g., there can be more than one
app that implements edge layer functionality). The system also specifies multiple
options for recovering keys: automated backup processes, escrow services, and
social recovery systems. As a result, this system provides increased resilience in
the overall identification and authentication process.

The main difference between DKMS to established key management solutions like
common provider-specific username/password combinations and PKI is that each
edge layer entity is essentially its identity provider from the user’s perspective.
This leads to a highly decentralized distribution of identity information. On the
one hand, a benefit is that the system is fairly resistant, as there is no single point
of failure (e. g., a provider or CA that could be hacked). On the other hand, this
resilience and decentralization come at the cost of only being useful if the complete
DKMS ensures interoperability and provides measures for key recovery.
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3.3.1.3 DID Authentication

The paper Introduction to DID Auth [124] defines the term decentralized identifiers
authentication (DID Auth). It specifies methods that can be used to establish ini-
tial authentication between two entities identified by DIDs. There are multiple
options for implementing this protocol; no single one of them has been defined
as a standard. Instead, the shown options specify flexible ways for the identity
owner to prove to a relying party that the identity owner controls their DID. As a
result, different players within the developing SSI field use different methods for
DID Auth.

Common features, however, are the following:

• Participants are identified by their DID. The DIDs used can be either public
or private pairwise DIDs.

• The necessary information for authentication is stored in the participants’
DDo and needs to be retrieved by resolving it from the DID.

• Authentication can be done directly between two participants (or their agents).

• Both participants must support the specified authentication method.

The technical specification is not complete yet and offers the users quite a lot of
options and flexibility. As a result, a selection of architectures proposed in [124]
is described in the following paragraphs. The selection is based on which of the
proposed architectures are actively used by SSI projects and which offer unique
technical solutions.

The first architecture describes a challenge-response authentication method for
authenticating users to web services [124]. The relying party’s website displays
the user an authentication challenge as a quick response code (QR code) which
they then scan with a wallet app on their smartphone. After selecting the user’s
identity, the app contacts the relying party’s server via HTTP POST with the chal-
lenge’s response. If the authentication is successful, the user is redirected within
the browser session to the requested page. For users on mobile devices and smart-
phones, the process can be modified slightly. The resulting architecture uses deep
links to redirect the smartphone’s browser directly to the wallet app on the user’s
smartphone [124].

A variation of the workflow introduces an authentication service that receives the
authentication challenge on the user’s behalf [124]. The service then forwards
the challenge to a device specified by the user, e. g., as a push notification on
the user’s smartphone. The smartphone responds to the RP with the challenge
response to the RP’s server. As with the first use case, multiple slight variations
are proposed for this workflow, as well. For example, the workflow can be changed
so the user’s smartphone does not directly respond to the challenge but instead
routes the response back to the RP’s server via the authentication service [124].
Another variation uses the authentication service not only as a relay but with an
active authentication web page [124]. The user can then interact with this web
page and optionally use a smartphone or another device as an additional factor for
authentication. The challenge’s response is directed back to the RP’s server by the
authentication web page.

As many applications require authentication between entities in a non-user in-
teractive way, some architectures describe various methods to achieve this. For
those authentications, challenges between the services are passed directly to each
other [124]. Those direct connections can be handled over different transport
mechanisms (e. g., transport layer security (TLS), HTTP signatures, or authenti-
cated encryption), resulting in variations of the same basic flow [124].
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3.3.1.4 Verifiable Credentials

The Verifiable Credentials Data Model 1.0 [123] is a standardization approach by
the W3C to build a protocol for presenting verifiable information. In particular, the
standard is used to manage credentials in a secure and privacy-conscious way on
the Internet. The core element, a verifiable credential (VC), can be used to generate
verifiable presentations that cryptographically prove the enclosed claims to other
entities. It does so by utilizing one or more verifiable data registries that store and
exchange identifiers and schemas. Furthermore, subjects can gather VCs from
multiple issuers and combine them as verifiable presentations containing only the
attributes requested by a verifier. An example of a VC represented in JSON is
provided in Listing 3.3.

1 {
2 "@context": [
3 "https://www.w3.org/2018/credentials/v1",
4 "https://www.w3.org/2018/credentials/examples/v1"
5 ],
6 "id": "http://example.edu/credentials/1872",
7 "type": ["VerifiableCredential", "AlumniCredential"],
8 "issuer": "https://example.edu/issuers/565049",
9 "issuanceDate": "2010-01-01T19:73:24Z",

10 "credentialSubject": {
11 "id": "did:example:ebfeb1f712ebc6f1c276e12ec21",
12 "alumniOf": "<span lang='en'>Example University </span>"
13 },
14 "proof": {
15 "type": "RsaSignature2018",
16 "created": "2017-06-18T21:19:10Z",
17 "creator": "https://example.edu/issuers/keys/1",
18 "jws": "eyJhbGciOiJSUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0
19 Il19..TCYt5XsITJX1CxPCT8yAV -TVkIEq_PbChOMqsLfRoPsnsgw5WEut
20 s01mq-pQy7UJiN5mgRxD -WUcX16dUEMGlv50aqzpqh4Qktb3rk -BuQy72I
21 FLOqV0G_zS245 -kronKb78cPN25DGlcTwLtjPAYuNzVBAh4vGHSrQyHUdB
22 BPM"
23 }
24 }

Listing 3.3: Example of a VC in JSON notation [123]

The Verifiable Credentials Data Model provides multi-source self-sovereign authen-
tication for all kinds of identities. Device identities are not explicitly mentioned in
the verifiable claims use cases [100] or the main standard document [123]. It is,
however, possible to use the standard to make claims about non-person entities.

Credentials distinguish between three entity roles: issuer, subject, and holder.
The issuer creates the credential and asserts some claim about a subject. Any
entity the credential presentation is shown to has to trust the issuer about the
claim. The holder has the credential and can use it to present it to other entities.
Usually, the subject is the same as the holder, but in some cases – e. g., a credential
that confirms services that have been done to a car by a workshop – they might
not be the same, and in this example, the holder is the owner of the car but not
the subject. Additionally, the verifier is the entity that uses a VC or verifiable
presentation to assess the subject’s claims.

3.3.2 Hyperledger Indy

Implementations for SSI systems are mainly focused on web applications. Depicted
in Figure 3.8 are the most notable projects that have been developed for multiple
years now. The Sovrin and Hyperledger Indy systems are described in more detail
in this section.
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Figure 3.8: Notable SSI implementations ecosystem

Sovrin [182] and Hyperledger Indy [86] provide a public permissioned distributed
ledger specialized for identity management. Using a publicly accessible distributed
ledger and restricting write access through a permission system differentiates the
distributed ledger from most other popular DLTs, as shown in Table 3.1.

Table 3.1: Comparison of validation and access approaches to DLT management

Validation
Permissionless Permissioned

Access Public Bitcoin, Ethereum Sovrin, Hyperledger Indy
Private n/a R3 Corda

Initially developed by the company Evernym the Open-Source version of their soft-
ware Sovrin featured the first long-lasting effort to build an identity-focused dis-
tributed ledger. Its fundamentals and code were used by the Hyperledger Indy de-
velopers to pursue this goal further. Recent development shows a growing ecosys-
tem of Hyperledger projects (e. g., Hyperledger Aries) that enhance the abilities of
identity-focused distributed ledgers.

The technical foundations of Sovrin are described in [155]. The complete stack for
Sovrin’s identity ledger consists of three layers, visualized in Figure 3.9. On the
bottom is a shared, globally distributed ledger to exchange information about root
identities. This layer is primarily developed by Sovrin and has to be adapted by
everybody using Sovrin.

On top of the base layer, agents utilize the base layer to manage the individual
clients’ identities. Agents can be implemented by different parties to fit different
needs and act as easily addressable endpoints for individual identities. End users
rely on the clients, which represent the third layer, to readily access their agents.
Clients can be developed by multiple parties for different systems with differing
requirements.

The distributed ledger is the shared network between all participants within the
Sovrin identity network. Purpose-built – and as already described in Table 3.1 –
this ledger utilizes a public access and permissioned validation schema. Permis-
sioned validation is preferred over permissionless validation like it is used with
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Figure 3.9: Overview of the layered approach for the Sovrin identity network

Bitcoin and Ethereum. The proof of work (PoW) protocols required for permis-
sionless validation are energy intensive and limit scalability. However, they benefit
from not requiring one node in the network to trust any other node explicitly. Per-
missioned validation cannot achieve this and requires a hierarchical approach to
manage the validation nodes. There needs to be a set of initial nodes, which are
ultimately trusted and can decide which other nodes should also be trusted with
validating new transmissions.

On the Sovrin ledger, the initial trusted validator nodes are specified in the dis-
tributed ledgers genesis file, which describes the starting state of the ledger. Each
modification of the distributed ledger state can be traced back to the genesis file
to verify the correctness of all transactions. A consensus protocol is required to
select which validator node should create the next transaction. The consensus pro-
tocol Sovrin uses is an adaption of the redundant byzantine fault tolerant (RBFT)
protocol developed by [115], focusing on speed and scalability.

Besides the validator nodes, Sovrin uses observer nodes that store the complete
state of the distributed ledger. Those nodes act as hot-standby to replace a validator
node that might have failed and as a read-only copy of the ledger to scale read
requests to a more extensive set of nodes.

Distinctively, what is described as the Sovrin distributed ledger is not a single dis-
tributed ledger. Instead, the Sovrin network uses four different distributed ledgers
for different tasks [155]:

1. The identity ledger is primarily used to store identity records. This ledger is
actively used to perform identity management operations between users. The
other ledgers are used to keep track of internal ledger management.

2. Permission changes between validator and observer nodes are determined by
the trustees and stewards casting votes on the voting ledger.

3. To manage the actual status of validator and observer nodes, the pool ledger
is used to track those changes and the results of votes of the voting ledger.

4. General configuration settings and metadata required to run the other ledgers
are stored on the config ledger.

In order to identify any object on the ledger DIDs and cryptographic identifiers
(CIDs) are used. DIDs, as described in Section 3.3.1.1, are unique identifiers fol-
lowing a standardized UUID syntax. CIDs are similarly unique identifiers generated
from cryptographic keys, either containing the full public key of an asymmetric key
pair or (parts of) the hash of the public key.
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A key to self-sovereignty is the identity owner’s ability to control their identity com-
pletely, but the identity must also be usable effectively. Effective use (e. g., ex-
changing messages or verifying claims) requires the identity to be permanently
addressable, which in turn requires a permanently available hosted service called
an agent. The addresses required to exchange information with an identity are the
identities’ endpoints. The agent is a broker between the identity owners and their
endpoints.

Besides connecting the user’s client with a permanently available endpoint, the
agent can also serve as storage space for data related to the managed identity.
Because the data is stored with the agent, it does not have to be stored on-chain
and, therefore, can contain personal information. Automatic rules could govern
which data is disclosed to whom in real time. For example, the agent’s storage can
synchronize identity data between multiple clients. Examples of data stored with
the agent described by [155] are all in the form of graphs and contain the following:

1. The identity graph describes the identity’s relation to other identity claims.

2. A general address book-like relationship graph.

3. The reputation graph stores reputation claims that can show the identity’s
gathered reputation.

4. The data graph contains other identity data (e. g., pictures, videos, or text).

The data stored with an agent should be stored so it can be easily transferred to
another agent, as vendor lock-in at a specific agent would contradict SSI goals.

For most users, the easiest way to acquire an agent and an endpoint is to use
an agency. Agencies are services that provide agent services to multiple identity
owners. However, every identity owner can also set up their agent on their server.
Some agents are available as open-source implementations. Users might even skip
the agent entirely and only use the wallet directly. The latter option may result in
reduced functionality.

Managing one’s identity is done through a client application. The primary func-
tions of the clients are the initial provisioning of the user’s identity, the manage-
ment of the user’s keychain, and the processing of claims related to the user’s
identity. Those clients are usually considered smartphone apps but can also be a
browser or general operating system extension. In actual use, an identity owner
might use multiple different clients to manage their identity. As with the agents,
clients can be developed by multiple parties, and there are multiple open-source
implementations already.

Provisioning a new identity in the Sovrin identity ledger requires the user to know
a trust anchor, an entity with sufficient trust level allowed to add new identities.
Using a challenge-response protocol, the new user proves control of the new iden-
tity’s private key, whose corresponding public key is then added to the ledger as
an identity record by the trust anchor.

As with most distributed ledgers and blockchains, the ultimate key to control to-
kens (i. e., an identity record) on the Sovrin ledger is the user’s private key. The
client is used to initially provision the user’s identity on the ledger and is subse-
quently responsible for generating the user’s set of public and private keys. The
client’s vital task is to protect this key adequately against compromises, corruption,
and accidental loss.

Clients may also contain functionality that allows users to rotate their keys, i. e.,
exchange an old, eventually compromised key pair for a new one, or revoke their
keys entirely, i. e., rotating keys without adding a new key, rendering the identity
unusable.
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Key recovery is a tough problem for distributed ledgers and SSI systems in general.
If you are your own IdP, you can not get help recovering lost keys or credentials
from any organization. Besides robust backups, the solution to this problem is
peer recovery. A set of close trusted friends can issue a key rollover upon the
identity owner’s request to add the user’s new key. The set of trusted friends is time-
locked to prevent an attacker who compromised the user’s client from changing the
set of recovery contacts and immediately changing the key to lockout the identity
owner [155]. Within the time window, the original identity owner could still recover
the identity (after fixing the vulnerability that resulted in the compromise) using
the previous set of friends to lock out the attacker again. Depending on the length
of the time window chosen by the user, it may be important to use active monitoring
of one’s identity and push notifications for specific events, i. e., changes to keys and
recovery contacts.

While key management is an important factor for the client, the users will primar-
ily use the client for managing their identity, claims, and associated data. Sovrin
defines claims as any statement made about an identity, even if this statement is
self-attested, and uses the term verifiable claim to describe claims by third par-
ties [155]. Verifiable claims are also being standardized by the W3C’s Verifiable
Claims Task Force (VCTF) [123].

Claims can be made either public (on-chain) or private (off-chain). It is strongly
advised to keep all claims containing private information private. Private claims
can be managed and distributed by the identity owner’s agent if necessary.

Beyond the differentiation by storage location of public and private claims [155]
introduces the following general types of claims.

1. The most basic claim, the cleartext claim, contains all information in plain
text. It should only include information that is intended to be released pub-
licly.

2. Encrypted claims are similar to cleartext claims but use asymmetric or sym-
metric encryption to encrypt their information.

3. Hash signature claims are a specially crafted tree of claims that can be dis-
closed individually to different other identities.

4. Proof of existence (POE) claims use cryptographic signatures to generate a
hash value from any digital object and store this hash within the claim, thus
proving the existence of the digital object at a specific point in time. These
claims are also called hash claims, but this name can be easily confused with
hash signature claims.

5. Anonymous credentials are the most complex type of claim, containing nei-
ther cleartext, hashed, nor encrypted information, but instead use zero-know-
ledge proofs to prove statements. They can be used, for example, to show the
claim “is over 18” without providing the actual birth date.

The organizational aspects of running the Sovrin identity network are described
by [155, 196]. They are divided between the organization of the entity running the
Sovrin network, the Sovrin Foundation, and the identity management aspects of
the network itself.

Overall, the organizational structure of the corporation “Sovrin Foundation” follows
a functional approach, as depicted in Figure 3.10.

The board of trustees governs the operation of the Sovrin identity network by se-
lecting stewards, who run the Sovrin nodes, and deciding over the implementation
of recommendations of the Technical Governance Board, who control the open-
source side of the software development [155].
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Figure 3.10: Organizational structure of Sovrin

Members of the board of trustees are the managing directors of the Sovrin Foun-
dation. They are elected for terms of one year [18]. The board of trustees uses
advisory committees like the Technical Governance Board or the Trust Framework
Committee to decide on specific developments.

For example, one of the tasks of the Technical Governance Board is to develop se-
mantics for claims, including specifying a schema, building ontologies, and pub-
lishing dictionaries. To improve interoperability, this is important to form a com-
mon understanding of the meaning of specific claims.

Management of the identities on the Sovrin ledger is done by combining two well-
known approaches: The web-of-trust and a hierarchical trust model. The for-
mer has been established as a trust management solution by pretty good privacy
(PGP) [63]. The system uses P2P connections between users and derives trust by
spanning a graph over the connections formed by the users signing each other’s
keys. On its own, this system is susceptible to Sybil attacks because creating new
(fake) entities is free. To combat this, Sovrin uses trust anchors that are selected
based on a reputation system and have to vouch for new identities added by them.

The trust in trust anchors is not derived from their connections. Instead, they
are assumed to be trustworthy. The trust of entities is called trust level, and the
highest trust level allows an entity to become a trust anchor.

3.3.3 Research

Research around SSI explores a wide variety of topics, from public blockchains [48]
and smart contracts [167] to IoT [4, 53]. The following research is the most relevant
for the standards and implementation of SSI described in the previous sections.
Section 3.3.3.1 shows options for revoking and deleting credentials and associated
data. This is important for compliance with GDPR. To branch out from personal
identities, the transfer of standards and implementation to IoT and organizational
identities is explored in Section 3.3.3.2.

3.3.3.1 Revocation

Revocation of digital certificates like VCs is difficult to achieve and shares similar-
ities with the challenges of revoking X.509 certificates on the Internet’s PKI [108].
Taking the issues of X.509 certificate revocation into account, a solution proposed
by [3] is similar to how online certificate status protocol (OCSP) works for X.509
certificates. It can be used to issue short-term attestations showing that the VC
has not been revoked. This provides a benefit over utilizing short-lived VC as the
non-revocation attestation can be performed by a dedicated revocation provider
and does not involve the original issuer of the VC to re-issue it.
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An overview of revocation methods suggested for use in SSI is provided by [60].
In their research of related work, they find and differentiate between list-based,
cryptographic accumulators, and credential update methods for achieving VC re-
vocation. They also propose a new revocation method that issues an additional
VC for every VC, which attests to the validity of the linked VC. This procedure is
similar to the one proposed by [3]. The paper by [60] performs a survey that finds
strengths and weaknesses in the domains of privacy, scalability, and maturity for
all mentioned methods. It thus concludes in the title that “the perfect revocation
method does not exist yet” [60]. Indeed, revocation requires either a central trusted
third party, additional direct communication between the issuer and verifier, or
publishing some metadata of VCs to the DLT.

Another challenge is that with SSI, the validity of a VC should also be determinable
in an offline scenario. This further increases the difficulty of proving that the VC is
currently valid. Another paper that proposes a new revocation protocol and com-
pares it to the related work is published by [35]. The authors’ method works based
on a gossip protocol and can achieve offline verification of revocation without the
need for a centralized authority. All issuers and verifiers need to be part of the gos-
sip P2P network. Occasionally, they can receive up-to-date revocation information,
sent as batches of SHA3-256 hashes of the revoked credentials.

3.3.3.2 Identities for general entities

The introduction to SSI and its state-of-the-art in Section 3.3 focused primarily
using SSI for personal identities. While that is currently the central application
area, some research also explores its use in IoT and corporate identities. The re-
search into corporate identities, however, is lacking relevant publications, leaving
all non-personal identity research for SSI to fall into the category of IoT identities.

The research by [53] explores the similarities and differences of identity manage-
ment approaches by PGP, PKI, and SSI with a specific focus on IoT. They find that
SSI can improve IAM for IoT by providing a privacy-oriented decentralized solution
that leaves control over identities with the devices’ owners.

An architecture for IAM for IoT with SSI characteristics is also presented by [64].
In contrast to the other approaches discussed, the authors utilize IOTA, a special
DLT that does not operate on a chain of transactions but a directed acyclic graph
(DAG). The paper shows solutions for IoT device enrolment, issuing of VCs, a web-
of-trust-style trust scoring system, VC revocation, and key recovery mechanisms.

Special care to include GDPR in the considerations around VC revocation is taken
by [8]. The research proposes to use the GDPR-mandated access of users to their
data with any service operating in the EU to create VCs. If the user could generate
VCs by requesting them from any provider within the scope of GDPR, access to VCs
would become much easier.

Another approach to transforming existing information into provable attestations
is described by [194]. The approach proposed by the authors allows users to prove
any content delivered via TLS to be originating from the website indicated by the
X.509 certificate. This can turn almost any website into an issuer without the need
for any modifications to the website.

3.4 Internet of Things
Identity management for IoT focuses on devices and their identification, authenti-
cation, and, to some extent, authorization. With centralized approaches, autho-
rization is usually not an issue, as authorization decisions can be made entirely
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within the central system, and any authenticated system can access at least some
parts of it. With federated approaches, the authorization gets more complicated,
as the decisions can no longer be performed internally but sometimes rely on input
from other federation participants.

Figure 3.11: IAM dimensions for IoT

The resulting relevant sections of the IAM dimensions are depicted in Figure 3.11.
The necessity for IAM in IoT scenarios is especially present in large-scale networks,
as depicted by the scenarios in Section 2.5. As a result, Section 3.4.1 explores
state-of-the-art IAM in challenging conditions of LPWANs. Further relevant re-
search based on IoT is summarized in Section 3.4.2.

3.4.1 Low Power Wide Area Networks
LPWAN technology offers a method of reducing IoT networks’ dependency on cellu-
lar, i. e., GSM, 4G, or 5G networks, and outrange the coverage of wireless protocols
like Wi-Fi and Bluetooth. An overview of different technologies and standards for
LPWANs, i. e., LoRa®/LoRaWAN® or NB-IoT, is provided by different publications
like [34, 93].

A closer look at how IAM can be implemented in an LPWAN protocol is shown with
the example of LoRaWAN®. The LoRaWAN® protocol stack is used in two different
protocol versions. The original series 1.0.X with 1.0.4 [121] currently being the
most recent version and an improved version 1.1 [122]. Version 1.1 fixes some of
the issues that resulted in potential security threats in the earlier 1.0.X versions.
Both versions are not directly compatible, especially on the network side, as 1.1
introduces new components to allow for more flexible key distribution and roaming.
An overview of the two major versions’ architecture is shown in Figure 3.12 and
Figure 3.13.

The network server handles join requests, i. e., an end device’s first message to
the network to establish a connection and generate the required encryption and
message authentication code (MAC) keys. In the original LoRaWAN® specification
for versions 1.0.X, the network server stores the application key, which is used
to derive new application session keys and network session keys. In version 1.1,
the network server only handles session keys, and the join server holds the root
network and application key.
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Figure 3.12: LoRaWAN® key management architecture of version 1.0.x [121]
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Figure 3.13: LoRaWAN® key management architecture of version 1.1 [122]
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The example of LoRaWAN® shows that efficient LPWAN prefer using symmetric
keys for authentication. Multiple symmetric keys are required to allow roaming
between different network operators and to support an infrastructure where in-
dividual entities run gateways and applications. Additional forward secrecy and
integrity protections require even more keys, that must be derived from some root
keys. Other LPWAN standards also rely on symmetric encryption (e. g., NB-IoT) or
leave encryption of messages to the application developer (e. g., Sigfox) [152].

3.4.2 Research

Some of the research into the combination of SSI and IoT was presented in Sec-
tion 3.3.3.2. This section focuses on research for IoT that is independent of SSI and
helps with understanding current IAM solutions for IoT and adapting new ones.

An overview of requirements, challenges, and existing standards for managing IoT
devices is provided by [170]. This publication compares many protocols (i. e., SNMP
and NETCONF), frameworks (i. e., ITU-T), and platforms (i. e., AWS IoT and the
Google Cloud Platform). The paper identifies LwM2M as the most accepted man-
agement protocol for IoT [170]. However, any reference to IAM is missing from the
paper’s descriptions.

Further comparison of management standards for IoT is provided by [2]. The au-
thors compare many of the same approaches for network management and cloud-
based management as [170] but also include frameworks for software-defined net-
working (SDN), semantic-based approaches, and machine learning. The authors
can not determine a clear favorite for any application in IoT, as all approaches have
specific strengths and weaknesses [2]. IAM is absent in this comparison.

As a basic IDM solution, the publication by [185] presents an architecture for IoT
device management with an authentication and authorization framework. The
paper uses an identity store to hold all IoT devices’ identities and issues tokens
that can be used by the devices to perform service requests.

The research in [154] explores the use of blockchain technology to simulate the
backend database of a smart building with multiple IoT devices. They compare
different DLT varieties from Hyperledger, BigchainDB, and MongoDB as a reference
for traditional databases. Their research shows a significant overhead in write
and response times by the DLT solutions, which stays about one second above the
reference in the best case. This latency can be acceptable in some instances, where
it is less relevant, and the advantages of DLT outweigh it.

Another evaluation of applying blockchain technology for IoT and IAM is performed
by [158]. They use LoRaWAN® as the IoT protocol and aim to increase the network’s
reliability by distributing the join server, which can be considered a single point of
failure.

On a more fundamental level of research, the security of any IAM protocol is heav-
ily dependent on cryptography. For security in any IoT application, cryptography
decides if the CIA goals can be protected. In IoT devices that are optimized for long
battery operation, the choice of cryptography is often a trade-off between choosing
strong cryptography and keeping code size, traffic, CPU, and memory usage low.

A protocol for distributing keys emphasizing low-power computing environments is
described by [188]. The author defines three successive protocols for exchanging
keys in a distributed network. The protocols are based on symmetric encryption
and offer a configurable amount of node failures or compromises until the net-
work’s security is broken.
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The research of [43] explores different lightweight cryptographic algorithms for IoT
extensively and shows their strengths and weaknesses. The core comparisons
shown by the authors are lightweight block ciphers, stream ciphers, hash func-
tions, and elliptic curve cryptography (ECC).

3.5 Electronic Identification (eID)

Figure 3.14: IAM dimensions for eID applications

A report from the World Economic Forum on digital identities identifies standards
as the foundation of all identity systems [130]. The report also notices that the
existing standards “lack of coordination and consistency” [130]. A comprehensive
specification of the core eID aspects – Identity, Authentication, and Federation – is
provided by NIST SP 800-63-3 [74]. NIST SP 800-63 provides information and
technical guidelines for digital authentication, focusing on federal systems [74].
The guidelines also include advice for issuing and verifying credentials.

A core mechanic of NIST SP 800-63A is the use of three dimensions for LoAs:

• The identity assurance level (IAL) specifies how thorough the mapping be-
tween a real-world entity and the digital entity described by the identity has
been checked.

• Secondly, the authentication assurance level (AAL) shows how strong a
current session has been authenticated (e. g., by simple password, MFA, or
hardware tokens).

• If federation is used, the federation assurance level (FAL) can indicate how
secure the communication of an assertion to an RP is and whether the user
is aware of the transmission.

In general, though, many different standards affect a small portion of the bigger
picture. A selection of those standards by international standardization organiza-
tions is categorized by [132] into the following five categories and compared against
the standards used for some countries’ implementations of eID systems: Biomet-
rics, Cards, Digital signature, Bar code, and Federation.
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3.5.1 Standards
A selection of important eID standards is presented in this section. Standards
regarding entities’ identities can encompass various aspects. For example, they
can specify how entities are identified, how they are enrolled and their identity
is verified, or how identity data is stored. Standards focusing primarily on the
identity of entities are described in Sections 3.5.1.1 to 3.5.1.5.

Standards for access control usually cover topics like suitable authentication, en-
cryption, or signature methods, including, for example, MFA or attributes and their
respective LoAs, and utilize, for example, the PKI described in Section 3.1.2. Those
standards are described in Sections 3.5.1.6 and 3.5.1.7.

The management side of eID is covered by the NIST SP 800-63C, described in
Section 3.5.1.8.

3.5.1.1 NIST SP 800-63A

The NIST SP 800-63A standard consists of ten sections, of which two are nor-
mative while the rest are informative [76]. The normative sections describe the
requirements for the different IALs and requirements for resolving, validating, and
verifying identities.

In general, the identity establishment process consists of three steps:

1. resolution of attributes and corresponding evidence,

2. validation of the gathered evidence (i. e., are the attributes correct), and

3. verification of the connection between the attributes and the entity (i. e., do
the attributes belong to the claimed entity).

For each of those steps, the standard specifies requirements that can be fulfilled
in five different strengths: unacceptable, weak, fair, strong, and superior.

As additional information, the informative parts of the standard describe different
threats, privacy, and usability considerations.

3.5.1.2 Cryptographic Modules FIPS 140-2

As many eID systems use identity cards to store information, the standards re-
garding their cryptographic modules are important to look at. One of the stan-
dards covering cryptographic modules is Federal Information Processing Standard
(FIPS) 140-3. It covers the design and implementation of cryptographic modules,
including interfaces, authentication, key management, roles, and security regard-
ing physical attacks and electromagnetic interference [180].

The security levels described by the standard are levels 1 to 4. They describe
increasing protection levels by specifying consecutively higher requirements for the
cryptographic module. As such, the levels focus on preventing physical access and
specify which limitations must be met by the general computing platform running
the software.

3.5.1.3 Machine Readable Format ICAO 9303 (ISO 7501)

The International Civil Aviation Organization (ICAO) publishes aviation and travel-
related standards. As part of this, they specify many procedures and requirements
for international cooperation and general safety. For example, they also define the
four-letter airport identification codes.
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For travel documents, the ICAO specifies in Document 9303, which is also par-
tially endorsed by ISO/IEC 7501, a machine-readable format for identity data [91,
177]. In this context, “machine-readable” refers to optical character recognition
and specifies three types of fields of different character widths and line counts.
The information encoded in this field must include the passport holder’s name,
passport number, nationality, date of birth, sex, and expiration date [91].

3.5.1.4 ISO/IEC 14443 Contactless Chip Cards

Many eID cards use ISO/IEC 14443 for card-based contactless identification, ac-
cess, and payment systems. This standard’s prevalence is also because it is part of
the ICAO’s regulations for machine-readable identification documents and pass-
ports used in international air travel. For example, it is used with the German
identity card neuer Personalausweis (nPA) [23] and the German passport [112].

The standard calls chip cards proximity integrated circuit cards (PICCs). Compat-
ible reading devices are called proximity coupling devices (PCDs). The standard
consists of four parts that specify physical characteristics, radio properties, com-
munication and anti-collision mechanisms, and contactless transmission [175].

3.5.1.5 Biometric Interface ISO/IEC 19784

As more and more identity systems use biometrics as an additional identification
feature, a standardized API is needed to capture and verify those across many ven-
dors’ devices. The BioAPI 2.0 standard specified by [178] aims to provide such a
specification and – while application independent – is often used for official docu-
ments, e. g., passports [25].

The BioAPI framework bridges individual applications to specific biometric cap-
ture devices via biometric service providers (BSPs). As a result, the applications
can interact with various capture devices without having to manage device-specific
operations like feature extraction, filtering, and matching.

3.5.1.6 NIST SP 798-63B

Part B of NIST SP 798-63 specifies the types of authenticators that can or cannot
be used to achieve a specified AAL [75]. The authentication methods differentiate
between memorized secrets (i. e., a password), look-up secrets (i. e., printed recov-
ery codes), out-of-band (i. e., SMS, QR code, or Bluetooth-style code verification),
one-time password (OTP) devices, and crypto software or devices. While the lowest
AAL 1 does allow all of those authenticators, the highest level AAL 3 requires a
(multi-factor) crypto device in combination with a memorized secret, an OTP de-
vice combined with a multi-factor crypto device or software, or an OTP device and
crypto software and memorized secret [75].

Additional aspects regulated by the standard are FIPS 140 verification, re-au-
thentication, security controls, MITM resistance, verifier-impersonation resistance,
verifier-compromise resistance, replay resistance, authentication intent, records
retention policies, and privacy controls. Somewhat surprisingly, replay resistance
is only required for AAL 3.

The standard also details authenticator lifecycle management, session manage-
ment, threats and security considerations, and privacy and usability considera-
tions.
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3.5.1.7 Digital Signature Standard FIPS 186-4

One key technology to authenticate entities beyond using PSKs is signatures. The
[179] standard specifies requirements for signatures using Digital Signature Algo-
rithm (DSA), Elliptic Curve Digital Signature Algorithm (ECDSA), and RSA.

For each signature method, the standards specify – where applicable – the per-
mitted parameters, hash functions, key pair generation and management, secret
and signature generation, and signature verification processes. The definitions in
the standard are mostly mathematical and do not feature concrete implementation
advice.

3.5.1.8 NIST SP 800-63C

NIST SP 800-63C handles the communication between IdPs and RPs in a feder-
ated setting [77]. The central part of this document specifies requirements for the
protocol and form of the assertions at the different FALs.

For the assertions, the standard differentiates between two general types of as-
sertions: bearer assertions and holder-of-key assertions. The former can be used
by any entity to prove the bearer’s identity and attributes to the RP. This kind of
assertion is usually used with OpenID Connect Basic Client profile or SAML Web
SSO Artifact Binding profile assertions [77]. The latter assertion type can only be
used by the entity that holds the key referenced in the assertion. The entity must
directly prove possession of the referenced key to the RP.

Again, the standard follows the normative requirements with informative sections
about security, privacy, and usability considerations.

3.5.2 eID Implementations

Actual implementations of eID systems exist in most countries. An overview of
worldwide eID systems focusing on SSI was researched and published in [143] in
preparation for this work. The German approach to eID, which features centralized,
federated, and self-sovereign characteristics, is presented here for reference.

The German official identity document is the German identity card (Personalaus-
weis). Since a revision in 2009, identity cards issued after the first of November
in 2010 contain a chip that contains all the card’s information in digital form and
also can be used for online authentication [26]. This new electronic identity card
is called the nPA. It contains the usual identifying information like name, date
of birth, address, etc., in readable, machine-readable, and digital formats. The
readable and machine-readable parts are largely irrelevant for eID. The key digital
information is stored on a chip that can be read with an NFC reader. This infor-
mation also includes a certificate that can be used for online authentication by the
identity card holder.

Historically a key weakness of the system was the reliance on special hardware
adapters that could connect to personal computers and read the digital informa-
tion from the identity card. Those devices had to be purchased separately, and
adoption is pretty sparse. As an alternative to those readers, many current smart-
phones are equipped with the necessary NFC readers and can be used with the
AusweisApp2 to read the identity cards [137]. This app can also wirelessly connect
to an application on a personal computer within the same LAN and thus be used
to log in to governmental websites on a desktop.
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3.6 Summary

As part of the SSI-focused dive into standards, technologies, and research around
IAM, many sectors of the three-dimensional representation of IAM categories are
explored in this chapter. Sectors without relevant state-of-the-art are depicted in
Figure 3.15. Most notably, self-sovereign management of devices and organizations
is missing, as well as centralized authorization aspects for any kind of identity. The
latter is less relevant, as authorization decisions can be taken as required by the
use case in a centralized system. The lack of state-of-the-art SSI for devices and
organizations can be attributed to SSI being relatively new and focusing on personal
identities. Those parts of SSI concerning device and organizational identities will
be referenced in further chapters as necessary.

Figure 3.15: IAM dimensions not covered by the state-of-the-art

Not every standard, research paper, or implementation can be mapped against the
requirements from Section 2.5, as they often only cover particular aspects of one
or two requirements. Instead, the most relevant systems and general topics are
selected for comparison:

• FIDO 2 is chosen as it provides the most complete framework for identification
and authentication on the Internet.

• Mozilla Persona offers the ability to compare an ultimately failed approach
with many similarities to SSI.

• Dynamic FIM offers state-of-the-art and time-proven IAM in a partly decen-
tralized environment. Many lessons can be learned here to improve SSI.

• SSI/Hyperledger Indy is the go-to implementation for SSI and is under con-
stant development with many supporters. It shows what is currently possible
with SSI.

• German eID highlights the challenges that arise from building eID systems.

• IoT/LoRaWAN® adds the perspective of an IoT-focused environment dealing
with IAM for many devices and experiencing decentralization through a roam-
ing protocol.
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Section 3.6.1 to Section 3.6.6 discuss the individual requirement categories: sat-
isfaction, information, consistency, security, data protection, and robustness. A
combined evaluation is provided in Section 3.6.7.

3.6.1 Satisfaction

The requirements categorized with satisfaction are necessary to satisfy the primary
purpose of an IAM system. Not every system requires all of them, but some are
common to all. Of the selected systems, all support requirements Identification
(SAT3), Authentication (SAT1), and Identity provisioning (SAT4). As indicated
by Figure 3.15, authorization is less covered, which reflects in the fulfillment of
requirement Authorization (SAT2). Authorization is only partly covered by FIM,
as it enables both IdP as well as SP to control authorization by allow or deny listing
specific combinations of services and users. Hyperledger Indy also covers autho-
rization by utilizing VCs similarly to assertions in FIM. The LoRaWAN® roaming
infrastructure uses decentralized authorization to determine which devices can
join the network.

Further requirements get more specific and are not covered by all state-of-the-art.
Requirement Access delegation (SAT6) is only partially covered by ideas within
the SSI space and thus also Hyperledger Indy. Delegation of access decisions is
part of the roaming protocol developed for LoRaWAN®. All other systems do not
consider access delegation.

Without external information, a decentralized system cannot reliably identify which
entities are trustworthy and which may try to impersonate others. To establish the
necessary trust requirement Trust establishment (SAT5) is covered by dynamic
FIM and SSI with Hyperledger Indy. Especially the dynamic FIM research dis-
cusses establishing trust between participants in detail. However, the participants
are usually not wholly unknown beforehand. The SSI approaches also cover first
connections but stay within the realm of technical trust establishment and vaguely
cover organizational trust by using non-decentralized trust anchors.

To scale any network of entities, there should be a way to connect them with-
out manual configuration. This is covered by requirement Automated integra-
tion/registration (SAT7). Similar to requirement Trust establishment (SAT5),
semi-automated connections are supported by dynamic FIM and SSI approaches.
Additionally, also LoRaWAN® roaming can automatically configure devices accord-
ing to foreign networks and join the device.

With IAM systems dynamically incorporating new devices or through a large system
expansion adapting different syntaxes, formats, or languages of identity attributes
becomes more important. Requirement Identity data set matching (SAT8) can
be partially fulfilled by dynamic FIM. The other technologies where this might be
applicable, SSI with Hyperledger Indy and the German eID system, do not support
the automated adaption of identity attributes.

As an extension of plain IAM, a backchannel to message known entities is required
by requirement Message delivery services (SAT9). In static FIM constructs, this
can always be achieved by the application layer. In situations like dynamic FIM,
SSI, and eID this is not trivial. Especially with eID, it is legally required to be able
to send and prove sending messages to citizens. The three systems can support
those messages on an application level. However, SSI could be adapted to integrate
message delivery into the digital identity and completely fulfill this requirement.
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3.6.2 Information

Requirement Credential establishment (INF1) is usually needed to associate cre-
dentials with an identity for authentication. It is fulfilled for all systems that were
explored with the exception of dynamic FIM and the German eID system, as those
two have external processes for establishing credentials.

The usefulness of a system is decided by its applicability in specific situations. Re-
quirement Documentation (INF2) aims to ensure that systems provide the proper
documentation to adapt and use them. All systems except the orphaned Mozilla
Persona project are documented either very well or at least sufficiently.

Connecting the digital and physical world is the job of requirements Digital identi-
fication (INF3) and Physical identification (INF4). Only LoRaWAN® can partially
fulfill the digital identification part, as it supports preloading identity information
as part of the manufacturing or procurement process and utilizes QR codes to
retrieve those IDs from the physical device or packaging. In all other systems,
retrieving a digital identity from a physical device must be handled in both pro-
curement and application. The other way around, identifying a physical device
from a digital identity is also considered to be part of an application’s feature set.

Public information about an entity, especially IoT devices or public organizations,
should be available with knowing the entity’s identifier, as specified by requirement
Product specification (INF5). This is realistically only the case in IoT environ-
ments, including depending on the software stack that is used LoRaWAN®.

Discovering devices or services within a system is handled by requirements Neigh-
bour discovery (INF6) and Service discovery (INF7). None of the state-of-the-art
covers those aspects. However, the requirement Capability exchange (INF9) is
closely related, which allows entities to exchange and negotiate capabilities once
they know each other. This requirement is partially covered by dynamic FIM ap-
proaches and SSI. Continuing in the process from discovery to capability exchange
to processing requirement Agreement monitoring (INF8) allows entities to moni-
tor agreements or terms of contracts autonomously. Facilities for this are part of
SSI approaches, especially if non-personal data is shared through a DLT.

In every application – but especially in eID – it is required that every entity can
show certain attributes. This is handled by requirement Identity data set (INF10).
The presented solutions partially support this for dynamic FIM and SSI and fully
support this in the German eID case, as law requires.

Requirement Level of assurance (INF11) assumes that in a larger IAM system, not
every assertion of attributes can be made with the same level of confidence. The
LoAs represent the confidence in the assertion according to predefined criteria.
This is already possible with FIM and eID and partially covered by SSI. For SSI, a
good way of creating standardized and meaningful LoAs is not yet determined.

3.6.3 Consistency

As a core concept of IAM, credential recovery is important and documented by re-
quirement Credential recovery (CON2). All solutions need to consider it. FIDO2,
Mozilla Persona, dynamic FIM, German eID, and LoRaWAN®, however, do not spec-
ify a process for recovery within the respective system. Instead, the application
layer needs to support some alternative authentication method that would allow
the re-registering of new credentials. The SSI approach is more integrated and
discusses recovery methods. Even though they are more complicated, with SSI,
no central service desk can help with recovery.
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Related to the recovery is the de-provisioning of an identity described in require-
ment Identity de-provisioning (CON1). While it concerns all systems, most leave
the implementation details to the applications. SSI needs to cover de-provisioning
and shows processes for both private and public identities. The latter cannot be
permanently deleted, depending on the used DLT, but they can still be marked as
no longer active.

The requirements Digital twin (CON3) and Content verification (CON4) aim at
IoT applications to keep data between the digital and the physical world consistent.
Those requirements are partly the duties of the respective applications but could
be integrated or assisted by IAM in certain scenarios, as shown by SSI IoT use
cases.

A problem for distributed IAM systems is the potential to diverge due to connectivity
issues. As a result, requirement Netsplit/Join (CON5) seeks to create such sys-
tems in a way that ensures consistency when the systems reconnect. The only fully
decentralized system where this might apply is SSI, which uses consent algorithms
that can handle such situations depending on the respective implementation.

A requirement from the eID scenario that can also be of value in other areas of
application is requirement Once-only (CON6). For FIM, SSI, and eID, this can be
partially fulfilled. Once the attributes are stored at an IdP, wallet, or eID card,
they do not need to be re-entered when visiting different services. The full idea of
services sharing information without the user having to re-submit it is not fulfilled.

3.6.4 Security

All modern approaches to IAM should conform to requirements Security by design
(SEC5) and Security by default (SEC4). This is the case for the selected systems.

A part of this, security by design is featured in requirement Mutual authenti-
cation (SEC3) to require mutual authentication. This prevents impersonation of
entities, on either side. There are different approaches to this shown by the state-
of-the-art. FIDO2 solves the problem by generating a new key pair for every service
the user registers for. This is similar to the pairwise DIDs of SSI. Mozilla Persona
and FIM rely on using X.509 certificates to authenticate the websites to the user.
Therefore, mutual authentication is out of scope for those. The German eID system
also utilizes certificates to authenticate the service to users and their eID cards.
LoRaWAN® supports end-to-end encryption and authentication between IoT de-
vices and the application server.

Another part to securing any kind of account is the support for requirement Multi-
factor authentication (SEC6). The FIDO2 system, with its related standard U2F,
fulfills this requirement. German eID also fulfills this by law, at least for any au-
thentication with high LoA. For FIM, there is research and approaches for MFA,
but it is not widely supported. SSI has different methods of securing the user’s
wallet but no explicit support for MFA. The other systems do not consider MFA to
be in scope.

For the application’s security, it is often necessary to restrict access to certain
parts or data, as described by requirement Access controls (SEC1). The system
for FIDO2, Mozilla Persona, and the German eID do not handle authorization.
Dynamic FIM, SSI, and LoRaWAN® contain aspects of managing authorization to
resources within the respective standards.
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Regardless of the use case for authentication or authorization, all credentials need
to support being revoked if misuse is suspected. This is described in requirement
Credential revocation (SEC2). The only concept handling revocation within its
IAM framework is SSI. The other systems require the application to block creden-
tials or accounts to revoke access.

Ideally, an IAM authentication or authorization process is designed according to
requirement Off-the-record (OTR) (SEC12), and neither party gains information
that could be proven or used with a third party. None of the systems provide this
feature.

Especially for IoT but also transferable to any other IAM setting requirements Se-
cure setup (SEC10) and Secure de-provisioning (SEC9) describe a secure setup
and de-provisioning procedure. The secure setup requirement is met by all sys-
tems. Requirements SEC9 and Identity de-provisioning (CON1) share similar-
ities where the latter already found all approaches besides SSI to be offloading
de-provisioning to the applications. Requirement SEC9, however, focuses more
on the user’s side of de-provisioning. FIDO2 devices can be easily erased and
re-initialized, fulfilling the requirement. For LoRaWAN®, erasure depends on the
hardware but is also possible. The other systems do not handle erasing identity
data explicitly, but for the German eID system, re-use with different identities is
not supported and thus out of scope.

Again originating from IoT, requirements Tamper-evident (SEC7) and Tamper-re-
sistant (SEC11) are concerned with detecting manipulation of IAM hardware. This
is out of scope for all systems that do not use dedicated hardware. FIDO2 hard-
ware tokens are designed and built to be hard to tamper with, comparable to the
German eID card. For LoRaWAN®, no direct provisions for detecting or preventing
tampering with end devices are specified. The key storage is dependent on the
manufacturer’s choice of IoT hardware.

Requirement Delegation parameters (SEC8) demands the ability to delegate per-
missions depending on user-defined parameters. None of the solutions support
this, exception for SSI, where delegation is a research topic.

The requirement Trust service providers (SEC13) from eID requires some trust
anchors that act as ultimately trustworthy authorities. For most IAM systems, this
is out of scope and deferred to an X.509 certificate infrastructure, but the German
eID, and to some extent, trust anchors in SSI do provide this requirement.

3.6.5 Data Protection

The basis for data protection is defined by requirements Privacy by default (DAT1),
Privacy by design (DAT2), and GDPR (DAT3). FIDO2 and the German eID fulfill
all of the requirements. So does LoRaWAN®, but its fulfillment of DAT3 cannot be
determined. Mozilla Persona does partially fulfill those three requirements, limited
by the fact that the identity is always bound to a personalized email address. FIM
and SSI are designed to be privacy-friendly, but implementations can weaken the
protections, and additional contracts are required to ensure GDPR compliance.

Requirement Multiple identities (DAT4) is fulfilled by Mozilla Persona and SSI.
FIDO2 can partially fulfill it. On the one hand, every authentication connection
utilizes a different key pair, which equates to a new identity. On the other hand,
multiple devices can further separate identities. FIM, eID, and LoRaWAN® do not
support multiple identities. In the eID case, this is by design. In the case of
LoRaWAN® and FIM, it is usually unwanted or unnecessary, as the identities are
only usable within a specific environment.
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To protect the identity at rest requirement Protected application storage (DAT5)
concerns how keys and other identity materials are stored. The FIDO2 and German
eID approach fulfill this by providing hardware-based security for high LoAs. The
other systems can support it depending on the implementation.

Requirement Correlation resistance (DAT6) should prevent an external observer
from learning details about the entities involved in an exchange by analyzing meta-
data. Due to exchanges being done over HTTPS for the primary web-based appli-
cations, this is not an issue beyond what is observable anyway, i. e., IP addresses.
With the involvement of DLT, preventing correlation is harder and dependent on
implementation details in SSI because some metadata, i. e., who created or is-
sued VCs, may be recorded in a public database. The situation is even worse for
LoRaWAN®, where an observer can identify traffic patterns of individual devices.

A narrower view of requirement DAT6 is described by requirements External track-
ing resistance (DAT7) and Internal tracking resistance (DAT8). They specifically
demand that an entity should not be able to be tracked geographically either by ex-
ternal or internal observers. Those two requirements are only applicable to SSI and
LoRaWAN®, which both fulfill them partially, as it is not possible to track entities
generally. However, it is possible to determine their presence locally.

3.6.6 Robustness
A central requirement for robustness is requirement Reliability (ROB1). As Mozilla
Persona is no longer used or developed, it is not covered by this requirement.
FIDO2, German eID, and LoRaWAN® can fulfill the requirement. The remaining
dynamic FIM and SSI are not as reliable.

Part of the robustness category are the requirements Accessibility (ROB2), Ap-
proachability (ROB3), and Usability (ROB4). Mozilla Persona would fulfill those
requirements, but due to it being deprecated is not scored. The FIM system fulfills
ROB3, as the users do not need to set up anything. The others all require some
explanation to be used. ROB2 is fulfilled by SSI, with the wallet app being a cen-
tral component that can be utilized on mobile, PC, or in person. The other systems
are all limited to certain devices or prerequisite hardware. Requirement ROB4 is
fulfilled by FIDO2, as it is easy to set up and hard to use wrong. The other systems
are all more difficult to set up and not as straightforward to use.

Tied in with usability is requirement Platform independence (ROB7), which is ful-
filled by all systems due to the mostly web-based nature. Even LoRaWAN® can be
utilized on different microprocessors. However, requirement Communication pro-
tocol independence (ROB9) is not as universally fulfilled. Usually, the protocols
require HTTPS or, in the case of LoRaWAN® LoRa®. Switching transport protocols
is possible but requires significant effort.

In some situations, verifying an entity’s identity while offline is important, as de-
scribed by requirement Offline authNZ (ROB5). None of the systems can offer
this, as they are all primarily focused on communication through the Internet. A
relaxed version of ROB5 is requirement Standalone authNZ (ROB12), which re-
quires authenticating an entity within a network temporarily disconnected from
the Internet. This can be archived with SSI but not with any of the other systems.

The ability to scale the IAM solution is demanded by requirement Scalability
(ROB6). Most systems scale to some extent but are then limited by hardware costs
for FIDO2 hardware, acceptance for Mozilla Persona and SSI, and federation size
for FIM. The eID systems do scale worse than others, as high LoA identity cards
are expensive and limited to certain services. LoRaWAN® can scale very efficiently
to many thousands of devices with preloaded identity data by the manufacturer.
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Connected to scalability is requirement Resource efficiency (ROB10), wich specif-
ically handles resource efficiency on the entity’s side. This requirement is only
really applicable to systems that require much computation on the client-side. Be-
cause of the low-power IoT scenario, this affects LoRaWAN® and can be fulfilled
partially.

Not only scaling the system but also scaling trust relationships without a trust
authority is covered by requirement Transitive trust (ROB8). This only applies to
systems that cover trust relationships, i. e., dynamic FIM and SSI. Both of those
partially fulfill this requirement.

Any networked system can be attacked by a distributed denial of service (DDoS) at-
tack. Requirement DDoS protection (ROB11) affects IAM-system integrated DDoS
protection. This does not apply to systems that require interaction with another
entity before authenticating, i. e., FIDO2, Mozilla Persona, FIM, and eID. The re-
maining SSI and LoRaWAN® do not handle DDoS protection within the protocols
but require applications to handle it.

3.6.7 Combined Evaluation
The previous sections evaluated selected state-of-the-art against the requirements
found from the scenarios of Section 2.5. Fulfillment of the requirements is heavily
dependent on the scope of the considered state-of-the-art.

All systems fulfill the essential requirements Identification (SAT3), Authentica-
tion (SAT1), and Identity provisioning (SAT4). Requirements Security by design
(SEC5), Security by default (SEC4), and Scalability (ROB6) are also fulfilled by
all.

On the other end of the spectrum, requirements Off-the-record (OTR) (SEC12),
Offline authNZ (ROB5), and DDoS protection (ROB11) are not fulfilled by any
(applicable) state-of-the-art. Any other requirements are at least partly fulfilled by
some state-of-the-art.

A table summarizing the individual state-of-the-art applicability of the require-
ments of Section 2.6 is provided in Table 3.2. The following chapter describes the
newly developed concept aiming to fulfill most requirements to provide a compre-
hensive SSI framework.
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Table 3.2: Applicability of the state-of-the-art towards the requirements of Chap-
ter 2
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SAT1: Authentication * * * * * * ↑
SAT2: Authorization - - ∼ ∼ - ∼ ↑
SAT3: Identification * * * * * * ↑
SAT4: Identity provisioning + + * * * + ↑
SAT5: Trust establishment + ∼ ↑
SAT6: Access delegation ∼ ∼ l
SAT7: Automated integration/registration ∼ ∼ - ↑
SAT8: Identity data set matching ∼ - - l
SAT9: Message delivery services ∼ ∼ ∼ ↓
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n INF1: Credential establishment * + + ∼ ↑

INF2: Documentation + - + + ∼ ∼ l
INF3: Digital identification ∼ ↑
INF4: Physical identification ↑
INF5: Product specification ∼ l
INF6: Neighbour discovery ↑
INF7: Service discovery ↓
INF8: Agreement monitoring ∼ l
INF9: Capability exchange ∼ ∼ l
INF10: Identity data set ∼ ∼ + ↑
INF11: Level of assurance + ∼ + l
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CON1: Identity de-provisioning - - - + - - ↑
CON2: Credential recovery - - - ∼ - - l
CON3: Digital twin ∼ l
CON4: Content verification ∼ l
CON5: Netsplit/Join ∼ l
CON6: Once-only ∼ ∼ ∼ l
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SEC1: Access controls ∼ ∼ ∼ ↑
SEC2: Credential revocation - - - ∼ - - ↑
SEC3: Mutual authentication + + * * ↑
SEC4: Security by default * + + + * + ↑
SEC5: Security by design * + + + * + ↑
SEC6: Multi-factor authentication * ∼ - + l

Continued on next page
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Table 3.2: Applicability of the state-of-the-art towards the requirements of Chap-
ter 2 (Continued)

SEC7: Tamper-evident + + - ↑
SEC8: Delegation parameters ∼ l
SEC9: Secure de-provisioning + - - - ∼ l
SEC10: Secure setup + + + + + + l
SEC11: Tamper-resistant + + - l
SEC12: Off-the-record (OTR) - - - - - - ↑
SEC13: Trust service providers ∼ + l
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DAT1: Privacy by default + ∼ ∼ ∼ + + ↑
DAT2: Privacy by design + ∼ + + + + ↑
DAT3: GDPR + ∼ ∼ ∼ + l
DAT4: Multiple identities ∼ + - + - - ↓
DAT5: Protected application storage + ∼ ∼ ∼ + ∼ ↑
DAT6: Correlation resistance * + + ∼ + - l
DAT7: External tracking resistance ∼ ∼ l
DAT8: Internal tracking resistance ∼ ∼ l
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ROB1: Reliability + ∼ ∼ + + ↑
ROB2: Accessibility ∼ ∼ + ∼ ∼ l
ROB3: Approachability ∼ + ∼ ∼ ∼ l
ROB4: Usability + ∼ ∼ ∼ ∼ l
ROB5: Offline authNZ - - - - - - ↑
ROB6: Scalability ∼ ∼ ∼ ∼ - + ↑
ROB7: Platform independence + + + + + + l
ROB8: Transitive trust ∼ ∼ l
ROB9: Communication protocol independence ∼ ∼ ∼ ∼ ∼ ∼ l
ROB10: Resource efficiency ∼ l
ROB11: DDoS protection - - l
ROB12: Standalone authNZ - - - ∼ - - l

Key: ↑ essential, l important, ↓ optional, * completely fulfilled,
+ fulfilled, ∼ partially fulfilled, - not fulfilled, not applicable
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This chapter describes the developed concept for a widely usable SSI architecture.
It is built on top of existing state-of-the-art IAM and SSI technologies described
in Chapter 3. To form this improved system, which fits the requirements from
Chapter 2, the concept focuses on the following key areas of development:

• Wide applicability of SSI encompassing web applications, IoT, cloud comput-
ing, and eID. The strengths of an SSI system are only fully utilized if the
system can be used in many applications.

• Interoperability with other SSI systems, existing IAM solutions, and a clear
transition path. It is doubtful that there will be the one SSI system to rule all
identities; instead, the different specializations need an interface to be used
concurrently.
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• Efficient and effective security management for distributed systems. Large,
diverse interoperable distributed networks are notoriously hard to secure. For
example, with SSI, there is a chance to use the lessons learned from the
Internet, by now a massive distributed network.

• Data protection management for end users, relying parties, and attribute au-
thorities. Like the system’s security, data protection – both by design and by
default – is essential to any IT system’s design. Those features are expected
by users and required by laws today.

Those developments offer benefits to all participants of an SSI system. Respectively,
the most significant improvements to the current state-of-the-art are described for
each stakeholders’ category below. Further detailing of the contributions of this
concept is provided in Section 4.2 and Figure 4.1.

• Users benefit from the described SSI concept by using a secure and reliable
IAM system that integrates so well that they do not notice any major differ-
ences to existing IAM approaches. The trust gateway (TGW), described in
Section 4.3.7, makes it easier for users to transfer VCs from one system to
another, preventing being locked into a specific IAM ecosystem.

• Developers must understand the systems they are developing to build and in-
tegrate new technology securely. As a result, the concept provides alternative
methods for exchanging and presenting VCs, which do not involve zero-know-
ledge proofs but instead rely on classic X.509 certificate-like constructs, as
described in Section 4.4.

• Organizations, including individual service providers, identity providers,
and attribute providers, face a hurdle when adopting new technologies, as
every technological switch is associated with risks of failure and service inter-
ruption, potentially leading to financial and reputation loss. To reduce those
challenges, this concept shows a migration path from existing IAM systems.
A new component, the credential localization service (CLS), is described
in Section 4.3.6. It aims to smoothen a migration and support long-term
operations by improving the compatibility of different VC schemes.

• Administrators need to understand and effectively run the new components.
The complete architecture can be easily adapted to all use cases from the
scenarios, as shown in Section 4.5, and provides guidelines for the secure
operation of the SSI system.

This chapter’s further structure is divided as follows. First, Section 4.1 defines
the scope of the concept. Then, Section 4.2 provides a high-level overview of the
complete architecture, showing relationships, new and modified parts, and indi-
cating what to expect in the following more detail-orientated sections. Afterward,
Section 4.3 lists and characterizes all relevant SSI components affected by this
concept, shows connections, and describes inter-component dependencies. The
components are then combined to form the reference architecture in Section 4.4.
Integration of the reference architecture with selected scenarios from Chapter 2 is
shown in Section 4.5. Lastly, Section 4.6 compares the resulting concept to the
requirements gathered from the scenarios of Section 2.

4.1 Scope
This chapter specifies a conceptual model and a reference architecture, includ-
ing the system’s components’ characteristics. It is designed for a general-purpose
SSI system for personal, organizational, and IoT identities. Because of the large
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spectrum of possible applications, the core concept will leave some leeway for con-
text-specific adaptations and implementations. Specific use cases are taken from
the scenarios described in Chapter 2. For those, integration methods are shown to
substantiate the concept of an SSI IAM system from scratch or a previously exist-
ing IAM system. Prototype implementations of the conceptual description of this
chapter are described in Chapter 5.

4.2 High-Level View of the Architecture

The concept described in this chapter aims to fulfill the requirements gathered
in Section 2.6 using existing FIM and SSI concepts where possible and adding
new components where necessary. An overview of the architecture, including all
components and connections, is depicted in Figure 4.1. The overview highlights
new contributions with a blue star ( ) and modified components with a red octagon
( ).

As shown in Figure 4.1, the concept is divided into four main areas, highlighted
by different colors. Each area encompasses further components which fulfill spe-
cific tasks. The components are connected through relations that depict protocols
necessary to exchange the information required.

• Users are the main subject of digital identities. They can be natural persons,
organizations, or machines and possess attributes that describe them. Those
attributes need to be expressed and exchanged digitally and securely. This is
the job of VCs. The protocol for representing attributes as VCs connects the
users’ digital identities to their digital identity wallets.

• As part of the SSI core components, the wallet stores the digital represen-
tations of the entity’s attributes as VCs. New contributions to the wallets are
their cross-device design applicable to smartphones, browsers, servers, and
IoT. To form a VC, the correctness of the claims of specific attribute values
is asserted by an issuer. These VCs can be presented to an RP to verify the
entity’s attributes.

• The supporting infrastructure is added to augment the core components for
better usability and to allow migration from other IAM systems. The central
usability component is the agent, which acts on behalf of the user to pass
messages from their wallet to the issuers or RPs and vice versa. The concept
describes protocols for communication between agents and wallets, as well as
agents and RPs or issuers. Trust gateways are a new type of agent with the
task of translating between IAM systems. They act as issuers and cloud-based
wallets. To do this, they import an entity’s attributes from other IAM systems
and provide an easy-to-use substitute for a dedicated wallet in another SSI
system. If the supplied VCs are not in a format that can be used directly,
the RP can use the newly described credential localization service to obtain
automated rules for localization.

• As this system aims to be as decentralized as possible, the communication
and organization between participants is performed using distributed ledger
technology. This serves as a metadata store containing descriptions of at-
tribute schemata and public identities. New contributions to the DLT com-
ponent are the open design, allowing the use of different DLTs and exchang-
ing the DLT by non-decentralized systems like a PKI. It is run by multiple
operators and governed by a community, where new adaptions of security
management are presented.
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Figure 4.1: Overview of the resulting architecture, components, and key contribu-
tions
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4.3 SSI Components
As described by [134], the essential components of SSI are identification, authen-
tication, verifiable claims, and storage. The authors describe how each functional
components has challenges that must be overcome in a decentralized architecture.
In this concept, the components are based on the elements of the resulting sys-
tem, which the functional components need to be part of. Figure 4.2 shows those
components and their primary interactions.

Figure 4.2: Component overview

A systematic approach analyzes each component’s properties individually, only ref-
erencing other components where interfaces and communication relations require
doing so. For each component described in this section, the following four mod-
els will be provided, according to the definition by [81] and the OSI management
architecture [92, 97]. This established and structured approach helps cover the
most relevant aspects of a management system.

• Information Model: Describes what is managed by characterizing the man-
aged object. This is usually done by creating an object-oriented overview of
components and their relations.

• Organizational Model: Describes who is part of the cooperation scope. This
is done by determining the relevant actors, specifying their domains, and
determining their principles of cooperation through policies. Usually, systems
are assigned the roles of manager or agent for this.

• Communication Model: Describes how management information and in-
structions are exchanged. This is usually done by defining a management
information protocol.

• Functional Model: Describes how management takes place. This is usu-
ally done by declaring the required functionality for the general management
function areas: fault, configuration, accounting, performance, and security
management (FCAPS). The security aspect is not described in this model. In-
stead, it is discussed in its own security management section.

In addition to those four models, each component is viewed from a security and
data protection management point of view. The security management part is
based on providing a balanced evaluation of the protections described by the CIA
triad. It provides methods based on ISO/IEC 27001 to manage and monitor a
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component’s security. Data protection management is based on the concepts and
requirements stipulated by the GDPR. An overview of the different aspects and
components is shown in Figure 4.3.

Figure 4.3: Aspects that are considered for each of the components

At the end of this section, in Section 4.3.9, the individual components are put into
relation with each other. These relations are then used by the concept described
in Section 4.4 to build the complete concept.

4.3.1 Distributed Ledger
At the core of the development of SSI is the use of DLT to share the various amounts
of accruing data. The design of the distributed ledger decides many of the resulting
system’s properties, including security, performance, and scalability. Distributed
ledgers are differentiated from federated and distributed databases by having a
consistent global state replicated across all participating nodes. Multiple people
or organizations run those nodes and keep track of transactions and a consistent
state without requiring trusting in the other nodes’ correct behavior.

These properties make distributed ledgers ideal for bringing together large groups
of like-minded organizations. Compared to regular relational database manage-
ment systems (RDBMSs), however, the structure of the state-based database is
considerably different. The complexity of possible transactions is somewhat lim-
ited, and there is no universal query language, like SQL. Optimizing DLT and uni-
fying access is an ongoing effort, which initial adopters will have to take a pass
on.

While there is rapid development in the DLT sector, it is not easy or obvious to
choose the right distributed ledger for a particular SSI project or correctly identify
the need for DLT in the first place. The following sections showcase essential as-
pects of the distributed ledger when used as an SSI data store. This section also
shows how a PKI system can be an alternative to DLTs.

4.3.1.1 Information Model

The information model of the DLT is split into two parts: the distributed ledger itself
and the data stored on the ledger. Figure 4.4 shows this model and distinguishes
between the two parts by showing distributed ledger managed objects with a yellow
background color and the managed stored data with a turquoise background. The
following description first focuses on the distributed ledger part and then describes
the ledger’s contents.

A distributed ledger is formed by the nodes operating according to its rules and its
initial state defined by the genesis file. The genesis file usually contains metadata
necessary to operate the distributed ledger, such as the public keys and addresses
of the initial participants. The rules are specified by the implementation of a spe-
cific ledger and its parameters. The consensus algorithm determines how new
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blocks are added to the ledger by describing how consensus about the ledger’s
state is formed between all nodes. Different consensus mechanisms are possible,
and each has advantages and drawbacks.

Any node can enter new transactions into the pool, thus extending the pool of
pending transactions. In order to add new information to the ledger those pending
transactions must be picked up by a validator. Those take part in continuing the
ledger and form new blocks by selecting transactions out of the pool of pending
transactions. The validators can add the new blocks to the distributed ledger,
available to any nodes with read access. The observer type of node only observes
the process of adding new blocks, noticing any misbehavior or failures. It holds a
copy of the distributed ledger and can also serve as a standby node to take over if
validators fail or become disconnected.

As transactions can only add new data, the stored data is a sequence of additions.
Subsequently, additions may update existing data or mark transactions as deleted
without removing previously published data. To optimize the local storage for more
space and read efficiency, nodes may create snapshots of the ledger’s state at cer-
tain points in time and remove any previous transactions. This prevents having to
replay all transactions from the start when searching for a value or determining
the state at a specific point in time. Each node keeps as much of the ledger stored
as necessary for its operation.

Transactions for SSI ledgers following this concept come in three flavors:

• Public identities use the IdRegistration to publish a part of their public iden-
tity to the ledger. This allows others to identify those entities and access the
metadata stored in the metadata document, stored in an off-chain location
and only linked to by the transaction.

• The SchemaDefinition can be used to define new attributes and their compo-
sition. Schemata defined this way can be re-used by different parties.

• The PrevSigBundle publication publicizes the no longer valid VCs’ public and
private keys. This serves the purpose of devaluing old VCs and achieving
plausible deniability.

As storage space on the distributed ledger can be quite limited, larger files (e. g.,
large text files, pictures, or even videos) need to be stored elsewhere. This is called
off-chain storage, which is then referenced within the transaction. The contents of
the off-chain storage may change or disappear without an additional transaction
being issued. Thus the state of the content must be saved on the ledger. This is
done by including a hash of the referenced data in the transaction. Keeping the
permanently stored transaction’s size low also minimizes the risk of accidental or
deliberate inclusion of illegal, unwanted, or PII content.

4.3.1.2 Organization Model

Within the distributed ledger, several nodes work together to maintain a consistent
state by applying ordered transactions. Those nodes appear in their general roles
as observers or verifiers. In the organizational model, those nodes are not shown as
individual actors, as they cannot take action other than those specified by the DLT’s
protocol. The observers only check the verifiers’ actions to spot and alert others if
the rules of building transactions on the DLT are violated. They are easier to set
up than verifiers, which do the actual task of ordering and inserting transactions
onto the DLT.
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For any meaningful benefit of adding the complexity of a distributed ledger, the
nodes must be controlled by multiple individuals or independent organizations.
Otherwise, a regular (distributed) database can achieve the same distributed data
storage. A regular database also performs better, is easier to maintain, and can
recovered more easily from errors.

As the central organizational medium of data exchange in an SSI system, the dis-
tributed ledger is connected to most other organizational units, as shown in Fig-
ure 4.5. It primarily acts as a trust anchor that the other stakeholders’ actors use
to retrieve and verify metadata required for trust management.

Figure 4.5: Organizational relations of the distributed ledger

For SSI to work, it is essential that relying parties can trust the credentials issued
by the issuers. To manage these trust relationships, the issuer, the relying party,
and the TGW must have a trust manager. The trust manager utilizes the DLT in
the trust establishment process to form connections to the other issuers, relying
parties, or TGWs. This trust establishment can be supported with DLT by providing
trust anchors, i. e., public key certificates of certain entities indexed by their unique
identifiers. These trust anchors can be augmented with further metadata from a
metadata document to provide a transparent method of finding the most up-to-date
information about a public entity. This method of pinning trust to certain identities
does not scale well, as keeping track of the number of identities recognized as
trustworthy can get confusing quickly. As a result, this method can be used by
governments and large corporations, but smaller businesses or individual entities
require a more decentralized approach.

One solution might be the implementation of a trust hierarchy, as it is already
used for X.509 certificates on the Internet for HTTPS. The hierarchical approach,
however, inherently creates a power discrepancy between entities at the top and
those further down in the tree, a solution incompatible with self-sovereignty.
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The agent also connects to the distributed ledger to vet any requests and responses
from and to the user’s wallet. This vetting process can be used to reduce the
likelihood of impersonations or other phishing attacks.

4.3.1.3 Communication Model

A distributed ledger provides two distinct interfaces for the communication of man-
agement information. The first is for inter-ledger communication and is used to
synchronize the ledger state with other nodes of the P2P network. The second in-
terface provides an API to access a node in order to submit new transactions or
read the ledger’s state.

P2P protocol When adding a new node to a distributed ledger, the process must
differentiate between the different ledger types. Joining a ledger with read access
only (i. e., for observers) can be done at public ledgers without any prior regis-
tration. Private ledgers, however, will require registration and authentication to
access. Both paths are shown in Figure 4.6.

request access credential: sig(idn, nonce)

DLT

Node

generate public-private key pair: pkn, skn

generate idn from pkn

return new credential: enc(cn)

request blocks: pres(cn), istart, iend

verify idn with pkn is
known and allowed to
access

[ledger type == private]

return blocks

[else] request blocks: istart, iend

return blocks

join/register idn with ledger (out-of-band)

verifiy received blocks' transactions

alternative

Figure 4.6: Join-sequence of a new node to an existing distributed ledger
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The first step to participation in a private distributed ledger is to generate a public-
private key pair, which generates a unique ID to identify the new participant. This
identifier has to be registered with the operators of the distributed ledger through
a management system that is ledger-specific. A distributed ledger focused on IAM
can use its own IDM system to control access to the ledger using a VC to represent
access permissions. Once this access credential is obtained, a verifiable presen-
tation of this credential can be presented to other ledger participants to request
any number of blocks. In a public ledger, this workflow is considerably easier, as
every participant can request any number of blocks from any participant already
synchronized with the ledger to retrieve the ledger’s information. After receiving
blocks from the distributed ledger, the receiving nodes must check their correct-
ness. This is done by tracing the transactions from the last verified snapshot or
the genesis file.

A new block of the distributed ledger is created according to the distributed ledger’s
consensus protocol. It is run by a node grouping several transactions, executing
the transactions’ actions, and storing the process resulting in a new block. The
newly formed block is then distributed to all other nodes within the network via a
P2P protocol. Similar to the transactions, each node has to check the correctness
of the application of the new block’s transactions to the ledger to prevent a rogue
node from violating the processing rules of the ledger.

A permissioned ledger requires registration for creating new blocks; a permission-
less ledger does not. Irrespective of the registration a public-private key pair is
always required for submitting new blocks to a ledger, as submissions must be
signed by the participant creating the new block. For SSI distributed ledgers, the
permission to submit new blocks can be represented by a VC. The adapted flow is
depicted in Figure 4.7.

API protocol The ledger’s API is, for example, used by the agents to query the
DLT’s current state. This is described in more detail in Section 4.3.3.3. Additional
use cases to access the ledger’s API include submitting transactions by entities
that are not themselves nodes. Those transactions can register public identities,
create VC schemata, or publish discarded private keys.

Submitting a new transaction to the pool of pending transactions can be done by
any entity allowed to access the corresponding API on a node participating in the
distributed ledger. The node receiving a new transaction must check the trans-
action’s validity against the set of rules set forth by the distributed ledger. If the
transaction checks out, it is distributed via the P2P protocol, described in the
previous Section 4.3.1.3, to all other nodes of the network. At each step in the dis-
tribution, each node has to recheck the validity to prevent a node from submitting
and distributing a bogus transaction.

4.3.1.4 Functional Model

As a special type of database, the distributed ledger supports just two operations:
adding and retrieving values. Modifications are implicitly done by adding the up-
dated value of an object at a later time. All additions are recorded, and the present
state of the ledger can always be reconstructed by replaying all additions from the
initial state. Reading from the distributed ledger yields the values stored at the
requested time.
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request access credential: sig(idn, nonce)

DLT

Node

generate public-private key pair: pkn, skn

generate idn from pkn

return new credential: enc(cn)

publish new block: pres(cn), sig(bi+1), bi+1

verify idn with pkn is
known and allowed to
access

[ledger type == permissioned]

[else]

publish new block: sig(bi+1), bi+1

join/register idn with ledger (out-of-band)

run consensus protocol

run consensus protocol

alternative

Figure 4.7: Submission sequence of a new node to an existing distributed ledger
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More advanced distributed ledgers may also support the execution of code stored
on the ledger as a result of a previous addition. These programs are called Smart
Contracts or Chaincode, depending on the ledger used, and their execution can
result in further additions to the ledger. This introduces a method to automate
operations on the distributed ledger’s state.

Faults in a distributed ledger can occur at multiple locations. One of the most sig-
nificant risks to a distributed ledger is the malicious or accidental submission of
a transaction that breaks the – up-until-then – perceived rules of the ledger. Sim-
ilarly, a transaction might be issued by a compromised entity, resulting in an un-
desirable ledger state, but without breaking fundamental assertions of the ledger.
There are numerous examples of such events happening in all types of – but pri-
marily public/permission-less – DLTs [44, 94]. Reactions to those events have
differed strongly: from not recovering at all to reverting transactions and starting
over from a previous point in time. A recovery or rollback strategy must be defined
for an SSI ledger to react to such events.

The DLT’s configuration consists of its genesis file, describing the initial state, and
the rules describing valid transactions (i. e., modifications of that initial state). All
participants must prepare and agreed upon any changes to those rules. Other-
wise, there is the risk of splitting the network into two groups: the one accepting
transactions according to the updated rules and those that do not accept the new
transactions.

As the backbone of the SSI system, the DLT can also be used to finance the op-
eration. With classic blockchains (i. e., Bitcoin or Ethereum), each transaction
requires fees paid to the verifying nodes. For permissioned DLTs, this is not neces-
sarily the case, and membership fees can offset operating costs. The goal of an SSI
system is that basic usage (owning, managing, and presenting credentials) should
be free. This can be achieved by government subsidies or by charging larger is-
suers. Those issuers may pass parts of those costs on to the identities receiving a
credential.

A DLT’s performance is usually measured in transactions per second. A high
transactional load is not expected for an SSI-focused DLT following this concept,
as transactions are only required to add or update public identities. Most ac-
tions, such as issuing and presenting credentials, can – and for privacy reasons
should – be done completely off-ledger.

4.3.1.5 Security Management

On a basic level, centralization of power is a key risk for DLT, especially if the
consensus protocol allows public participation and the participating parties can
collude to gain a majority capable of rewriting parts of the ledger. This is primarily
a concern for cryptocurrencies, as such rewrites can allow an attacker to spend
currency tokens multiple times. Depending on the value of those tokens, there
is a strong financial incentive to try to achieve this. Rewriting history on an SSI-
focused distributed ledger is less incentivized, as there is no direct financial gain.
However, a successful attack might allow a denial of service (DoS) attack.

Of the CIA triad, integrity is the most critical aspect of running a distributed ledger.
The local state of the nodes’ databases should always be in sync with the state of
the other nodes. To ensure this is the case, proper implementation with rigorous
testing is required. Additionally, a process for regular and timely software updates
is necessary to keep up-to-date, especially with new and fast-developing DLT.

Connection losses or general availability problems can also compromise the sys-
tem’s effectiveness, as catching up with the most current state of the network can
take considerable time. During this time, the node cannot query the current state
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or validate new transactions. Catching up to the network is usually a built-in
procedure to the distributed ledger’s software for nodes, but the sophistication of
approaches varies. If there is no built-in quick way to catch up, e. g., using snap-
shots, additional backup tools to speed up restoring to a relatively recent state are
essential. On top of that, in critical systems using multiple nodes on separated
hardware within an organization can provide fast fail-over and increase availabil-
ity.

Confidentiality is mainly important for protecting private keys, which are used to
sign messages to other nodes on the network. Accidental loss of the private keys
prevents a node from operating. If an attacker steals the key, they can easily im-
personate the node. To reduce the attack surface and potential for errors, a node
should be run on dedicated hardware with tight access controls, constant system
updates, and continuous monitoring.

For permissioned blockchains and especially Hyperledger Fabric, the paper [151]
evaluates published attacks and determines threat indicators. Of those, attacks
related to smart contracts are ignored, as they are not relevant for an SSI-based
DLT, which does not need smart contracts. Additionally, threat indicators specific
to the Hyperledger Fabric DLT are omitted, as they do not fit the universal appli-
cability targeted here. After grouping the indicators into categories, the resulting
threat indicators are as follows. Any indicator described in [151] is marked with •.

• Transaction-based:

– Transaction throughput• can be used to determine irregularities in the
number of processed transactions. Sudden drops might indicate a fault
at multiple verifiers.

– Transaction latency• is related to throughput, as the latency is the time
between creating a transaction and including it in a block. It will rise if
transaction processing slows down.

– The number of outstanding transactions• is another metric that can
be used, similar to the transaction throughput and latency. It measures
the number of transactions waiting in the pool of to-be-processed trans-
actions.

– Similarly, the age of outstanding transactions• can show whether older
transactions are processed.

– Client applications can track their outgoing transactions• to determine
if they are processed as expected.

• Network-based:

– Incoming network messages• can be used to dissect the message types
and frequency of received messages. A shift in distribution or absolute
numbers can indicate network operation changes.

– The number of connected peers• can indicate the healthiness of the
network and show connectivity problems.

• Block-based:

– Discarded blocks•, meaning blocks received but which could not be val-
idated, can indicate a misconfiguration or active attack.

– Observation and checking of the latest block hashes• can allow an entity
to ensure the correct continuance of the ledger.

• Depending on the used consensus protocol, some of the following consensus-
based metrics could be used:
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– Monitoring consensus failure rates, i. e., how often blocks with different
transactions are issued by separate nodes, can hint at ongoing attacks.
In some DLTs’ consensus mechanisms, those failures are to be expected,
but their occurrence should be randomly distributed. In others, those
failures should never occur.

– If consensus requires the selection of a leading node, the leader election
frequency• can show potential attacks.

• Others:

– Configuration and implementation changes must be closely monitored
to detect any new vulnerabilities they might introduce. The DLT for SSI
should be feature complete and not require functional updates.

– Transactor identities• can be monitored to detect the absence of a usu-
ally reliable node or the appearance of many new nodes.

– Threat intelligence on vulnerabilities• is essential for all components:
the hardware, the operating system, and the software and its dependen-
cies.

Without a central operator responsible for running the distributed ledger, each
operator must take responsibility for providing the best security possible.

4.3.1.6 Data Protection Management

The most significant risk concerning data protection with running a distributed
ledger arises from the potential of accidental or negligent inclusion of private per-
sonal information in transactions to the distributed ledger. As any data stored on
the distributed ledger will always stay there and should be treated as publicly ac-
cessible, particular care has to be taken to prevent the inclusion of data not meant
for publication. Filtering transactions based on potential data protection violations
is complicated, as no single node operator can effectively prevent the inclusion of
transactions. Instead, a network-wide effort must be made to define clear rules
adhered to by those submitting transactions and enforced by those validating the
transactions.

If illegal data, which has been found, for example, on the Bitcoin blockchain [128],
or if PII, which has to be removable due to regulations such as GDPR, does enter
the blockchain, each block containing those is a single point of failure breaking the
chaining aspect of blockchains. To limit the extent of data that can be written to the
distributed ledger, the types of transactions and their contents are strictly limited
in this SSI concept. As [129] suggests, transactions with less than 100 Bytes are
mostly safe from containing unwanted content, and transactions with up to 1 KiB
should be relatively safe and not contain illegal content.

4.3.1.7 Conclusion

Distributed ledgers are used in this concept for SSI because they ideally fulfill the
requirements for decentralized cooperation between many organizations. In partic-
ular, they provide a system where investments are protected against the decisions
of other participants. For example, if one organization leaves the system, the re-
maining parties are not adversely affected and do not have to change any systems.
Compared to regular databases, the limited set of operations, low throughput of
transactions, strong integrity protection, and easy auditability of actions are fur-
ther reasons why distributed ledgers can be helpful in this scenario. Adding new
members to the network is also straightforward.
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The choice of a specific DLT is more difficult because of the large number of com-
peting DLTs, fast development, changing focus of projects, and unclear long-term
strategy or commitment within projects. However, there are a few more mature
exceptions providing a good starting point.

A taxonomy for DLTs has been developed by [13], but it is heavily focused on cryp-
tocurrencies, which are usually unsuitable for SSI applications. Nevertheless,
many dimensions can be transferred or adapted.

Tokens, which represent a value and are exchanged in predominantly cryptocur-
rency-focused distributed ledgers, are less of a concern in SSI distributed ledgers.
The value for an SSI-focused distributed ledger arises not through the exchange
of tokens. However, a unique feature is the ability to cooperatively write a large
metadata file, which is necessary to verify and understand the off-chain identity
exchanges. Figure 4.8 shows the distinguishing properties of different DLTs, which
can be used to compare those and additional ledgers. This taxonomy is simplified
to only include the most relevant aspects. A more detailed taxonomy is shown in
Figure 1.2.

Figure 4.8: Condensed taxonomy of distributed ledgers

4.3.2 Wallet
The wallet is the application used to store and manage private keys and credentials.
The name wallet is chosen to reference physical everyday life, where ID cards (the
counterparts to digital credentials) are kept in physical wallets. Depending on the
use case, the wallet can be implemented in various ways. For example, personal
identities can be managed through a wallet within a smartphone app, IoT devices
can use a trusted platform module (TPM), or a hosted service can be used to manage
the identity of an organization.

4.3.2.1 Information Model

In general, a wallet can be used to manage multiple identities and their associated
personas. In most use cases, however, the wallet is almost equivalent to a single
identity. To manage the identities, the wallet stores all the necessary data and
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keys. As part of an identity, a persona specifies a part of an identity, which is
used with specific other entities or in specific settings. This section describes the
structure of a wallet and details the credentials’ structure.

A wallet application’s tasks are primarily:

• To store and manage the credentials associated with the identities and per-
sonas managed by the wallet’s owner.

• To store and manage private keys used to prove control of an identity through
authentication or sign messages.

• To provide a (user-)interface for all management operations of credentials and
keys.

• To show the user additional information about identities and personas (e. g.,
a log of past authentications and credential presentations).

As a result, the components of a wallet are the credential store, the key store, the
persona store, and a user and communication interface. Those components are
shown in Figure 4.9. The communication interface is described in Section 4.3.2.3,
while the user interface is not specified further in the concept. The necessary
features of the user interface depend highly on the intended use and must be
determined according to the target audience.

Figure 4.9: Wallet information model

The information model distinguishes between personas, i. e., entities known to the
wallet’s owner, authenticatable entities, and identifiable entities. The personas are
managed in the wallet’s persona store. Authenticatable and identifiable entities de-
scribe references to other entities, which can be either identified and authenticated
or just identified.
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To be able to authenticate to other entities, the wallet needs to store the necessary
authentication information. This information is (besides the potential PII in the
VCs) extremely sensitive and needs to be protected from unauthorized access and
accidental loss. The wallet’s key store is responsible for providing this kind of
storage.

Based on the design described by [134], the claims about an entity are split into the
claim and an attestation. The claim is made about one or more attributes, which
are defined by their respective attribute schema. Together they are aggregated in
a verifiable credential alongside metadata inspired by X.509 certificate metadata.
The resulting abstract credential is stored in the wallet’s credential store.

The information model shown in Figure 4.9 and described above only comprises
the bare minimum components. Additional functionality like a notification system,
a messaging system, or import, export, and backup functions are omitted and must
be designed and implemented where required.

4.3.2.2 Organizational Model

For the SSI wallet, only one actor exists, the user. The wallet is a personal storage
system for identities and associated data held or managed by the user. Having
an identity in one’s wallet does not necessitate that the identity belongs to or de-
scribes the wallet’s owner. Instead, one might have multiple personal identities,
entrusted organizational identities, and owned devices’ identities in a single wal-
let. This aligns with SSI’s goal of keeping the user in ultimate control of individual
identities.

The wallet is provided by its manufacturer and is usually run by the user on their
own devices. To build the wallet application, the manufacturer requires access
to the community’s documentation of the appropriate standards and interfaces.
When using the wallet to exchange identity data, the user can choose to use the
wallet’s endpoint to connect to issuers and relying parties for VC exchanges or
use the wallet’s ability to connect to an agent’s endpoint. The option of using an
agent’s endpoint enables access to the DLT to verify connections with the data
stored there and to use services like the TGW. The agent also provides a service
desk as an organizational role. This service desk routes the user’s inquiries to the
appropriate place, as described in Section 4.3.3.2. Those connections between the
wallet and the other components are shown in Figure 4.10.

There is no organizational unit for the identity’s subject itself. The subject’s relation
to the identity holder and their wallet within the SSI system can vary depending
on the use case.

4.3.2.3 Communication Model

The wallet component needs to exchange identity management information with
other wallets and agents and retrieve information from the distributed ledger. As
a result, three communication protocols concern the wallet directly:

• The wallet to agent (W2A) protocol is required to connect wallets through the
Internet or any other extensive network where individual participants can-
not be addressed consistently. A more detailed description of this protocol is
provided in the agent’s description in Section 4.3.3.

• Wallet to wallet (W2W) communication is done to synchronize user wallets or
to prove identities to other wallets within a LAN. Details of this protocol are
described in the following part of this section.
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Figure 4.10: Organizational relations of the wallet domain

In order to facilitate communication between wallets within a LAN or even an
ad-hoc wireless personal area network (WPAN), the wallet needs to support three
phases of communication in the W2W protocol:

1. Neighbour discovery of other wallets via a suitable communication standard,
e. g., Wi-Fi, Bluetooth, or NFC, each of which has its own methods for peer
discovery on ISO/OSI layers one and two. For TCP/IP-based communica-
tion protocols, a standard port for the wallet’s API must be specified. After
the discovery of the device, this port can be used to initiate a connection.
Non-TCP/IP-based systems must adapt a similar approach, e. g., through
magic headers in the exchanged packets.

2. Mutual authentication of the discovered wallets to prevent impersonation or
MITM attacks. According to Burrows–Abadi–Needham logic (BAN logic) [27],
the steps to ensure a secure connection must contain verification of the mes-
sage’s origin, freshness, and the origin’s trustworthiness. Those properties
can be achieved with certificate-based [140] and password-based [153] au-
thentication schemes. In the case of SSI, the certificate-based approach is
better suited, as each identity is represented by a public/private key pair.

3. Information exchange using the previously determined common interfaces
at the user’s request and the other user’s clearance. In this step, the valid-
ity of credentials can be established by verifying the contained claims and
attestations.

Outside of a LAN environment, additional communication functions are necessary.
Those functions can be part of the W2A protocol:

• Identity discovery is necessary if the wallet needs to contact an identity
that it cannot directly reach. To do so, it needs a lookup protocol to find the
appropriate endpoint to contact the other identity. As part of standardization
efforts, the DID resolution protocol [159] aims to achieve just that.
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• Message relaying is a primary use case for an agent, as it provides a per-
manently connected endpoint, whereas the wallet may be offline for extended
periods. The agent stores messages intended for the wallet and relays them
either through a push or pull model to the wallet.

4.3.2.4 Functional Model

A wallet’s functional domains are primarily the management of credentials, keys for
any owned identities, and communication with other wallets and agents through
a unified user interface, as depicted in Figure 4.11.

Figure 4.11: The breakdown of the main functional domains of SSI wallets

The user interface of a wallet application must provide methods to manage iden-
tities. This includes creating, updating, and deleting personas and their corre-
sponding keys and credentials. To initiate exchanges of identity information or to
synchronize wallets, the user interface must allow the user to contact other wallets
or agents and react to received requests from other wallets or agents. If the wallet
supports some form of automated exchange of credentials or keys, the conditions
and rules for those exchanges must also be configurable from within the wallet.

One challenge with SSI systems is that there will be no single definitive and univer-
sal system. Instead, the wallet must adapt to different configurations with system-
specific communication protocols for other wallets and agents. Those configura-
tions should be provided by the wallet’s supplier or be defined by the user. The
performance of the wallet can be measured by the number of supported systems,
its security, and its usability.

The prevention of data loss through a robust backup system of both cryptographic
keys and credentials is extremely important. This system must retain security
guarantees while allowing the wallet’s device to break and be restored. The only
parts of the identity that cannot be recovered by needing to re-issue VCs are the
private keys. Those must be backed up securely or held in multiple wallets. Gen-
erating the keys by utilizing a passphrase, as shown in [110], is also possible. For
some identities, even peer-based recovery systems [12] may be helpful. In those
systems, several trusted peers can be used to recover a lost identity.

4.3.2.5 Security Management

From the security management’s perspective, the most important aspect of a wal-
let is to keep the private keys secure and confidential. Depending on the operating
system the wallet is running on, different approaches may exist to implement ad-
equate protections, e. g., using secure enclaves, biometrics, physically unclonable
functions (PUFs), or basic encryption. As the wallet is also responsible for generat-
ing public/private key pairs, the random number generators and algorithms used
for this step need to be sufficiently strong, as well.
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At a minimum, the wallet should be protected with a password or passphrase that
is required to access its contents and operate with the contained identities. Going
one step further would include MFA for accessing the wallet. For example, the
wallet could also be secured by key files on external hard drives, biometrics, smart
cards, or HMAC-based security tokens.

Further risks to the wallet’s security may arise from interfacing it with other wal-
lets or agents, leading to all kinds of possible exploit scenarios. Proper security
by design is essential to limit the necessity of frequent updates to the wallet appli-
cation, especially when deployed on IoT platforms, where updates are notoriously
slow to roll out.

Metrics to track the security of a wallet are:

• The frequency of updates supplied by the wallet’s developer.

• In addition to the update frequency, the developer’s reputation has to be mon-
itored. This can also include checking for adequate certification. Especially
for eID standards exists that regulate, for example, eID-cards or electronic
international passports. For example, ISO/IEC 14443 might need to be used
or adapted if wallets are to be used in similar use cases.

• Monitoring hardware security features, i. e., TPMs, and potential vulnerabil-
ities, is essential to ensure the wallet stays as secure as intended.

• The wallet’s developer’s business model can also be used to indicate the wal-
let’s security. Especially an ad-supported model, which includes ads into the
wallet, seems highly problematic, as those ads are processed by the same
code responsible for keeping the wallet’s secrets.

4.3.2.6 Data Protection Management

Like the security of key material, data protection management focuses on the invol-
untary disclosure of credential information instead of key material. This involun-
tary disclosure may happen because of insecure software or user interface design
and social engineering.

As a result, data protection management must consider secure storage options and
sufficient user interface design to prevent or warn users of potentially unwanted
disclosures. User interface design lessons can probably be learned from how app
permissions are managed on modern Apple’s mobile operating system (iOS) and
Android smartphones. This problem may not be as important for IoT devices be-
cause the device’s identity should not contain protected PII. Additionally, the nature
of IoT device credential exchanges requires more automated rules of when, where,
and to whom credentials are shared.

4.3.2.7 Conclusion

Besides the backend infrastructure provided by the DLT, the wallet is the core com-
ponent of SSI. It has to handle security-sensitive private keys and data protection-
sensitive PII credentials. As the central point of contact for users of SSI systems,
the user experience of the wallet is essential for the success and large-scale adop-
tion of SSI. For IoT applications, the wallet may not be as visible as for personal
use, but it is still important for the device’s security and integrity of the provided
data.
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4.3.3 Agents
Agents are the identity proxies for any entity’s wallet to interact with other enti-
ties outside the local LAN. It is secondary whether an agent operates on behalf of
a person, a company, or an IoT device. Its primary functions and provisions are
always the same. They provide persistent endpoints and implement the necessary
protocols for communication with other agents. Additionally, they may store some
information on behalf of the entity they represent, either for synchronization be-
tween different methods of accessing the agent (e. g., from a smartphone app or
desktop app) or to release information to other agents.

An agent is comparable to a mail server, which receives, stores, forwards, and sends
mail for the user. In this comparison, the wallet would be the user’s mail client.
Like a mail server, most people cannot set up and run their own SSI agent. This
difficulty has also affected OIDC as a user-centric identity management system,
where users could theoretically host and use their own identity server. In the
end, only very few do so, and, in the case of OIDC, even fewer trust the self-signed
assertions provided by those who do. This results in a few large corporations acting
as identity providers. The latter problem, however, does not exist with SSI agents,
as they usually do not self-issue VCs.

4.3.3.1 Information Model

The agent manages the user’s identity connections with other identities. It pro-
vides a persistent endpoint to store and forward messages intended for the user
and their wallet, which might not always be online. Consequently, the primary
management aspects of the agent concern establishing and maintaining connec-
tions between wallets and agents. Additional features can include synchronization
between different wallets and the automatization of tasks.

Figure 4.12: Agent information model
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An agent itself consists of different subcomponents, which are also depicted in
Figure 4.12, some of which are required (bold) and some are optional (italic):

• Wallet Interface (Agent2WalletCom): Provides an interface for wallet applica-
tions to communicate with the agent. This subcomponent is required to fulfill
the agent’s primary purpose as a persistent wallet endpoint.

• Agent Interface (Agent2AgentCom): The agent interface allows the identity’s
wallet to communicate with other agents and their identities through a trans-
port network like the Internet. It is therefore required for exchanging mes-
sages with other identities.

• Distributed Ledger Interface (Agent2DLTCom): To retrieve metadata, the agent
needs to be able to access the distributed ledger. This component is optional,
as the lookup can also be done directly by the wallet application. However,
including it in the agent may allow for preferable outsourcing of used storage
space and mobile data usage.

• Credential storage: As a backup and synchronization mechanism, the agent
may also act as a personal credential storage. This would allow the identity to
recover credentials affected by data loss or theft of the wallet without having
to re-issue them. Because the credentials contain PII, this feature should be
optional.

• Private key synchronization (KeySync): As a comfortable method of synchro-
nizing private keys between multiple wallet applications, the identity holder’s
agent, as a central point of contact for this identity, might facilitate the syn-
chronization process. This component is (and should be) optional, as the
agent is generally a proxy not directly controlled by the identity holder. The
identity holder might not want to trust the agent’s operator to store a copy of
the private keys.

• Identity recovery: In combination with the credential storage and private key
synchronization, the agent can also assist in recovering access to a lost iden-
tity. Proper care must be taken to prevent abuse and identity takeovers.
Counter-measures might include forced waiting periods, notifications, and
peer approval.

• Tasks: The agent can perform specific tasks for the user. Those tasks may
be filtering and spam protection, automatic responses for defined identities,
or scheduled operations, like cleaning up unused connections.

4.3.3.2 Organizational Model

Referring to the agents’ comparison with mail servers, the organizational structure
and relations play out similarly. The agent provides the user a service. As service
provider, it must provide a service desk to handle the users’ issues. To provide the
service as required, the agent must follow the standards and documentation pro-
vided by the SSI community. If standardization progresses and a standard for SSI
agents is developed, this will also become relevant. Both sides of the organizational
relations are shown in Figure 4.13.

With its central position within the SSI system, the agent is connected to most
other organizational units. In its primary role as the persistent endpoint of the
user’s wallet, the agent is connected to issuers, relying parties, and TGWs. Here it
serves as a middleman to receive or present VCs on behalf of the user. The agent
is also connected to the distributed ledger to help vet connections to issuers and
relying parties. Information from the distributed ledger can also be used by the
agent to provide additional information about the semantics of received VCs.
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Figure 4.13: Organizational relations of the agent

The agent is run by an operator, as opposed to the user’s personal wallet. This
operator is usually part of a corporation that provides SSI agent services. Within
the decentralized SSI system, it is often tricky for the user to determine where and
how something went wrong. As a central point of contact for the user, a professional
agent is also in an excellent position to provide a service desk. The agent has
information about failed exchanges and can steer the user in the right direction or
even relay the user’s service requests to the right issuer, relying party, or TGW.

4.3.3.3 Communication Model

An agent is identified by an URL provided by the identity holder. In the case of
a public identity, the agent’s location is stored in a public repository, where the
authenticity of the location can be checked by validating a signature. For private
identities, which are usually only disclosed to a single entity, the agent’s location
is provided during the first exchange. Using the same individual agent endpoint
across multiple identities can introduce a way to correlate and track those.

The core operation of the agent is initiating connections with other agents and
exchanging credential information. Figure 4.14 shows the sequence of exchanged
messages to establish initial contact between two agents of SSI-capable entities.

The initial connection between two entities’ agents, where the target identity does
not have a published public metadata file, works slightly differently and without
the involvement of a distributed ledger. All required metadata information must
be exchanged directly at first contact via an out-of-band method, as shown in Fig-
ure 4.15. This does not impact the further verification or issuance of credentials,
as those credential definitions are again stored on a distributed ledger.

While both previous exchanges between agents are the most interesting, as they
provide the foundation for reliable message exchange within an SSI system, further
communication protocols must be defined for the agent’s synchronization service.
As a single user may use multiple wallet devices, synchronization conflicts may
arise if wallets are not constantly online. For credentials, however, due to them
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Connection to public target by ID

Agent Agent DLT

Lookup ID's
Metadata

Lookup target's agent location

return metadata file including the agent's location

Contact target's agent

return

Relay message to wallet

return

Connect to ID

return

ID lookup is necessary

to ensure retrieving the correct

agent location

Initial public contact (e.g. via website, billboard)

return ID (e.g. via QR-Code)

Figure 4.14: Sequence diagram of the connection establishment to a public SSI
identity and agent

Connection to private target by ID

Agent Agent DLT

Contact target's agent

return

Initial private contact (e.g. in person, authenticated out-of-band)

return ID and metadata file (e.g. via QR-Code)

Relay message to wallet

return

Connect to ID

return

ID lookup is not

necessary because authenticated

metadata file is exchanged out-of-

band

Figure 4.15: Sequence diagram of the connection establishment to a private SSI
identity and agent
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being signed by a third party during their issuance, the most recent version can
be determined easily for each combination of identity, attribute, and issuer. Prior
versions of the same credential should no longer be valid.

4.3.3.4 Functional Model

The functional domains of agents consist of forwarding messages between the wal-
lets of different users and syncing the contents of a user’s wallet. Additionally, the
automatization of recurring tasks may be configured at the agent to reduce the
complexity and workload of the user’s wallet. As an extension of the user’s wal-
let, most functional management operations are directly done by the user. Some
exceptions, such as a spam filter or abuse prevention and account recovery, may
apply. Figure 4.16 provides a hierarchical breakdown of the different functional
domains.

Figure 4.16: Functional domains of an SSI agent

The user-managed credential presentation and wallet synchronization functions
are exposed to the users’ wallet applications. In order to allow the user a free
choice of wallet applications, a standardized protocol for these management oper-
ations is required. Task automatization can be controlled either through the wallet
or through a web-based interface of the agent. The reason for allowing both is that
task automatization may be very individual to the agent’s primary purpose, and
a standardized protocol that works with any wallet is rather unlikely to be estab-
lished.

Account recovery involves both the user requesting the recovery, and the agent’s
provider, verifying the request’s legitimacy.

Last but not least, spam and abuse prevention may be influenced by the user
but are primarily managed by the provider. This includes checking and updating
denylists, running heuristic analyses, or forming trust relationships with other
agents.

4.3.3.5 Security Management

As an always-online component of the SSI system, the agent’s security is extremely
important. Keeping the availability of the agent high has to be prioritized, as failure
to do so would render large parts of the SSI system inoperational. For its primary
purpose of forwarding messages from and to wallets, confidentiality is important,
but the agent should never possess plain text messages anyway. Thus, a lack of
confidentiality on the agent may leak metadata, like sender and receiver, but not
actual message contents. Similarly, the integrity of messages is handled end-to-
end between the wallets, and the agent should – by design – never be in a position
where it could impersonate or modify messages.

Security management becomes more difficult the more features are implemented
by the agent. If credentials or keys are stored for synchronization between wallets,
those need to be protected particularly well. In this case, the agent basically acts
as an online password safe.
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Automated tasks add another level of problems for securing the agent. Depend-
ing on how this automation is implemented, it could be abused for spamming or
credential theft.

4.3.3.6 Data Protection Management

The agent is an SSI system’s most visible aspect of a personal identity, as it provides
a point of contact. Actual identity-identifying information in the form of identifiers
is kept private due to the use of unique identifiers for each connection. However,
using the same agent with different identities may allow correlation between those
identities, depending on how many identities use the same agent.

As an analogy from email systems using the Google Mail server to send mail does
not reveal much, as many users have one or more Google Mail addresses. Instead,
using a private mail server, just the fact that a custom mail transfer agent (MTA)
is used can provide identifying metadata.

4.3.3.7 Conclusion

The agent is an integral part of the SSI system, providing the identity wallets’ per-
sistent connectivity to the rest of the network. In most cases, where the availability
of the individual wallets cannot be guaranteed or where wallets should always be
able to be sent messages, one cannot go without agents. Only in those circum-
stances, the wallet may also inherit the agent’s responsibilities.

To reduce the complexity of the wallets, the agent also acts as an abstraction layer,
allowing the easier development of wallets, which increases the wallet’s security,
which is extremely important. A flexible agent implementation also allows for mi-
grating or switching between different IAM systems, as it can provide connections
to different networks transparently.

4.3.4 Relying Party
Relying parties, service providers, or verifiers are all common names for entities
consuming assertions about identities. As such, they are the driving factor creat-
ing a need for easy but secure identification across many domains. They require
the identification and authentication of entities and want to verify the correctness
of any attributes associated with the entity. Traditionally all of those tasks are
performed by the RP itself, but usability drawbacks, operating cost, and scalability
issues push for more streamlined approaches like FIM and, ultimately, SSI.

In an SSI system, the RP can request and verify an entity’s assertions. Those
assertions are provided to the entity by independent third parties, the issuers.
RPs no longer need to check self-asserted statements, but can outsource verifying
statements to IdPs, AAs, or issuers. Those may be in a better position to assess
specific assertions. An RP might request some credentials while also acting as an
AA for others.

4.3.4.1 Information Model

The primary purpose of RPs is the consumption of entities’ assertions to provide the
entities with a specific service. An assertion in the form of a VC, as it is used with
SSI, consists of two parts: the asserted attribute and the issuer’s signature. Han-
dling of these attributes is done via the RP’s CredentialReceiver, which handles
the SSI-specific details. Those components and the following ones are displayed in
Figure 4.17.
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Figure 4.17: Overview of the RP’s information model

Attributes can be expressed in various syntaxes and semantics, making them dif-
ficult to process automatically. Thus, meta-information is required to properly
interpret and process the large set of possible assertions, which can be used in an
open SSI ecosystem. Standardization of a specific set of attribute formats is un-
likely to work, as this kind of standardization has already shown to be challenging
for FIM systems. A special localization service can provide the RP with automated
rules to convert attributes into a form that is understood by the application.

As the number of possible issuers within an SSI system is not limited to a known
group of IdPs, quantifying the reliability of assertions by a specific issuer is not
easy. Verifying the correctness of the issuer’s signature alone is not sufficient.
Instead, where direct trust relationships are limited by scalability efforts, the level
of assurance provided by a specific issuer must be deduced with the help of a
system similar to the federations of FIM. The federations of SSI can be as small as
only two entities and can be built and removed dynamically. They are managed
by the RPs using a trust database, which describes the federation’s terms and
conditions.

4.3.4.2 Organizational Model

The RP uses its verifying service to identify, authenticate, and authorize access
to its own services. To do so, the necessary organizational connections to other
SSI components are shown in the organizational model of the RP in Figure 4.18.
The RP’s position between the issuers and users can introduce new responsibilities
(i. e., selecting possible issuers, determining which issuers to trust, or reacting to
incidents at specific issuers) compared to self-run IAM and FIM.

The relying party has two actors. The operator is using the information provided by
the community to run the verifying endpoint. They are also responsible for reacting
to information provided by the RP’s service desk to fix any potential issues with the
service. The trust manager has to decide which issuers are sufficiently trusted to
accept their VCs in authorization decisions. To do so, they are connected to the
distributed ledger and their corresponding issuers’ trust manager. Especially the
trust managing aspect may overwhelm small and medium-sized RPs. As a result,
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Figure 4.18: Overview of the RP’s organizational model

those RPs may outsource the trust managing services to a specialized provider.
The result of out-sourcing the trust management part is similar to FIM systems,
where the federation operator is responsible for entering into a contract with all
other participants.

4.3.4.3 Communication Model

Due to the general messaging infrastructure of SSI, all communication between the
RP’s customer and the RP is done between the RP’s endpoint and the customer’s
wallet. There may be intermediaries providing continuous availability to the RP
and the customer, e. g., through the help of one or more agents. Direct interac-
tion between the RP and the issuer is not required or specified by the SSI design.
All necessary information about the issuer should be available on the distributed
ledger. As a result, the communication necessary for identification and creden-
tial exchange between the wallets follows the protocol described in Section 4.3.2.3,
and communication with the user’s agent is done through a standardized protocol,
which is described in Section 4.3.3.3.

Additional connections between the RP and other components are described in
their respective sections. The connection to the CLS and its API is described in
Section 4.3.6.3.

4.3.4.4 Functional Model

At its core, the RP’s function is to deliver a service to the customer or the entity in
contact with the RP. This function can be of varying complexity and may be able
to be completed nearly instantly or take multiple days to process. Configuration of
the provided service is highly individual and dependent on the service itself.

Regarding SSI, the consumption of VCs is the most important function of an RP.
This function requires more thought than with more traditional IAM systems, as
basically, anybody can act as an issuer of VCs with SSI. The main decision, there-
fore, is which issuer to trust with their assertions. This decision must be integrated
into the RP’s risk management, marketing strategy, and know-your-customer re-
quirements. Allowing any issuer provides the easiest access for users but is prob-
ably detrimental to data quality standards.
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Configuration of the credential consumption process can be done in three ways:
allow listing of known good issuers, deny listing of known unreliable issuers, or
outsourcing the issuer management to a third party. This third party can act like
a federation operator in FIM to provide a framework for issuers to get recognition.
As multiple such federation-like organizations can be formed within the whole SSI
ecosystem, each federation can focus on specific industries of attribute assertion
(e. g., banking, workplace, sports, gaming).

4.3.4.5 Security Management

SSI allows the RP to externalize some parts of its traditional IAM duties. However,
security should still be considered carefully for each individual RP. Using SSI, novel
security risks are introduced which may not be suitably covered by existing security
management practices.

SSI-related assets that need to be considered for security management-related risk
management are:

• Distributed ledger connector: Enabling access to the SSI ledger through
the Comms interface is necessary to perform authentications and check revo-
cations. Without it, the availability of the IAM system is severely limited.

• Localization engine: Localization of credentials is an essential part of allow-
ing a wide variety of users to access the RP’s services. Incorrect localization
rules may result in unintended authorization choices.

To protect the confidentiality of the users’ data and the data associated with the
service, the user’s authentication has to be done securely. Important aspects in-
clude using secure cryptographic protocols and tried and tested implementations.
The choice of authentication mechanism is likely dependent on the mechanisms
supported by the SSI system, so the choice to support a specific SSI system should
include a reliable and strong authentication process. Access control is usually in
the hands of the RP, which bases its decision on the authentication’s result and
additional information, e. g., attributes supplied by VCs. Due to the multitude of
credential formats expected to be used in a global SSI system, localization of cre-
dentials may be required for some RPs. Extra care has to be taken to translate and
adapt credentials to the RP’s systems to ensure correct access control decisions.

The same aspects for authentication and access control must be considered for
protecting the integrity of the RP’s data. The integrity of the IAM data is more
difficult to assess as it may originate from many issuers. Suppose the RP can-
not determine the integrity of the issuer’s claims or limit the number of issuers
to a manageable level. In that case, they require assistance from a (specialized)
federation or PKI.

By including external components (like the distributed ledger of an SSI system) into
the services of an RP, the RP’s own availability is partly dependent on those com-
ponents to function. However, for a limited time, authentication and verification of
credentials can be done without an active connection to the distributed ledger, as
the metadata on the ledger usually only changes slowly. In this regard, the RP’s
availability is not impacted by availability disruptions of the distributed ledger.

Close monitoring of authentications and issuers to detect anomalies, like increas-
ing authentications using very new issuers or using uncommon credentials, might
be necessary to detect potential misuse. Therefore, a reporting system providing
comprehensive metrics around the authentication and authorization process is
essential.
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4.3.4.6 Data Protection Management

As the consumer of user-provided attributes, the RP is obligated to handle all
shared data with proper care. In accordance with data protection laws, each RP
should determine which attributes are needed for what duration and where to store
them, if necessary. Depending on the use case, storage of attributes may not be
necessary at all. During each authentication, the user can easily re-transmit the
attributes required for authorization. However, some information (e. g., shipping
and billing addresses) will likely be required to be stored, depending on the service
offered by the RP, local laws, and due diligence requirements.

Even more care must be taken if the RP requires or wants to share the data of its
users with other organizations, whether directly for services provided or not. In an
SSI system, the user should be in control of passing their verified credentials to
each organization. Working around this principle by allowing information sharing
between organizations without user involvement should be strictly limited to cases
where it is absolutely necessary.

A neat way to inform the user of the processing of their attributes by other orga-
nizations in the RP’s processes is to specify the organizations and the release of
those attributes directly in the credential request. With the EU’s GDPR, each re-
quest for personal information must be coupled with a reason for why this data is
required. Those reasons should also be included in the credential request. This
allows the user to more clearly see why certain attributes are required and revisit
those reasons later if the user’s agent records the requests.

As each RP’s credential request is replied to directly by the user with a correspond-
ing credential response, the user must actively confirm the attributes’ transmis-
sion. Through this system, the RP can prove the user’s consent to the transmission
as the uniquely created response.

If some or all of the attributes provided by the users are stored at the RP, processes
need to be established to continually check their validity. The RP must also estab-
lish a process to delete no longer required personal information. Deleting personal
information may be coupled to a period of inactivity by the user or the user’s active
request for the account’s deletion. In both cases, deletion of the data should be
possible, not only in the active database but also in any backups or replications
that have been made.

4.3.4.7 Conclusion

As a core component to any IAM system, the RP and its new SSI capabilities are
included in the architecture. The RPs have a strong incentive to support SSI but
face challenges adapting to the system. For already existing RPs, the decision to
adopt SSI requires the choice of the most suitable path to take:

• New service: One way to protect existing systems and pave the way to adopt-
ing SSI is to set up a separate new service, which does not interface with the
old service’s IAM and delivery systems. New customers can then use SSI,
while old customers can keep the system working the way they are used to.
Over time, if SSI catches on, the user base will automatically move to the
SSI-enabled service, and the legacy system can be shut down eventually. In
the meantime, however, two systems need to be operated.

• Complete migration: A less customer-oriented approach is to specify a date
at which IAM systems are switched over from traditional IAM to SSI. This
approach forces users into the new system but prevents the RP from operating
two systems simultaneously.
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• Dual-Stack operation/transition: A hybrid approach would allow users to
keep using both IAM systems concurrently with the same service. This allows
users to try the SSI authentication system and switch back if they are un-
comfortable with it. For the RP, this approach requires the most attention to
detail, as interfacing two systems will create challenges and interdependen-
cies which are difficult to overcome.

4.3.5 Issuers
In traditional IAM systems, the issuers of attribute certificates are called IdPs or
attribute authorities. With SSI, the identity is provided by the user and only aug-
mented with individual verified attributes in the form of VCs. Therefore, the name
IdP is no longer fitting. Instead, the entities issuing VCs are called issuers.

4.3.5.1 Information Model

Issuers are the natural counterpart to RPs, which are dependent on the issuers’
attribute data sources. For an issuer to be trustworthy, they need to be able to
guarantee the correctness of the VCs they are issuing to a defined degree (i. e.,
assurance or trust level). In most cases matching users to attributes requires direct
contact with the user, as the issuance of VCs is mainly a task of digitizing already
existing paper documents, at least at first. For this task, the issuer must either
have access to the original documents or act as a notarization service. The latter
can transform basically any document to VCs. An example of an issuer accessing
the original documents might be a government office creating a VC for an eID or a
bank asserting a customer’s bank account number.

Figure 4.19: Overview of the issuer’s information model

As shown in Figure 4.19, the issuer comprises data sources, a credential provider,
and a trust database. The data source is where the issuer can obtain qualified
attribute statements for entities. Those entities, if correctly authenticated and
authorized to do so, can then use the credential provider to obtain VC. The trust
database indicates at which trust level VCs can be provided. The RP will use its
own trust database to evaluate if the indicated trust level is achieved.

4.3.5.2 Organizational Model

The organizational model of the issuer is similar to the RP’s one. A schematic
overview is provided in Figure 4.20. In general, the issuing service is used to
provide the user’s wallet or agent with VCs. To do so, the issuing endpoint is run
by an operator supported by the community’s documentation.
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Figure 4.20: Overview of the issuer’s organizational model

To assure the relying parties, which ultimately rely on the accuracy and validity of
the issued VC, the issuer’s trust manager sets up policies that describe who can be
issued VC. Additionally, they deposit information about the syntax and semantics
of the VC on the distributed ledger.

4.3.5.3 Communication Model

Communication between the issuer and the VC holder is standardized by the se-
lected SSI system. In most cases, the holder would be the same entity as the VC’s
subject. Both are represented either by their agent or directly with their wallet. The
exchange protocol needs to be highly standardized to allow a multitude of agents
to support the system, which in turn allows more users to access the issuer. Man-
agement information is exclusively exchanged via the distributed ledger (i. e., links
to metadata files).

The protocol shown in Figure 4.21 provides a method for issuing VCs in three
distinct phases:

1. In the preparation phase, the issuer publishes their identifier and metadata
(including a long-lived public key kipub

) to the ledger. This is a one-directional
trust anchor, as every other entity can retrieve the metadata and check the
issuer’s assertions within the issued VCs.

2. During the exchange phase, the subject (or any entity acting on their behalf)
can request a VC with attributes known to the issuer. During the exchange,
the subject identifies and authenticates with the issuer. The issuer generates
a new key pair kn to sign the new VC. Only the public key component knpub

is
signed with the issuer’s key kipub

to link the issuer and the new key pair.

3. After the VC’s validity period, the purging phase sees the issuer invalidating
the no longer valid VCs by publishing the key pair kn, which includes the
private key used to sign the VC. As a result, similar to the OTR protocol [20],
any expired VC cannot be proven not to be counterfeit. The subject needs
to refresh the VC before it expires, to always be able to prove the contained
attributes.

This system does not include a method for the issuer to revoke VCs. Revocation
and checking revocation would require the issuer to publish revoked credentials
to the ledger or the RP to query the issuer to verify the VC’s validity. The first
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Figure 4.21: Communication model for issuing a VC



Chapter 4. Concept for a Comprehensive SSI and IAM Integration 127

solution can potentially create a permanent connection between a specific VC, its
subject, and the issuer. The latter solution can debilitate the desired separation of
the issuer and RP. Both solutions result in undesirable properties.

For claims with attributes that specify “holder can access system x” or similar
statements, the holder might want to delegate the permission to another entity. In
this case, the holder becomes an issuer. As a prerequisite to this delegation, the
original issuer must also include an attribute stating “holder can delegate permis-
sion”. If both attributes are part of the same claim in a VC, the issuer can create a
new VC to extend the permission to another entity. Both the original and the new
VC can be used together to prove access permission by the new holder. This system
can also be advanced further by specifying in more detail under which conditions
delegation whether possible and if chaining delegations should be allowed.

4.3.5.4 Functional Model

Functional design decisions depended highly on the type of attributes the issuer
creates VCs for. To differentiate between the different types, VCs are categorized
by their data source and data type. The data source describes whether a VC is a
digital copy of an already existing physical document or if the VC only exists as a
digital assertion.

• Digitized document: Transferring physical documents into a digitized ver-
sion can be done by an issuer acting as a notary. Depending on the complexity
of the document, this process must be designed with utmost care. Decisions
on the granularity of attributes extracted from a document and the presen-
tation in a VC must be taken.

For example, a school report contains the individual disciple’s marks, a final
aggregated mark, and a pass or fail indication. As it is, this report cannot
be presented in parts (e. g., presenting only the marks of STEM disciplines).
However, a VC could be used that way if the individual data is encoded ap-
propriately. During the transformation process – no matter if it is done by
hand or using automated tools – errors might be introduced. The potential
for errors increases with the depth of detail that is mapped.

• Digital document: A purely and originally digital document is more easily
presented as a VC, as the individual components are already available dig-
itally, which makes transcription errors much less likely. However, purely
digital data usually only exists with the issuing authority, and they would
need to act as an issuer. This requirement may slow down the issuance of
VCs.

Independent of the form of the original data, the issuer must decide whether they
store the original documents after they have issued the VC. Depending on the
issuer, some might need that data permanently anyway, but especially notary ser-
vices need to specify storage duration and deletion policies. Traceability require-
ments require notary issuers to keep copies of the original documents. However,
as long as the user has access to the original documents, they could always re-
digitize them if doubt about their correctness arises, and the issuer would not have
to store the original. Notary services are usually not free, and issuers might there-
fore charge the user for issuing VCs. Determining the cost of the service will need
to factor in the difficulty of generating the VC, the duration the VC will be valid for,
and the required research to provide the intended LoA.
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4.3.5.5 Security Management

As the source of high-quality attribute information within a specific domain, an
issuer’s data repository is a prime target of attackers seeking to steal the data con-
tained. SSI tries to prevent the aggregation of precious private information at a
specific entity, but qualified authorities of one domain still need to store and pro-
cess such data. Additionally, highly trusted issuers are also prone to being tricked
into creating bogus VCs. This is similar to tricking PKI CAs into signing certificates
for domains that an attacker does not legitimately control. Security management
procedures should be oriented at existing best practice approaches for CAs (e. g.,
ISO/IEC 27099 or BSI TR-03145-1) and IdPs (e. g., the Sirtfi framework [15, 156]).

Metrics to monitor issuing of VCs for potentially security-relevant irregularities,
specifically for SSI, are early re-issuing of VCs. VCs need to be regularly re-issued
because of limited validity periods. However, if the validity is still sufficiently long,
a re-issuing request might indicate the abuse of an identity’s stolen private keys.

If the keys of an identity are ever potentially compromised, they need to be rotated.
In case there is the possibility of maliciously issued VCs or messages before the
compromise is detected and fixed, the old keys must also be revoked, and the
involved parties be notified. To do so, schemes from CAs, like revocation lists or
OCSP, can be adapted. As the RP is only querying for the validity of the issuer’s
signing key, the request does not leak information about the user.

4.3.5.6 Data Protection Management

The data repository at an issuer is most critical regarding data protection manage-
ment if the repository contains PII or otherwise confidential or non-public informa-
tion. However, an issuer’s job in protecting this information is easier than that of a
classic FIM IdP, as the issuer should ever only reveal and assert the information to
the entity it belongs to. The issuer does not have to determine which SPs it deems
trustworthy. This burden is moved to the user receiving the VCs. However, some
responsibility in educating the user on the proper usage of the VC and the risks of
disclosing information to third parties may be required.

4.3.5.7 Conclusion

Issuers are an integral part of an SSI system, and their trustworthiness is essential
for RPs to adapt them as sources of high-quality identity data. Management deci-
sions play an important factor in the successful operation of an issuer, especially
because the underlying technology is relatively new and under rapid development.

4.3.6 Credential Localization Service
A new component introduced by the architecture is the credential localization ser-
vice. Similar services have already been described for use in FIM-based federa-
tions [148] but have not been used in productive federations yet and have not been
described in detail for SSI.

In SSI, the many diverse users, issuers, and RP can introduce different credentials.
Standardization approaches are unlikely to succeed, especially as there will be dif-
ferent approaches and requirements for VCs worldwide. The proposed localization
service should not only translate from one VC schema to another but also provide
adaptions to locally understood scripts, traditions, and legal requirements.

There are two possible ways to implement a localization service.
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1. The credentials are passed by the user to the service, which localizes them
and creates a new VC of the localized version referencing the original VC as
the source. The resulting VC is passed back to the user. The localization
service acts as both an RP and an issuer.

2. More prudent of the principle of data economy, the second approach prevents
the localization service from seeing the actual values being localized. Instead,
it provides a schema according to which the localization can be achieved. This
schema can be requested by the RP and used to process the received VCs
locally. The user’s data is not processed outside the RP.

In this architecture – also depicted in Figure 4.22 – the second option is chosen
for localizing credentials, as it is more in line with SSI’s data protection and self-
determination principles. The first option also does not differ too much from how
an actual AA works, so if a service like this is required, it is not difficult to set up.

Relying Party
SSI Endpoint

Credential
Localization

Connector Localization
Engine

Localization
Rule

Localization
Engine

Figure 4.22: Overview of the CLS

4.3.6.1 Information Model

Core components of the CLS are the localization rules, which describe how a spe-
cific credential schema can be transferred to another schema. The rules involved
can be pretty simple or more involved (maybe requiring a combination of creden-
tials), and this flexibility must be expressed in the rules design. Figure 4.23 dis-
plays the CLS’s information model and its components.

Figure 4.23: Information model of the CLS

In addition to storing the rules, the rules must also be kept up-to-date if they
should not be sufficient or incomplete. As the CLS does not observe the actual
localization process, as it is only run on the RP’s side, a feedback loop is essential
to determine the effectiveness of the provided rules.
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4.3.6.2 Organizational Model

The CLS only has direct business relations with individual RPs, which subscribe
to specific localization services, and to the community. Those connections are
depicted in Figure 4.24. Run by its operator, the CLS provides an API to which
the RPs can subscribe. The API can then be used by the RP to retrieve fitting
localization rules.

To identify and fix any problems, which could arise during the localization process,
the RP’s and CLS’s service desks are also connected. The end user should never
have to contact the CLS separately. To react to new VC schemata and steer the
direction of commonly used ones, the CLS might also participate actively in the
SSI community and its documentation of VCs and processes.

Figure 4.24: Organizational model of the CLS

The CLS can be operated either as-a-service or within the decentralized infras-
tructure. Decentralized operation is possible because the CLS does not need to
access any attribute data, and the respective conversion rules and scripts can be
exchanged using DLT. If implemented as a decentralized infrastructure, each RP
is responsible for retrieving and applying the correct rules. Using a service to do
so allows RPs to outsource this work and responsibility. A hybrid approach is also
possible where easy localizations, i. e., reformatting dates, are done using rules
stored in a decentralized repository and more specific localization rules, i. e., local-
izing a university’s certificate to an organization’s internal format, are provided by
commercial service providers.

4.3.6.3 Communication Model

In contrast to the main SSI operations, the distribution and processing of localiza-
tion rules can be designed individually or follow a (pseudo-)standard. Individually
designed processes allow for more flexible options but also require the installation
of custom connectors at the RP. There may be universal or application-specific
localization services with different requirements and domain-specific features. A
standardized but extensible approach could be integrated with the RP’s SSI soft-
ware, thus easing the deployment of the rules.

The basic query for retrieving rules from a localization service is shown in Fig-
ure 4.25. As the application of the rule is performed on the RP’s systems, the
localization service does not get any direct feedback about the applicability or per-
formance of the rules. A feedback system is therefore important to provide the
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Figure 4.25: Primary communication sequence of the CLS

localization provider with information to improve their service. Details about the
potentially personal information contained in the credentials the rules were applied
to must not be shared with the localization service, however.

4.3.6.4 Functional Model

The CLS provides an interface to RPs where they can query localization rules for
specific credential schemata.

Failures in credential localization can lead to a service not being usable. Thus
their reliability is critical. Most credentials will either be understood directly by
the RP, or the necessary localization rules are known to work well. Rarely used or
seen variants of credentials that need to be localized on the fly are more complex
to localize. It is the job of a good CLS to provide those.

Providing an inaccurate or plain wrong localization rule is more severe than the
RP not being able to provide its service to a user. This might lead to improper
authorization decisions. Depending on the automation grade at the RP those errors
might also be difficult to detect if they are not reported by the users.

After installing and configuring a localization rule, it must be kept up-to-date.
Those updates may be pushed to or regularly queried by the RP.

Downloading and using the rules may require a fee or subscription. From the
perspective of privacy preservation, running the localization rules at the RP is
definitely the better choice. If the fee or subscription should be based on a per-
authorization or per-user metric, the CLS can hardly verify if the RP provides cor-
rect numbers. Resulting “flat rate” prices might be pretty steep for small RPs.
Development of the rules, especially if no suitable localization already exists, is
the primary added value of a CLS and the area of work where they can set off
against their competitors.

4.3.6.5 Security Management

Using localization rules may require executing more or less complex algorithms
on the RP’s side. If rules are poorly designed, this might introduce vulnerabili-
ties at the RP. Furthermore, integrating localization services into an RP, including
eventual dynamic payment, rule discovery, and update processes, might result in
security issues. The CLS must develop its rules and integration in a way that
does not threaten the security of the RP. To detect any issues with the rules, they
should be created with unit tests of the complete code and, better yet, test-driven
development (TDD). Using the tests, issues at the RP can be prevented.
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The CLS itself must also be wary of its security to protect its intellectual property,
the integrity of ts rules, and constant availability. In general, the CLS should follow
security guidelines and standards applicable to any web service provider depending
on the kind of RPs their working together with.

4.3.6.6 Data Protection Management

As described in this architecture, the CLS does not directly process PII. Still, as
the localization process might be fairly complex, it might consult external resources
(e. g., current lookup tables) and might leak some data or at least metadata this
way. As a result, the design of localization processes must take into consideration
what kind of data is being processed and where potential leaks can occur.

4.3.6.7 Conclusion

A CLS is not essential for the operation of an SSI system, but it can alleviate some
of the potential downsides of SSI that come with the freedom to create credential
definitions without central oversight.

4.3.7 Trust Gateways
Like the CLS, the goal of the trust gateway is to broaden access to the SSI system.
They provide a trusted passage for moving VCs from one SSI system to another
and help in connecting different IAM systems. To do so, they basically act as a
cloud-based wallet and manage VC for users without appropriate wallets or agents
of their own. A schematic overview of a TGW is shown in Figure 4.26. With mul-
tiple SSI systems, there might be chains of TGWs connecting multiple distributed
ledgers. While a TGW offers accelerated access and ease of deployment, they are
also concentrators for potentially highly personal information. Their design and
deployment must be done with utmost care. An overview of other TGW systems,
as they are, for example, used in FIM, is described in Section 3.2.3.

Trust Gateway

Credential Storage
for SSI System B

Smartphone
SSI Agent

SAML
OpenID Connect

Federated
Identity Provider or
Attribute Authority

Credential Storage
for SSI System A

X.509v3
Certificates

Classic
IAM System

Figure 4.26: Overview of the TGW’s connections

The TGW, as a new component to SSI systems, should provide better usability
when starting an SSI system. If multiple SSI systems are developed concurrently,
VCs can be moved between the networks without additional modifications to the
RPs. In the long run, the aim should always be to use TGWs as little as possible
and instead rely on direct integration of SSI and CLSs.
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4.3.7.1 Information Model

The TGW has two primary components that need to be managed: the source IAM
system’s interface and the destination IAM system’s. Both are linked via a con-
nector component, which performs the necessary adaptions. This simple model is
shown in Figure 4.27. The source or destination IAM systems can be classic IAM
systems or SSI systems. However, for use with SSI, at least one system should be
connected to an SSI system.

Figure 4.27: The TGW’s information model

Figure 4.27 also shows that the conversion takes a few parameters, such as the
list of input and output attributes. The TGW might not be able to convert every
input attribute, so the output list of attributes might contain fewer attributes than
the input list. Additionally, the break in the direct connection between the issuer
and RP reduces the attributes LoA. How significant this reduction is must be de-
termined by the participating entities.

Additionally, the TGW also acts as a wallet for users who do not have a dedicated
wallet application. This requires more trust in the TGW but allows non-SSI users
to access VCs issued to them.

4.3.7.2 Organizational Model

The TGW is essentially an issuer and relying party, where one of those parts has
strong ties to organizations outside a specific SSI community. They may be op-
erated independently, for example, as a notary service. Figure 4.28 displays the
TGW’s organizational connections other entities. This figure also clearly shows the
resemblance between issuers (Figure 4.20) and relying parties (Figure 4.18).

Trust management is an essential step for the TGW. However, this conversion of
authentication statements of different systems is not only challenging on a techni-
cal but also on an organizational level. The trust manager must negotiate policies
for attribute exchanges within two separate IAM systems. If problems arise, good
communication between the service desks of the involved parties is essential. The
affected users must be guided to the right point of contact, as it might not al-
ways be obvious to the user where an error originates and who is responsible for
its remediation. Additionally, changes must be communicated ahead of time to
minimize potential problems.

The greatest difficulty for a TGW, however, is providing sufficient trust. While one
issuer or IAM system might provide data with a high LoA, a relying party might no
longer view the attributes’ LoA as high after it passes through a TGW, and for a
good reason. As a result, TGWs must either adhere to at least comparatively high-
security standards as the original issuer and fulfill the same regulatory or legal
requirements, including direct contracts or be only used for relatively inconsequen-
tial attribute conversions. A third option might exist when converting an attribute
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Figure 4.28: The TGW’s organizational model

statement without breaking the original issuer’s signatures and encryption is tech-
nically possible. This could be the case when the TGW proxies assertions between
two technically identical but organizationally separated systems (i. e., two SAML
federations or two SSI systems with different DLTs). In this case, the VC could be
processed without translation, but the necessary metadata must be provided.

The trust manager’s operator has to run both the endpoint for the verifier and
the issuer. To provide good service, the service desk informs the operator about
potential problems. The TGW’s service desk is notified about issues by the user’s
agent’s service desk.

4.3.7.3 Communication Model

As the TGW is connected to (at least) two different IAM systems, its effort for han-
dling authentication is increased in relation to participants who only act in one
IAM system. Assertions from one system must be understood, parsed, and verified
correctly and then be transformed into assertions within another system. The two
primary options for communication interactions for this are shown in Figure 4.29.
If the user cannot directly provide the required attributes to the relying party, the
relying party might suggest using a TGW by redirecting the user there. The choice
of TGW can be made depending on the relying party’s capabilities and the type of
the user’s authentication system.

In the first case, shown in Figure 4.27, the RP does not support SSI, but the user
has SSI credentials they would like to use. This case requires the TGW to be set
up with the RP to use another IAM protocol, e. g., SAML or OIDC. The TGW can
then verify the credentials provided by the user and authenticate the user.

The reverse is more difficult. Suppose the user can only supply a non-SSI authen-
tication method. In that case, the TGW must be set up to act as an RP and perform
the authentication with the user’s identity provider. As can be seen in Figure 4.29,
this involves more communication and redirections between the TGW and the IdP.
After the TGW has received the necessary authentication information, it creates an
SSI credential and passes it to the user. This credential can then be used directly
at the original RP.
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Figure 4.29: The TGW’s communication model

Figure 4.29 shows an abstract method for implementing a TGW that should be
possible to implement with any IAM protocol. The tricky part of this is designing
the interactions for specific protocol combinations in a way that discloses as few
as possible details to the TGW. This is not possible with RPs that use non-SSI
techniques, as centralized systems cannot be routed via a TGW, and federated sys-
tems usually have defined communication paths between IdP and RP. However, an
SSI-based RP could use a VC that is designed to allow the TGW to translate an as-
sertion from a non-SSI system to a VC without breaking the end-to-end encryption
and signature. This requires the IdP to know about the RP as specified by the IAM
protocol. For example, with SAML, the RP must be included in the IdP’s metadata,
and the RP must know the IdP’s public keys. The TGW can then issue a SAML
request on behalf of the RP and transparently convert the SAML assertion by the
IdP into a VC for the user. This method can similarly work for other protocols, such
as OIDC and SAML, as shown in Section 3.2.

Other factors to consider after the TGW was used to perform a conversion are that,
as the connecting part, the TGW has to ensure that changes from one system
affecting the other are communicated and acted upon. Examples of critical infor-
mation that needs to be propagated are security incidents, detected misuse, and
revocations.

4.3.7.4 Functional Model

Functional areas of a TGW are similar to those of RPs, issuers, and CLSs. On
one side, the input assertions must be processed and verified; on the other, valid
credentials must be returned to the user.
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If any irregularities or faults arise in the process, the TGW must be able to identify
and direct the user to the right point of contact. Any problems might originate at
the TGW, the RP, the issuer, or the user. Localizing them can be a major struggle.
Consequently, good communication between those parties and the user is required
as part of a proper incident response process.

Similarly to the CLS configuration, changes in the connected providers or the TGW
may severely affect their service. A protocol for planning, testing, and performing
configuration changes is important. Depending on the entity initiating a change,
it must be communicated to the other participants, who need sufficient time to
adapt.

As a service provider for the RP, issuer, and users, the TGW has many choices
to charge for their service. Due to the close relationship and organizational ties
with the RP, a business relationship for accounting purposes is also conceivable.
Charging the users would probably only be accepted in very few situations, as they
would usually already be charged for using the RP’s service, and charging multiple
times for using “the same” service would lead to a loss of users. The issuer has a
similar incentive as the RP to expand its user base and prolong the relevance of its
service, especially if SSI is indeed the future of IAM.

The performance of a TGW can be measured by the number of RPs and issuers
connected through the gateway. Additionally, the service’s number of users can
provide information about its relevance and ease of use. The usage numbers, how-
ever, will be significantly lower for a TGW which can issue VCs, which it usually only
does once or rarely per user, and a TGW that is required for each authentication.

4.3.7.5 Security Management

The integrity of the TGW’s systems is essential to be considered trustworthy. If
an entity could get VCs or authentication from the TGW, which are not based on
verified and correct attributes, the credibility of the TGW’s assertions is destroyed.

Similarly, the confidentiality of the conversions’ contents is essential for users to
trust and use the service. Even small violations of confidentiality can result in
sustained mistrust and reluctance to use the service.

Availability is the least important of the classic security management goals. If
the RP is SSI-capable, users should only access the TGW once to convert their
attributes. If the TGW is required for every authentication with an RP via a partic-
ular IAM system and if those authentications make up a significant portion of the
RP’s users, the availability of the TGW is increasingly essential.

As the TGW is both issuer and RP, it should adhere to the security management
provisions of both. The issuer’s key security management points are described in
Section 4.3.5.5, and the RP’s in Section 4.3.4.5.

4.3.7.6 Data Protection Management

Depending on the application’s goal and scope of the TGW, it might encounter a lot
of users’ PII. In this case, proper protections must be established. This includes
informing the users about gathered data, especially if it is stored, stating the reason
for the storage, and describing options to delete the data and the consequences of
doing so. It should not be necessary for the TGW to pass the gathered data to
other third party services for cross-checking. If such needs arise, they should be
handled within the SSI system, where the user is actively asked to get the needed
confirmation from the third party via a VC.
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4.3.7.7 Conclusion

A TGW is required to kick-start an SSI system and increase the number of available
VCs, making it more useful and attractive for users and RPs. Even fully established
SSI systems can profit from TGWs as a means of transferring VCs from one SSI sys-
tem to another. In this constellation, they are an essential part of the SSI paradigm
allowing users to keep control of their data and quickly move between SSI systems
if necessary.

The position of a TGW in between two IAM networks poses unique challenges in
trying to keep both sides synchronized. This combination of general importance
and tricky execution necessitates a closer description of TGWs.

4.3.8 Community
The community is responsible for choosing a path when adapting to new techno-
logical changes, modified requirements or new use cases, or new threats to the
system. All the components listed in this section can only work together towards
the common goal of providing a user-friendly and rich ecosystem for high-quality
SSI if the community or leadership of the organization managing this ecosystem is
acting in each participant’s interest. The actual amount of influence granted to an
organization managing the SSI system or individual community members can vary
between systems. Using one universal distributed ledger for an SSI system is risky,
as some changes may lead to a fractured community. Examples of this have been
observed for both major blockchains. First, the split between Bitcoin and Bitcoin
Cash or Bitcoin Gold [187] and the fork of Ethereum and Ethereum Classic [187]
were due to fundamental differences about how to progress in the future within
the respective communities. In contrast to those examples, the value of an SSI sys-
tem is not purely measured through transactions and unspent outputs. Instead,
the users’ VCs are only loosely attached to the blockchain and could retain their
usability even without it.

The SSI space is currently highly dynamic. Not only do enthusiasts and organi-
zations compete for recognition, but governments have also shown interest in the
technology, as we have collected in [143].

The main idea is to model the organization and community for an SSI system after
the Internet’s example. The Internet is an inherently diverse and distributed sys-
tem, which faces a multitude of technological and organizational challenges, but
still is extremely successful. As with a successful distributed ledger, parting from
the Internet to build a better system is very unlikely to succeed.

The primary function of the community is to structure and consolidate efforts
made by individual community members into a consistent bigger picture. As part
of this effort, the main tasks are:

• Communication inside and outside the community, attracting and onboard-
ing new members, sharing the community’s vision, and encouraging partici-
pation.

• Standardization and documentation of used techniques and protocols to-
gether with vendors and developers to build a stable basis for SSI, which is
easy to adopt and extend.

• Security management to define and implement processes to react to security
incidents affecting the whole SSI system.

• Interoperability to keep track of other developments for IAM and SSI, in par-
ticular.
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4.3.8.1 Information Model

A community managing an SSI system is usually broken into multiple parts that
attend to different aspects of the system. Technical discussions can be held in
working groups tackling a specific problem and providing feedback to a technical
committee. Similarly, organizational topics can be covered by other committees.
The exchange and discussion are mostly done publicly to allow any interested party
to participate. Users of the system do not necessarily have to be active in the
community but need to be informed of important news and changes. An overview of
how a community could assemble is shown in Figure 4.30. However, communities
may be structured differently and still be effective and efficient.

Figure 4.30: The community’s information model

The community shown in Figure 4.30 comprises three main components: par-
ticipants, committees, and working groups. Participants can be classified as in-
dividual or loose groups of enthusiasts, for-profit or non-profit organizations, or
government employees or agencies. Each of those brings different interests, skills,
time, and money into a community. The involvement of government parties is es-
pecially interesting, as they might be able to influence or establish legislation that
could affect DLT and SSI systems. Enthusiasts, research institutions, and organi-
zations bring expertise for developing and evaluating prototypes and actual prod-
ucts. Those can be part of a feedback loop that affects the development of working
groups, which provide input to the committees that make the actual decisions.

4.3.8.2 Organization Model

The organization of a community for a large ecosystem is developed throughout
the maturing process of the SSI system. The Internet, as arguably the largest dis-
tributed system in use today, is controlled by several governing bodies: Internet
Corporation for Assigned Names and Numbers (ICANN), Internet Engineering Task
Force (IETF), Organization for the Advancement of Structured Information Standards
(OASIS), W3C and Internet Governance Forum (IGF) whose respective areas of con-
trol have also shifted through the Internet’s development. While certainly smaller
today, the potential for growth of an international SSI system might be to the scale
of the Internet. The community ties to the other components primarily via the
provided documentation, as described for the components in the previous sections
and shown in Figure 4.31. Within the community, the documentation is built by
the community’s governance framework and standardization efforts.

Each of those actors has different expectations and means to influence and ad-
vance the system. As a result, each actor can take on a number of different roles.
The distribution of those roles needs to be established by the organization.
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Figure 4.31: An exemplary community’s organizational model

4.3.8.3 Communication Model

Communication within a larger organization or community is always challenging.
Participants join from all over the world, speaking different languages, living in dif-
ferent time zones, and so on. Except for a few important meetings and conventions,
most exchanges are done asynchronously via mailing lists.

4.3.8.4 Functional Model

Regardless of the community not being a technical system, it should perform its
functions orderly. As such, it needs clearly defined processes and guidelines for
handling any arising faults. To detect faults that are not reported, a monitoring
system is required to detect irregularities and help debugging known problems. In a
distributed system, such monitoring is challenging to implement, as no centralized
instance is participating in the individual authentication processes, and it is not
in the users’ interest to report meta-information about their transactions. The
number of systems and expectedly differing software implementations and versions
further complicate finding faults. As a result, those individual issues must be
primarily handled by the affected parties, and the community as a whole must
focus on the general protocol and DLT infrastructure.

Similarly, the configuration of systems cannot be dictated by the community for all
participants. A reference implementation might provide guidelines and hints for
setting up other systems, however. This reference implementation should be used
as a testing target by others who want to test their setups to ensure interoperability
of the systems and configurations. Detailed documentation of the reference system
(in multiple languages) is required to allow others to perform their evaluations.
Feedback from those tests can refine the reference implementation and protocols
without exposing actual users to those tests.

A long-term successful project also needs funding. Funding concepts range from
government-subsidized models, popular for eID systems, over membership fees, to
transaction-based systems. Most free systems are built on top of existing block-
chains, like Bitcoin or Ethereum, and utilize the fact that the blockchain rewards
miners. Which solution is preferable for which community cannot be determined
in an abstract concept but must be discussed and chosen by the community.
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4.3.8.5 Security Management

At this large scale, the organization of a system cannot effectively respond to secu-
rity incidents. The security incident response is, therefore, part of each individual
participant’s duties. However, the organization should prevent security incidents
by focusing on security by design and security by default approaches when decid-
ing about supported technologies and promoting specific implementations.

Security incidents not isolated to specific participants may require coordination
through the greater community. To facilitate the disclosure and handling of secu-
rity incidents between many organizations, the Sirtfi framework provides guidance,
as described in Section 4.3.5.5. At a community level, the biggest threat is a large-
scale disruption of the availability or integrity of SSI services. Such a security
incident probably affects the distributed ledger, either corrupting it and making it
unusable or injecting false information. Confidentiality is less of a concern at the
community level, as most parts of the SSI system are openly readable.

4.3.8.6 Data Protection Management

Like security management, data protection management is the responsibility of the
individual participants. The organization running the SSI community can only
support the individual efforts by providing documentation, best practices, and
the possibility to communicate issues to other participants. Government agencies
should be informed of serious data protection incidents in case of an incident and
depending on legislation. They can then help estimate the impact and plan to
inform affected users.

Data protection becomes even more important in an international setting as indi-
vidual countries demand access to users’ data. The SSI system should be designed
so that the SSI organization cannot weaken the security of the individual connec-
tions between users, AAs, and RPs.

4.3.8.7 Conclusion

The community driving and using the SSI system is an integral part of the system
itself. This necessitates its inclusion into the core component selection for the SSI
architecture. As with any larger system, many aspects will have to be developed
and refined over time. However, quite a few lessons learned can be transferred from
larger FIM federations and general IT service management (ITSM) best practices.

4.3.9 Component Dependencies
The components described in Section 4.3 interact to provide a functioning SSI
system. During the description of the components, some aspects could not be
predetermined. However, decisions at one component can also affect others. To
assess those connections, the dependencies between the components are explored
in this section. As dependencies might not only exist within the SSI system, an-
other generic entity “External” is introduced. External components or influences
might be legislation or regulation for specific sectors. Figure 4.32 provides a rough
overview of the resulting number of dependencies between the components. The
width of the connecting arrows indicates the number of dependencies.

The dependencies themselves are explored in detail in the following sections. Each
dependency is identified by an ID of form Dx, where x is the number of the depen-
dency. Those IDs can be used to track repeated dependencies at different compo-
nents.
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Figure 4.32: Overview of the components’ dependencies

4.3.9.1 Issuer

The SSI system is useless without any issuers, so its dependencies are explored
first. The information model described in Section 4.3.5.1 shows that the issuer
needs to implement the interface Comms. This interface is also implemented by the
wallet, agent, and RP, as visible in Figure 4.33. The TGW, by extension, a wallet,
also indirectly implements this interface. This connection shows dependency D1
concerning a common protocol to exchange VCs with those three components.

In the issuer’s information model, the issuer also uses a TrustDB to manage trust
relationships with other components. The resulting dependency D2 mirrors this
by showing a dependency on RPs, TGWs, as well as the distributed ledger, the
community, and external entities.

The interface for data sources is not connected to a specific component and is
ignored at this stage. It does not lead to any dependencies on other components.
Instead, each issuer must individually manage its data sources.

Issuer and agent have a bidirectional dependency, as they rely on each other to
issue VCs and make them accessible for the user. To support the issued VCs with
technical and non-technical descriptions, the issuer relies on metadata managed
through the distributed ledger. This DLT connection results in multiple direct de-
pendencies, which will partly be recurring for other DLT-connected entities:

• A method for retrieving and verifying the genesis file to verify the integrity of
subsequent states of the DLT. This is expressed in dependency D3, a straight-
forward dependency to the community, which must provide provisions to ob-
tain the genesis file.

• Provisions for creating a public identity by issuing a unique identifier and
attaching a metadata file. The dependency D4 shows that the issuer relies on
the DLT to publish and manage their public identity documents.
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• Retrieve VC schemata that others have published to reuse them instead of
creating a new one. This dependency D5 has connections to any component
which might publish VC schemata, including external entities. It also con-
nects to the DLT, which stores and manages the schemata.

• Publish the keys of no longer valid VCs. If no suitable VC schema exists,
dependency D6 describes how the issuer can publish their own VC schema.
To publish a VC schema, the issuer only relies on the DLT.

• Publishing and retrieving VC schemata is not enough. The entities must agree
on common schemata that can be used in general, in large groups, or at least
in smaller federation-style communities. The corresponding dependency D7
affects any component of such a constellation.

If the issuer should have issued a no longer valid VC, the VC’s signing keys are
published as described in Section 4.3.5.3. As shown by dependency D8, the issuer
only depends on the DLT to publish this information.

Last but not least, the issuer also relies on external parties, as the issuance of VCs
might be regulated by laws or sector-specific regulations in some instances. Depen-
dency D9 describes these external dependencies, which must also be considered
and re-evaluated constantly.

4.3.9.2 Relying Parties

The RPs share some of the issuers’ dependencies. They rely on the DLT to get the
genesis file (D3), they may need to create a public identity to be discoverable (D4),
they need to retrieve VC schema definitions (D5), and they possibly also need to
publish their own VC schema definitions (D6).

Because of the VC localization design described in Section 4.3.6.3, which performs
VC localization on the RP’s side, the RP has a direct dependency on the CLS. This
is also shown in the RP’s information model depicted in Figure 4.23.

4.3.9.3 Agents

The agents are working on behalf of the users’ wallets and must perform prelim-
inary validation and filtering before advancing SSI messages to the wallets. This
procedure is described in Section 4.3.3.3. As verifying requests and offers requires
access to the DLT, the agents depend on following the DLT by obtaining the genesis
file (D3). To exchange and understand the VCs, a common exchange protocol (D1)
and VC schema definition (D7) are also required. In the case of the agent, the com-
mon exchange protocol includes not only the communication to issuers and RPs.
It also includes communication with other agents, the W2A protocol described in
Section 4.3.2.3, and TGWs.

4.3.9.4 Wallets

Wallets are the components that users directly interact with and access the SSI
system through. Many operations can be done directly between wallets, but some
advanced features – especially those involving accessing the DLT – depend on the
wallet communicating with an agent. This communication is described in Sec-
tion 4.3.2.3. To facilitate this communication with other wallets and agents, the
wallet depends on the W2W and W2A protocols combined in dependency D1.

Retrieving VCs from an issuer and presenting VCs to an RP can be done without in-
teracting with the DLT. The wallet never needs to contact the DLT and can perform
its basic SSI operations always and anywhere without connectivity to the Internet.
As the issuer can also be a TGW, the wallet also depends on those.
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4.3.9.5 Trust Gateway

As the TGW can be both an issuer and an RP, it has the union of both of their
dependencies and then some. The dependencies inherited by the issuer and RP
are the connection to the DLT for retrieving the genesis file (D3), registering a public
identity (D4), and retrieving VCs schemata (D5). As part of the TGW’s operation, it
must constantly check whether the credentials it forwarded have been revoked in
the source IAM system and invalidate the revoked VCs in its wallet. As issuer and
RP, the TGW must adhere to a common VC exchange protocol (D1) for issuing and
verifying credentials. The definitions of those VCs need to be agreed upon with
issuers, RPs, agents, and the CLS (D7).

Besides the general external dependency on laws and regulations, the TGW has
some unique dependencies if it can bridge non-SSI systems to the SSI network
(D9).

4.3.9.6 Credential Localization Services

The CLS must connect to the DLT to keep up-to-date with the defined VC schemata.
To do so, it needs to retrieve the genesis file (D3), follow the DLT, register a public
identity (D4), and understand the used VC schema definitions (D5, D7). Besides,
the CLS only needs to supply localization rules to the RPs that allow changing
one VC into another, as described in Section 4.3.6.3. External dependencies to
laws and regulations might arise if the CLS has to keep certain guarantees for the
provided rules (D9).

4.3.9.7 Distributed Ledgers

As a central point in the SSI system, the DLT is depended upon by many of the
systems’ components. The ledger itself has few dependencies on others, however.
This is because the ledger is a networked program that should only perform a
limited set of pre-programmed operations. It must be operated and maintained
(D10), as part of the community’s tasks.

As DLT technology is increasingly regulated and as the basis for potentially highly
trusted digital identities, the community is also responsible for any necessary pro-
visions and adaptions.

4.3.9.8 Community

The community – as the name suggests – is reliant on its participants. As a result,
it is heavily dependent on active participation by members of all other components
(D11), especially by the operators and developers of issuers, RPs, agents, and wal-
lets. Additionally, external inputs can also be of value to prevent the community
from focusing too much on itself.

4.3.9.9 Summary

The dependencies found in the previous sections show which components rely on
which other components. Figure 4.32 provides an overview of the number of de-
pendencies between the components. The strong dependency of many components
on the DLT emphasizes its importance. Those dependencies also highlight that the
DLT must be as stable as possible, as any changes that would require updates or
modification of relying components could break the function of the whole system.

The components’ dependencies and their directions are summarized in Table 4.1.
Each row shows the sum of all dependencies for any component and a checkmark
to indicate individual relations between components and components.
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Table 4.1: Summary of the components’ dependencies

ID Dependencies by components Is
su

er
Ve

ri
fie

r
A

ge
nt

W
al

le
t

TG
W

C
LS

D
LT

C
om

m
u

ni
ty

E
xt

er
na

l

Issuer 2 3 1 1 4 1 4 4 4
D1 Common VC exchange protocol
D2 Dynamic trust relations through

federations
D3 Retrieve Genesis file
D4 Register public identity
D5 Retrieve VC schema
D6 Publish VC schema
D7 Common VC schema definition
D9 Laws & Regulation

Verifier 3 1 2 1 3 2 5 2 3
D1 Common VC exchange protocol
D2 Dynamic trust relations through

federations
D3 Retrieve Genesis file
D4 Register public identity
D5 Retrieve VC schema
D6 Publish VC schema
D7 Common VC schema definition
D9 Laws & Regulation

Agent 1 2 1 1 1 0 1 0 0
D1 Common VC exchange protocol
D3 Retrieve Genesis file
D7 Common VC schema definition

Wallet 2 2 1 1 1 0 0 0 0
D1 Common VC exchange protocol
D7 Common VC schema definition

Trust Gateway 3 2 2 1 2 1 4 0 4
D1 Common VC exchange protocol
D3 Retrieve Genesis file
D4 Register public identity
D5 Retrieve VC schema
D7 Common VC schema definition
D9 Laws & Regulation

Continued on next page
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Table 4.1: Summary of the components’ dependencies (Continued)

Credential Localization Service 1 2 1 0 0 1 3 0 2
D3 Retrieve Genesis file
D4 Register public identity
D5 Retrieve VC schema
D7 Common VC schema definition
D9 Laws & Regulation

DLT 0 0 0 0 0 0 0 1 0
D10 Operation

Community 1 1 1 1 0 0 0 0 1
D9 Laws & Regulation
D11 Participation

4.4 Reference Architecture
A complete reference architecture can be obtained by combining the individual
components’ descriptions from the previous section. To prevent repetitions, only
new aspects concerning the combination of components and the systems as a
whole are described.

In Section 4.3, all components are described using an information model. The
individual information models contain repeated elements that are part of multi-
ple components’ information models. A merged “big picture” information model is
generated using overlapping components in Figure 4.33. In this figure, each com-
ponent is color-coded to show the element’s originating component. For elements
that are part of multiple components, the first component sets the element’s color.
Figure 4.33 shows that no single component is entirely independent of others, sim-
ilar to the component dependency overview of Figure 4.32. When implementing an
SSI system, this view can help estimate individual implementation decision’s in-
fluence.

Comparable to the information model, the organizational model of individual com-
ponents also contains some overlap. All direct relations of components are shown
in each component’s organizational model and are not repeated here. Similarly,
the communication and functional models, as well as the security management
and data protection considerations are not combined in the reference architecture.
They are component specific, and a combined view adds no benefit.

4.5 Integration
Integrating the components described in Section 4.3 into a new or an existing
IAM system requires careful planning. This section should provide an overview of
aspects that need to be considered.

4.5.1 Starting a New SSI System from Scratch
From a technological point of view, starting from scratch is the easiest option when
deploying a new SSI IAM system. There are no dependencies on legacy components
or data that has to be migrated to the new system. However, this also provides
the largest hurdle for starting a new IAM system, as everything has to be built
anew, and many established systems might be easier to set up, use, and manage.



146 4.5. Integration

Figu
re

4.33:
C

om
plete

overview
ofthe

inform
ation

m
odel.

The
colors

indicate
the

com
ponents’origin:

D
LT

gold,w
allet

light
green,agent

linen,R
P

pale
gold,issu

er
aqu

a,C
LS

near
w

hite,TG
W

aqu
am

arine,and
com

m
u

nity
vanilla.

D
etailed

inform
ation

abou
t

the
com

ponents
can

be
fou

nd
in

the
respective

parts
ofSection

4.3.



Chapter 4. Concept for a Comprehensive SSI and IAM Integration 147

This description of the integration ignores the TGW and CLS because they are not
needed when setting up a new IAM system. They rather help to migrate data from
older systems, which will be described in Section 4.5.2.

A precondition for building a decentralized IAM system is having an interested
community of participants. Those participants must agree on the system’s goals
and technological and organizational parameters. As Section 4.3.9.9 shows, the
component which most other components depend on is the DLT. Therefore, in the
order of components to set up, the DLT takes first place. The wallet takes second
place, as it is necessary to store the cryptographic keys for SSI operations securely.
Third and fourth place go to the issuers and relying parties. It is advisable to have
one issuer running before setting up a relying party, as the RP depends on the
issuers’ VCs and cannot be tested without them.

With those four components in place, user interaction via a wallet application must
be tackled. Additionally, agents can be provisioned to streamline the whole system
and improve its usability.

4.5.1.1 DLT Setup

When deciding about building a new SSI system, choosing the right DLT is es-
sential. Once fixed, major changes to the DLT can hardly be implemented if the
SSI system is running. The systems’ fundamental characteristics are determined
by the ledger type. Usually, different versions of DLT are distinguished by who
can read the ledger and who can write to the ledger. The most common combi-
nations of those two settings are public/permission-less ledgers (e. g., Bitcoin and
Ethereum) or private/permissioned (e. g., Hyperledger-based). Another option is
not to use any DLT system but to rely on a PKI-based system.

The primary use case for using DLT over PKI is to have a traceable history for any
value written to the ledger. This is useful if disputes arise and decisions need to
be justified. Additionally, a public/permission-less distributed ledger can guar-
antee that individual identities are actually self-sovereign. Any dependency on a
permission system or CA increases the risk of being limited in publishing public
identities and other metadata. At the same time, public/permission-less systems
cannot fulfill the requirements of the GDPR and, as such, carry a risk for node
operators [85, 174]. Figure 4.34 summarizes those options in a decision tree.

provable and im-
mutable history im-
portant

greatest self-sovereignty community rules better enforcible

established technology

SSI base technology options

DLT

public/permission-less private/permissoned

PKI

Figure 4.34: Decision tree for choosing the base technology for SSI

If a DLT-based approach is selected, a suitable consensus protocol needs to be
found. For public/permission-less ledgers, the choices are primarily PoW and
proof of stake (PoS). More efficient quorum-based protocols can be used for pri-
vate/permissioned ledgers. In the case of a PKI-based system, the consensus
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about transaction ordering needs to be solved by either using a hierarchical ap-
proach (i. e., domain name system (DNS)) or random identifiers with a low chance
of collisions (i. e., PGP fingerprints).

The primary risk to the DLT system is an unauthorized modification that allows
the issuance of forged VC or results in a DoS of entities using the system.

Regardless of the base technology used, the ledger’s data must be stored by mul-
tiple nodes to ensure redundancy and availability. If DLT is used, the integrity
of the data is straightforward to check. Starting from the genesis transaction, all
further transactions can be checked for correctness. Any later modification of a
transaction would be easy to detect.

The integrity of non-DLT systems is more difficult to guarantee and depends on
the individual technologies used.

Confidentiality of the system’s nodes is, except for a private/permissioned ledger
and all private keys, not important. The data stored in those systems is usually
designed to be available publicly and thus does not necessitate any special pre-
cautions.

In order to prevent PII from being stored on the DLT, transactions should be de-
signed in a way that prevents accidental or deliberate storage of PII. This can be
done by only allowing signatures, hashes, and URLs to be stored. The main con-
tent is then kept off-ledger at the URL’s location, which can be removed and is not
mirrored across all nodes. As a major drawback, this also limits the long-term
availability of the data.

4.5.1.2 Wallet Setup

The wallet is essential to store cryptographic keys and perform a minimal set of SSI
operations to connect to agents, issuers, and relying parties. It is highly dependent
on the available hardware and operating system and its capabilities.

On most modern platforms that run full-fledged operating systems, there are pro-
visions to store cryptographic keys in a specially protected environment. Some of
those secure elements may also be hardware-based, providing even better protec-
tion against an attacker compromising a device or trying to retrieve the keys with
physical access.

Backups of those keys are also important, as a complete loss of the private keys
can render an identity useless. It is important that the backup process is as secure
as the key storage to not introduce an easy attack vector.

• The most straightforward option is to export an encrypted backup file, which
can be imported again if needed. This option might not be suitable if it is
required to keep the keys protected by a hardware security module (HSM) at
all times.

• Another solution would be to generate the base identity from a physical copy
or printout. Entirely offline, this backup would be hard to steal and would
not suffer from random disk failures.

• Another option is to have no backup. This might be necessary if an IoT de-
vice’s keys are associated with non-modifiable hardware, i. e., a PUF, and
this hardware is damaged. In this case, a repaired device will be assigned
new keys, and the device’s identity needs to be updated in the DDo.
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4.5.1.3 Issuer Setup

The setup described in this section is intended for integrating a permanent issuing
service. A self-issued credential by a user’s agent might not require the agent to
implement all the provisions described here. How those systems can be integrated
is described in Section 4.5.1.5.

An issuer is composed of three main components:

• The data source is the repository that contains information that can be pro-
vided to users as a VC. The data source must be kept well secured, as it can
contain sensitive PII, process data, or trade secrets.

• The DLT connector is required to connect, add, and verify transactions on
the DLT. It is a component necessary for managing the public identity of the
issuer, the repudiation of expired VCs, and the schemata of used VCs.

• User-facing the issuing frontend connects to agents and wallets to issue VCs
to the users.

Those three components should be placed in separate network domains, with the
data source being in a closed-off network and the DLT connector issuing frontend
in separate DMZ networks connected to the Internet. A schematic of this setup
and the firewalled connections between the network segments is depicted in Fig-
ure 4.35.

Internet

Data Store Issuer Frontend

DLT Connector

Internal Network DMZ

Figure 4.35: Network integration of the issuer

To establish a base for technical trust with other system entities, the issuer must
publish its unique identifier and associated metadata to the distributed ledger. The
metadata must contain at least the issuer’s public key(s), but additional informa-
tion like a description and a URL to the issuer’s website is usually helpful. Addi-
tionally, the combination of identifier, metadata, and time stamp must be signed
and added to the distributed ledger.

With the identifier and metadata in place, the issuer can form organizational trust
relations with other participants. This trust can be divided into the following cat-
egories:



150 4.5. Integration

• Institutional trust is provided by well-known institutions, for example, gov-
ernments or corporations. They can issue VCs generally recognized as well-
verified and trusted without direct contractual provisions (like physical ID
cards). The biggest challenge to an issuer with this trust model is preventing
impostors from tricking services into accepting VCs. EU government agencies
might use qualified certificates [157] for this task.

• Most issuers will not have the benefit of being basically universally trusted.
Those can join together with peers in their field in a federation. This requires
them to exchange legal details over data quality and usage but provides a
robust framework.

• Both of the previous options require substantial organizational management.
As a hassle-free option, issuers can issue VCs using a best-effort approach.
Those VCs might only be useful within an organization or group of friends but
are fundamentally the same credential as the others.

4.5.1.4 Relying Party Setup

As with the issuer described in the previous section, this section targets perma-
nently set up relying parties. How an agent can also act as a relying party and
check VCs is described in Section 4.5.1.5.

A relying party can either require authenticated information about an entity or
ensure it had previous contact with it. In both cases, the IAM component is placed
in front of the application, as shown in Figure 4.36. The service’s database is
specially protected within the internal network, and the DLT connector is placed
in another network, all separated by firewalls.

Internet

Backend Database Application

DLT connector

Internal Network DMZ

IAM

Figure 4.36: Network integration of the relying party

The RP also has to register a public unique identifier if it wants to be recognizable
by the other participants. This allows it to prove its identity to others in a mutually
authenticated exchange and prevents impersonations. The technical trust is es-
tablished the same way as for the issuer. An identifier and associated metadata are
published to the DLT, where it can be retrieved from, and changes to it be tracked
by the users’ agents.
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Organizational trust for the RP depends on the kind of issuers the RP wants to
interact with and the guarantees it needs to provide for its services. An RP might
just trust the VCs issued by individual known institutions or must join a federation.
Joining a federation involves explicit contracts with the other participants. The use
of issuers that issue VC according to the best-effort method is rather unlikely, with
the exception that the issuer is internally known.

4.5.1.5 Agent Setup

Agents play an important role within the SSI system. They connect users’ wallets
persistently to the system but are usually not run directly by the users. As such,
the users need to trust their agents with handling connections to issuers and RPs.

An agent, as described in Section 4.3.3, can support various features. In its sim-
plest form, the agent only passes messages between wallets and issuers or RPs.
More advanced features like automated tasks, synchronization of VCs and keys, or
identity recovery add to the effort of running an agent. Similarly, the target audi-
ence can shift depending on features but also because of strategic decisions (e. g.,
is the agent available for free or limited to specific users). Determining the desired
feature set and scope is, therefore, the first necessary step.

Depending on the agent’s features, the setup can be handled like a web application.
If it can be used to synchronize confidential or private data, however, the setup
needs to consider adequate protections. This can be achieved by the separation
of data stores and ensuring all data is stored with sufficient encryption. Ideally,
private data, like VCs, are encrypted client-side and never accessible to the agent.
If the agent requires access due to some automatization process, only the strictly
necessary VCs need to be stored. Similarly, users’ keys should be protected to the
same level as an online password safe would provide.

4.5.2 Migrating IAM Systems to SSI
The other components presented in Section 4.3 are added if an existing IAM sys-
tem is migrated to SSI. In particular, the CLS and the TGW make using previous
identities and attributes with SSI easier.

4.5.2.1 Credential Localization Service Setup

The CLS’s main challenge is providing reliable and trustworthy localization rules.
This requires it to be securely set up and managed and being organizationally well-
connected to its partners. The most important goal of IT security for the CLS is
the protection of the rules’ integrity. Integrity protection must be achieved at the
CLS itself and while transferring the rules to the customers.

Availability and confidentiality also need to be considered as they allow the CLS to
operate its business and keep the trade secrets it wants to sell. The setup must
keep those goals in mind.

4.5.2.2 Trust Gateway

The TGW is even more challenging regarding integrity and confidentiality require-
ments than the CLS. It needs to process and convert data that might consist of
PII. As described in the TGW’s description in Section 4.3.7, the TGW is a mix
of a cloud-based wallet, an issuer, and an RP. As a result, the TGW must include
the recommendations for those components described in Sections 4.5.1.2, 4.5.1.3,
and 4.5.1.4.
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4.5.3 Integrating SSI in the Scenarios

The use cases selected for integrating the SSI concept are from the three main
scenarios presented in Section 2: Web Apps, IoT, and eID. Each of those scenarios
is developed with different characteristics in mind.

The web app scenario is modeled after current OIDC-based IAM systems, which are
primarily operated by large corporations and social networks. While those larger
corporations are the main issuers of credentials in such a system, they benefit by
allowing any other web-based application to use the VCs issued by them. This
allows the system to be public and allows anybody to participate. With web ser-
vices as the main issuers and consumers of VCs, the system is built around web
technology and features a browser-based wallet. The prevalent method for proving
website authenticity and keeping transmitted data confidential is using TLS cer-
tificates based on a PKI. The SSI system can be integrated into this setting without
the need for new infrastructure in the form of a dedicated DLT.

For the IoT scenario, the premise is a closed system between manufacturers, op-
erators, and data processors. The data handled here is less PII and more generic
sensor readings and assertions of manufacturing processes. This scenario uses
private/permissioned DLT technology as a basis for SSI. The wallets are primar-
ily designed for embedded systems. To enable a large number of businesses to
participate, this system also integrates CLSs and TGWs.

The last scenario looks at highly personal and highly reliable identity information
used for e-government and eID. It is also based on DLT but utilizes a public/per-
missioned ledger to provide transparency while keeping the ledger efficient. As the
data managed in this scenario is extremely sensitive, the wallet should use trusted
compute modules or HSMs. To migrate data from existing systems, certified por-
tals are used as TGWs. This scenario should mirror the plans set forth by the EU
with the new revision of eIDAS [150].

Table 4.2 summarizes the different aspects selected for those scenarios from the
components’ perspectives. A goal of the chosen characteristics is to cover a wide
variety of realistic and possible cases for the application of SSI.

Table 4.2: Overview of the different aspects of integrating SSI into the selected
scenarios

Scenario
Perspective Web Apps IoT eID
DLT PKI Private/Permis-

sioned
Public/Permis-
sioned

Issuer Corporations Manufacturer Government
Relying Party Web Applications Data Processors Government

Agencies
Wallet Browser Embedded App
Agent Web Service Cloud Service Certified Provider
CLS none Service Provider none
TGW none Service Provider Certified Portal
Community Public Sector Specific Public-private

Partnership
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4.5.3.1 Web Apps

As this concept is reusing the existing PKI of the web, it does not need a new DLT
backend. The main problem with re-using the web’s PKI for issuing SSI VC is that
the certificates used by websites tend to be valid for short periods. For regular
web browsing, the switch to a new X.509 certificate would result in the VCs no
longer being able to be verified. Especially for short-term certificates, like the 90
day validity period of LetsEncrypt’s certificates [1], this poses a major issue. This
forces the relying party to first figure out which certificate was in-use and valid
at the time the VC was issued and then check its validity against this certificate.
Using certificate transparency (CT) logs, which share similarities with DLTs, is
possible. Revoking certificates reliably is a difficult problem and topic of multiple
standards like CRLs [39] and the OCSP [163]. However, revocation is necessary,
and using short-lived certificates limits the impact of not being able to reliably
communicate revocations to end devices.

For SSI, revocation of the issuing keys is a different problem, described in Sec-
tion 4.3.5.4. The issuing keys are usually long-lived, and the public keys can be
published by the issuer at a well-known location. Their authenticity and integrity
is protected by the short-lived X.509 certificate used to secure the website serving
those. As a result, the lookup of the certificate requires an Internet connection,
but the use case for web pages requires that anyway.

The issuer’s VCs are stored by the users in wallets, which their web browser pro-
vides. Those work similarly to password safes, which are already part of most major
browsers or operating systems.

The relying parties can request VCs, and the user’s wallet helps select the right
credential and provides information about what data is shared with whom. To val-
idate the received VC, the RP must retrieve the verification keys from the issuer
or have them already cached. This does leak some metadata which could be pre-
vented with fully decentralized storage for those keys, but the metadata does not
include the user’s identity.

Agents are used to relay messages to the users in their absence. Those messages
can notify the user of revoked or renewed VC or contain general messages.

4.5.3.2 IoT

IoT applications can utilize private/permissioned DLTs to manage devices and their
digital identities. While the ledger should never contain confidential or private in-
formation, the content of metadata like credential schemata and public identifiers
can already give away details about participants, project goals, and timelines. In
this case, a private ledger can offer some protection for participants of confidential
projects by preventing insights of others into this metadata.

The architecture for using private/permissioned DLT is also already in use in some
industry projects where supply chain tracking applications are using DLT [45, 136].
An example of this was Maersk and IBM building a tracking platform for tracking
shipping containers [183], which has since been retired [36]. Similar frameworks
for blockchain integration in supply chains do not use SSI and instead rely on
traditional IAM methods [113]. However, the expertise gathered in deploying and
running DLT-based systems provides a good foundation to integrate SSI.

Issuers and relying parties in this scenario are usually web services. The entities
which need to be identified and associated with attributes are IoT products. An
important part of the system is setting up and deploying the IoT devices. For this
setup to scale to thousands of devices, the manufacturer must be involved and
prepare the devices as part of the manufacturing process. The devices are assigned
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their machine identity with the help of TPMs or PUF technology. They are also
issued a VC, which guarantees they are an original product of the manufacturer. To
include such a device in an operation, the operator can, as part of the procurement,
issue their own VC asserting that the device has been taken into operation. Using
both VCs, the device can participate in the operator’s system.

Products without any processing power and digital storage (i. e., tires, wood planks,
or food) are not included as entities in this scenario. Their progress within the sup-
ply chain can, however, be tracked through identifiers by the machines that process
them. The IoT device’s messages can be verified by the VC from the manufacturer,
stating its capabilities, and the operator’s VC, describing its position and use case.

As the managed entities primarily are IoT devices, this scenario poses the challenge
that the device itself cannot act without an operator and is owned by a person or
legal entity. As a result, the entity’s identity must be able to be managed by the
operator on behalf of the owner. This management functionality must be built into
the IoT device’s wallet. A hierarchy of permission delegations from the device’s
owner to the operator can be used to implement this management functionality
through SSI itself. If the device is to be serviced by a subcontractor, the operator
can allow the subcontractor to manage the device by issuing a corresponding VCs.
The collection of all VCs of an IoT device and its messages can be used to model a
digital twin.

Because many IoT devices are not directly connected to the Internet, they may only
be reachable through a gateway. If this gateway is reliably connected to the Inter-
net, it can forward the devices’ messages to a cloud-based agent. With different
projects being run on a private DLT system, it is especially important to have a CLS
to localize VC between projects. As the information from one project to another is
not directly visible, it is harder to re-use existing standards, and slightly differing
schemata will evolve. The same applies to TGWs, as the closed architecture does
not immediately encourage using one single DLT. TGWs have to fill the gaps.

4.5.3.3 eID

The private/permissioned DLTs suggested in the previous section for IoT are less
suitable for eID. To foster transparency and provide the highest possible interoper-
ability, everybody should be able to read the schema definitions and public identi-
ties defined on the ledger. As shown in [143], many approaches to mobile govern-
ment IDs and eIDs exist worldwide. Some of them already rely on SSI technology.
However, it would add much value to eIDs, in general, to use those identities even
across borders.

Within the EU [157] already provides provisions for a common exchange format for
eID and rules and regulations for building and running eID services. The planned
revision of eIDAS [150] already points to using an EU-wide system similar to SSI.
In this system, identity issuers are primarily government organizations or private
companies contracted by governments. The number of issuers is, therefore, rela-
tively low. To issue reliable VCs for the eID scenario, those issuers must comply
with strict security and data protection rules. The certified adherence to those
rules can be expressed through a VC that guarantees a certain LoA.

Relying parties can be government as well as private services. The high quality
and assurance of the identity information available in this system require special
precautions to prevent misuse or identity theft. Users must, therefore, always
be sure which service provider they interact with, and impersonations must be
prevented as effectively as possible. This kind of protection also must carry over
to the wallets and devices where the wallets are stored. Storage of the wallet’s keys
in a TPM is a possible solution for this.
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The attribute schemata for use in an eID scenario can be implemented easily, as
laws govern the initial number of attributes. This eliminates the guesswork for all
participating parties, but some differences between countries can still exist. To
translate specific attributes from one language to another or to adapt attributes
to local formats, the use of CLSs is essential. Combined with TGWs, which can
import identity data from existing eID systems, this allows for a smoother transition
to using SSI.

Already established trust services, like a PKI system, can be integrated into an eID
system. The PKI can be used as trust anchors for identities on the SSI system,
as all participants already know how to validate signatures from the PKI, and the
entities have already been carefully vetted before being issued their PKI certificates.

4.6 Assessment
The assessment will revisit the requirements posed in Chapter 2 and listed in Sec-
tion 2.6. Requirements are considered in order of their importance, as determined
in their respective descriptions and grouped according to their category. The source
scenario is not factored into the assessment.

Each requirement can be determined to be either:

• Completely fulfilled, if all aspects of the requirement are met,

• fulfilled, if the most important aspects are met,

• partially fulfilled, if some aspects could not be met,

• not fulfilled, if the concept cannot provide the required aspects, or

• overruled, if the requirement is determined to be infeasible to achieve but
mitigating factors have been provided.

At the end of the chapter, Table 4.3 visualizes the results similarly to the compar-
ison in Section 3.6.7 and compares them to the results from exploring the state-
of-the-art with SSI from Table 3.2.

4.6.1 Essential Requirements
• Identification (SAT3): Any entity within the SSI system can be identified by

its unique identifier. This requirement is completely fulfilled.

• Authentication (SAT1): Any entity can be authenticated using its unique
identifier and the public-private key pair associated with its identity. This
requirement is completely fulfilled.

• Authorization (SAT2): By utilizing VCs, attributes can be asserted to an en-
tity. Those can be used in arbitrary complex authorization decisions by the
RP. This requirement is completely fulfilled.

• Identity provisioning (SAT4): The protocol for establishing a connection be-
tween an entity, represented by the identity in its wallet, is shown in Sec-
tion 4.3.2.3. This requirement is completely fulfilled.

• Trust establishment (SAT5): Through the use of DLT or PKI systems, as
described in Section 4.3.1, all participants of the system can reliably verify
assertions made by public entities. Establishing trust between all entities is
not possible without further constraints of the system. This requirement is
fulfilled.
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• Automated integration/registration (SAT7): To support automated discov-
ery and connection to entities in the vicinity, the discovery protocol of the used
network link is used in combination with a common endpoint as described in
Section 4.3.2.3. This requirement is completely fulfilled.

• Message delivery services (SAT9): SSI itself cannot be used to force the
wallet to notify an entity if they received their message. As a result, this re-
quirement is overruled. To implement this feature, where necessary, either
the wallet or the agent, which is used, must be implemented with this func-
tionality.

• Credential establishment (INF1): The first step of the protocol for interact-
ing with other entities establishes how each entity can authenticate with the
other using their identity credentials. This protocol, including mutual au-
thentication and verification of VCs, is described in Section 4.3.2.3. This
requirement is completely fulfilled.

• Digital identification (INF3): Each entity can be identified by its unique
identifier, which can easily be printed as a QR code, sent via NFC, or commu-
nicated with similar technologies. This requirement is completely fulfilled.

• Physical identification (INF4): Physical identification of a digital identity
depends on the capabilities of the devices in question and the data available.
This requirement is fulfilled.

• Neighbour discovery (INF6): A protocol for discovering entities within a spe-
cific network or region is described in Section 4.3.2.3. This requirement is
completely fulfilled.

• Identity data set (INF10): Due to the flexible application of VCs, any set
of attribute data can be expressed with them. The identity data set can be
defined as a VC schema, as shown in Section 4.5.3.3. This requirement is
completely fulfilled.

• Identity de-provisioning (CON1): As VCs are designed to be issued with
short validity periods, as described in Section 4.3.5.4, any VC stored outside
the subject’s control is automatically invalidated regularly. From the subject’s
point-of-view, the data can be deleted in the wallet to de-provision the identity.
This requirement is completely fulfilled.

• Access controls (SEC1): Access decisions can be based on the values stored
in VCs. This requirement is completely fulfilled.

• Credential revocation (SEC2): Revoking credentials is not feasible in a se-
cure and privacy-focused system. This requirement is therefore overruled.
The mediating factor is that VCs are only issued for limited validity periods,
like X.509 certificates.

• Mutual authentication (SEC3): Impersonation of other entities is a primary
attack vector in many (web-based) attacks. The protocol described in Sec-
tion 4.3.2.3 shows how both entities can authenticate mutually to prevent
impersonations. This requirement is completely fulfilled.

• Security by default (SEC4): By default, communication and VC exchanges
are peer-to-peer. No private information needs to be disclosed publicly or be
written to the DLT. In fact, doing so should be made deliberately hard. This
requirement is completely fulfilled.
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• Security by design (SEC5): The concept relies on well-known methods of
encrypting and signing messages through public-private key cryptography.
Information stored on the distributed ledger is similarly signed and integrity
protected by well-known hashing functions. This requirement is completely
fulfilled.

• Tamper-evident (SEC7): The use of PUF for managing IoT devices’ identities
is discussed in Section 4.3.2.5. This allows any tampering to be detected, as
it is highly likely to destroy the device’s identity. This requirement is fulfilled.

• Off-the-record (OTR) (SEC12): The privacy of the exchange of information
between the identity holder and the RP supports repudiation towards third
parties. This is achieved through short validity periods of VC and the publi-
cation of the private keys used to sign them, as first introduced by the OTR
protocol [20] and adapted to SSI in Section 4.3.2.3. Because of the delay
between showing the VC and it being invalidated, this requirement is just
fulfilled.

• Privacy by default (DAT1): Private information is always stored in the user’s
wallet by default. Depending on the implementation, agents might allow the
user to store the PII elsewhere, but by default, it is in the wallet under their
control. This requirement is completely fulfilled.

• Privacy by design (DAT2): With no direct connection between the issuer of PII
and the RPs, the user (or agents on their behalf) is always involved in an ex-
change and in control of the information flow. This requirement is completely
fulfilled.

• Protected application storage (DAT5): As shown in Section 4.3.2.5, the con-
fidential data required to be stored on the entity’s wallet can be protected
through the use of TPM systems. However, even those can be misconfigured,
ill-designed, or otherwise broken. This requirement is partially fulfilled, and
further research into the use of external hardware security devices is neces-
sary.

• Reliability (ROB1): The reliability of this concept is provided by not having a
single point of failure. Even if the DLT breaks down and cannot be continued,
the last valid state allows most operations to continue as usual while services
are restored. This requirement is completely fulfilled.

• Offline authNZ (ROB5): Communication between two entities can be done
via any local network, i. e., offline without the Internet. In this setup, no
information stored on the DLT can be used, but basic authentication and
authorization (authNZ) can be performed. Information stored on the DLT is
shown in Section 4.3.1.1. This requirement is completely fulfilled.

• Scalability (ROB6): The concept relies on generating public-private key pairs
as the basis for the entities’ identities. Those can be generated at each en-
tity without much effort. The DLT is only used sparingly to store informa-
tion about public identities, attributes, and schemata, as described in Sec-
tion 4.3.1.1. Thus, it is not limiting the scaling of the number of participants.
This requirement is completely fulfilled.
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4.6.2 Important Requirements

• Access delegation (SAT6): Delegation of access permissions in the form of
VC is possible through credentials that allow being passed on by entities. The
basics of delegation are described in Section 4.3.5.3. An example of defining
such credentials is described in Section 4.5.3.2. This requirement is com-
pletely fulfilled.

• Identity data set matching (SAT8): The task of adapting and localizing VCs
is described in Section 4.3.6.3 and used in the RP’s workflow as described in
Section 4.3.4.3. This requirement is fulfilled, as it can be supported by the
system but relies on the CLS as an additional component.

• Documentation (INF2): The essential aspects of the concept have been de-
scribed in this chapter. This does not fulfill the aspect of having complete
application documentation for developers, operators, and end-users, but doc-
umentation in this style is out of scope. This requirement is partially fulfilled.

• Product specification (INF5): This requirement can be fulfilled in multiple
ways. Either the entity provides a VC that proves the entity is operating for
a specific organization, or the organization can provide a customer with a VC
listing all the entities’ identifiers that are employed by them. This requirement
is completely fulfilled.

• Agreement monitoring (INF8): Representing and monitoring agreements is
not directly supported by the concept. The short-lived nature of the VC re-
quires constant re-issuing of VC, which shows commitment to a contract. In
many cases of edge computing and IoT, this will be sufficient. This require-
ment is partially fulfilled.

• Capability exchange (INF9): A service’s capabilities can be shown through
either self-issued VC or even be asserted by other entities through VCs issued
by them. This requirement is completely fulfilled.

• Level of assurance (INF11): The level of assurance of an issuer can be as-
serted through a VC, either self-issued or issued by another vetting entity.
An example of how VCs can be structured for this use case is provided in
Section 4.5.3.3. This requirement is completely fulfilled.

• Credential recovery (CON2): Due to the need to regularly re-issue VC, losing
a set of VCs is not dramatic. The loss of the identity’s root private keys,
however, is an irrecoverable problem. Section 4.3.2.4 provides solutions to
facilitate backups of the identity’s key data. This requirement is fulfilled.

• Digital twin (CON3): A reliable digital identity for IoT is essential for establish-
ing digital twins, and SSI, as described in Section 4.5.3.2, can provide those.
However, digital twins in itself are part of the application’s implementation
and not the IAM system. As a result, this requirement is not fulfilled.

• Content verification (CON4): Providing VCs proving certain assumptions
about an entity in combination with the entity’s generated data is shown in
Section 4.5.3.2. As a result, this requirement is completely fulfilled.

• Netsplit/Join (CON5): Re-synchronization between segmented DLT parti-
tions depends on the used consensus protocol of the ledger, as described
in Section 4.3.1. Other entities do not need to synchronize but can continue
to access the ledger as usual. As a result, this requirement is completely
fulfilled.
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• Once-only (CON6): The greater goal of once-only, not requesting information
about the user, which is already stored at another government agency, can
be achieved by storing all user data with the user and querying it as needed.
If this actually fulfills the legal requirements of once-only legislation, is not
clear at this time. This requirement is partially fulfilled.

• Multi-factor authentication (SEC6): MFA on a local database, like the wal-
let, is fairly limited in options that do not rely on another trusted third party.
However, options for including MFA in SSI are described in Section 4.3.2.5.
This requirement is completely fulfilled.

• Delegation parameters (SEC8): If an entity issues a delegation based on
a received VC, it acts as an issuer. This particular case of issuing VCs is
described in Section 4.3.5.3. This requirement is completely fulfilled.

• Secure de-provisioning (SEC9): Any stored VCs will become obsolete af-
ter their validity period making secure deletion of those easy. The iden-
tity’s private keys, however, must be disabled securely. As described in Sec-
tion 4.3.2.5, the keys should be stored in a TPM where secure deletion can be
achieved. This requirement is fulfilled.

• Secure setup (SEC10): The secure setup procedure established by manufac-
turers of IoT devices can include issuing VC to the organization or individual
buying their product, as shown in Section 4.5.3.2. This requirement is ful-
filled.

• Tamper-resistant (SEC11): Tamper resistance can be achieved by utilizing
TPM hardware, as described in Section 4.3.2.5. This kind of hardware, how-
ever, is not universally available or accessible, so it cannot always be used.
This requirement is fulfilled.

• Trust service providers (SEC13): Building or including a PKI infrastructure
into a decentralized SSI system using VC or X.509 certificate is possible, as
shown in Section 4.5.3.3. Those can designate certain issuers as especially
trusted within a specific domain. This requirement is fulfilled.

• GDPR (DAT3): While a concept in itself cannot be compatible with specific
legislation and determining legal compliance takes actual legal review, the
concept shown in this section should be possible to implement in a way that
achieves GDPR compliance. This requirement is partially fulfilled.

• Correlation resistance (DAT6): Metadata leaked by the issuance or presenta-
tion of VCs is limited to the metadata produced by the used transport protocol
(i. e., TCP/IP or HTTP). This requirement is fulfilled.

• External tracking resistance (DAT7): All data exchanged for SSI is encapsu-
lated in the used transmission protocol in an encrypted form. An outside ob-
server cannot deduct which entity is communicating via SSI. However, devices
can still be tracked using other identifying network information, for example
MAC, addresses. This requirement is fulfilled.

• Internal tracking resistance (DAT8): Observers that are part of the SSI sys-
tem but not part of a specific exchange do not learn any more information
than outside observers. This requirement is fulfilled.

• Approachability (ROB3): From a user’s perspective, an SSI app’s authentica-
tion process is not too dissimilar to using password-safe apps. The scanning
of QR codes to connect with websites or terminals is also pretty common. This
requirement is fulfilled.
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• Accessibility (ROB2): The accessibility of this concept is not limited to spe-
cific devices, applications, or operating systems, except for requiring special-
ized TPM hardware for added security with highly reliable PII like government-
issued eID. This requirement is fulfilled.

• Usability (ROB4): The concept is fairly focused on exchanging VCs between
issuers, users, and RPs. An actual implementation’s usability will differ based
on implemented and added features. This requirement is fulfilled.

• Platform independence (ROB7): The requirements necessary to run the
shown SSI concept consist of being able to sign and verify public-private key
signatures and communicate with other entities through an interface. Any
hardware supporting those two can use the concept. This requirement is
completely fulfilled.

• Transitive trust (ROB8): Scaling trust for connection lengths larger than two
hops is difficult. Any entity b can prove to another entity c that it received a
VC from a third entity a. This already requires entity c to trust entity a issued
the VC correctly. Entity c can now issue a VC to itself or another entity that
it observed the VC from entity a at entity b. This solves transitive trust on
a technical level, but how to reliably interpret it on an organizational level
cannot be answered. This requirement is partially fulfilled.

• Communication protocol independence (ROB9): VCs exchanges can be per-
formed over a variety of transport protocols. This requirement is completely
fulfilled.

• Resource efficiency (ROB10): In [70] it was shown that the necessary oper-
ations for SSI can be used on very low-powered microcontrollers using LoRa®.
This requirement is completely fulfilled.

• DDoS protection (ROB11): The basic credential exchange and authentication
is handled between two entities directly. There is no central component that
can be attacked via DDoS. This requirement is completely fulfilled.

• Standalone authNZ (ROB12): Similar to the Offline authNZ (ROB5), au-
thentication and credential exchanges can be done with limited or outdated
information. This requirement is completely fulfilled.

4.6.3 Optional Requirements
• Service discovery (INF7): Service discovery can be implemented on top of the

SSI concept but is not part of this concept. This requirement is not fulfilled.

• Multiple identities (DAT4): The concept does not limit the number of iden-
tities. Each entity can manage multiple identities for different scenarios or
use one identity, as each connection to another entity cannot be correlated
and acts like a separate identity. This is described in Section 4.3.2.3. This
requirement is completely fulfilled.
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Table 4.3: Comparison of the requirements met by the concept
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Requirement C
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SAT1: Authentication * ↑
SAT2: Authorization * ↑
SAT3: Identification * ↑
SAT4: Identity provisioning * ↑
SAT5: Trust establishment + ↑
SAT6: Access delegation * l
SAT7: Automated integration/registration * ↑
SAT8: Identity data set matching + l
SAT9: Message delivery services ↓

In
fo

rm
at

io
n INF1: Credential establishment + ↑

INF2: Documentation ∼ l
INF3: Digital identification * ↑
INF4: Physical identification + ↑
INF5: Product specification * l
INF6: Neighbour discovery * ↑
INF7: Service discovery - ↓
INF8: Agreement monitoring ∼ l
INF9: Capability exchange * l
INF10: Identity data set * ↑
INF11: Level of assurance * l

C
on

si
st

en
cy

CON1: Identity de-provisioning * ↑
CON2: Credential recovery + l
CON3: Digital twin - l
CON4: Content verification * l
CON5: Netsplit/Join * l
CON6: Once-only ∼ l

Se
cu

ri
ty

SEC1: Access controls * ↑
SEC2: Credential revocation ↑
SEC3: Mutual authentication * ↑
SEC4: Security by default * ↑
SEC5: Security by design * ↑
SEC6: Multi-factor authentication * l
SEC7: Tamper-evident + ↑
SEC8: Delegation parameters * l
SEC9: Secure de-provisioning + l

Continued on next page
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Table 4.3: Comparison of the requirements met by the concept (Continued)

SEC10: Secure setup + l
SEC11: Tamper-resistant + l
SEC12: Off-the-record (OTR) + ↑
SEC13: Trust service providers + l

D
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a
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on

DAT1: Privacy by default * ↑
DAT2: Privacy by design * ↑
DAT3: GDPR ∼ l
DAT4: Multiple identities * ↓
DAT5: Protected application storage ∼ ↑
DAT6: Correlation resistance + l
DAT7: External tracking resistance + l
DAT8: Internal tracking resistance + l

R
ob

u
st

ne
ss

ROB1: Reliability * ↑
ROB2: Accessibility + l
ROB3: Approachability + l
ROB4: Usability + l
ROB5: Offline authNZ * ↑
ROB6: Scalability * ↑
ROB7: Platform independence * l
ROB8: Transitive trust ∼ l
ROB9: Communication protocol independence * l
ROB10: Resource efficiency * l
ROB11: DDoS protection * l
ROB12: Standalone authNZ * l

Key: ↑ essential, l important, ↓ optional, * completely fulfilled,
+ fulfilled, ∼ partially fulfilled, - not fulfilled, not applicable
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This chapter utilizes the concept developed in Chapter 4 to realize SSI by imple-
menting software and applying it to a subset of the scenarios described in Chap-
ter 2. The parts of the concept that need to be implemented are discussed in Sec-
tion 5.1. Applying the implementation to the respective scenarios is described in
Section 5.2. The selection of scenarios follows the decision made in Section 4.5.3,
where this subset was selected based on maximizing coverage of requirements and
realistic use cases. The main application areas are the Internet in Section 5.3,
IoT in Section 5.4, and eID in Section 5.5. The implementations shown here are
proof-of-concept to show the concept’s plausibility. However, the implementations
may contain security-critical bugs and are not intended for use in production en-
vironments.

5.1 Selection of Components to Implement
The concept developed in Chapter 4 consists of eight core components for SSI.
Those are described in Section 4.3. However, not all of those components are new.
For some, there are already existing implementations. As a result, the focus of
the prototype implementation is to implement new or significantly changed com-
ponents, as described below.

163



164 5.2. Selection of Scenarios to Apply the Implementation to

• The DLT does not need to be implemented to show this concept, as there
is already a diverse ecosystem of DLT implementations. The exact DLT used
should not matter for the concept’s implementation and should also work with
non-DLT systems like PKI. Each of the DLT variants or the PKI has different
arrangements for their security and data protection management, which have
to be evaluated for the respective application with the help of the concept.

• An issuer’s necessary provisions for issuing VCs must be implemented. As
the concept differs from other SSI concepts, this part cannot be re-used from
existing implementations. The need to constantly re-issue VCs affects the
implementation, API, and organizational processes.

• As the issuer uses a custom implementation described in the previous item,
the relying party must also be implemented to be compatible with the VCs
issued. On the organizational level, the RP also needs to adapt, especially
regarding offline authentication and the non-existence of revocation of VCs.

• For best fit, the wallet should always be implemented for a particular operat-
ing system or hardware. Where necessary, a wallet is implemented for each
prototype.

• Similar to the wallet, the agent and its characteristics must be adapted heav-
ily for each application and target audience. A generic version is also imple-
mented here to show the interfacing with the other components.

• As a completely new component to SSI, the credential localization service
is an optional component only necessary for larger SSI environments. No pro-
totype of this component is planned, as evaluation requires already working
large-scale deployments. The integration of a CLS is conceptually shown in
Section 6.2.

• The trust gateway is also a new component, and a prototype faces problems
similar to the CLS. Therefore, it is not implemented but its conceptual appli-
cation is shown in Section 6.2. It is especially relevant as an example of how
the conceptualized SSI system can interface with other IAM systems and how
a gradual migration might be done.

• As the last component, the community holds special significance for the long-
term success of the SSI system. In the scope of this work, a community can
not be implemented.

Reproducing the components’ implementation results can be achieved by re-im-
plementing some of those components using the concept as a reference and the
descriptions from Section 5 as blueprints. All implementations are integrated into
Docker environments to allow the reproducing of the prototypes’ setup. As the
components can not be used to evaluate their suitability, they must be examined
in a suitable environment. Therefore, Section 5.2 discusses the scenario selection
to test the implemented components.

5.2 Selection of Scenarios to Apply the Implementa-
tion to

Due to the number of scenarios, not all can be implemented as prototypes. Those
chosen are paired with the components selected for implementation in the previous
Section 5.1. The resulting implementations are shown in Table 5.1. It contains the
same text as Table 4.2, detailing the characteristics of the components in specific
scenarios but highlights which of the concept’s components are implemented in
which prototype.
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Table 5.1: Components selected for implementation in the three prototypes

Scenario
Perspective Web Apps IoT eID
DLT PKI Private/Permis-

sioned
Public/Permis-
sioned

Issuer Corporations Manufacturer Government
Relying Party Web Applications Data Processors Government

Agencies
Wallet Browser Embedded App
Agent Web Service Cloud Service Certified Provider
CLS none Service Provider none
TGW none Service Provider Certified Portal
Community Public Sector Specific Public-private

Partnership

Key: implemented, partially implemented, not implemented

Issuing and verifying VCs is necessary for showing anything related to SSI. There-
fore, issuer and RP are implemented for each scenario. In the web application
scenario, the issuer is implemented for a fictive issuing corporation that utilizes
the VCs directly as an RP to authenticate and authorize users. The IoT scenario
manages IoT devices’ access to the network through SSI. Therefore, this scenario
focuses less on VC issuing and verifying but more on basic IAM. The eID scenario
prototype utilizes existing SSI systems to show how SSI could work for eID.

A wallet is implemented for each scenario to show and test different approaches.
The web application scenario utilizes a browser-based wallet build as a complete
prototype. The IoT scenario utilizes a cloud-based wallet, and the eID scenario’s
wallet is a smartphone application. The latter is implemented as a prototype with-
out integrating trusted compute modules, the former as a hybrid of cloud-based
and embedded wallet. The agent that would be part of each scenario is only im-
plemented in the IoT scenario. There, it is a central component and acts as a
cloud-based wallet, similar to a TGW.

5.3 Web Applications

With X.509 certificates being prevalent in most websites today, its use as a backend
for SSI would provide easy adoption. In this scenario, the issuers are websites, for
example, social networks or other corporations, that provide their users with an
option to log in and transfer personal attributes via SSI. The users manage their
identities, accounts, and VCs in a browser extension or dedicated application. The
community of this scenario is the general public on the Internet.

A system with similar design goals called BrowserID was developed by the Mozilla
Foundation under the name Mozilla Persona. A closer description of this system is
provided in Section 3.1.3. This system suffered from some security problems [58],
which were fixed, but the system still did not gain any significant traction and sits
on GitHub, abandoned for several years. As a result, the complete toolchain used
in this project is outdated, and getting it to run on current software versions is not
feasible. Still, the idea to utilize HTML 5 local storage and browser plugins to store
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credentials issued by websites in the form of JSON web tokens (JWTs) is not too
far from the idea of an issuer providing the user with VCs they can present to any
RP.

The web application utilized to implement the prototype is based on the scenario
described in Section 2.5.1. It is a simple publish/subscribe platform where users
can post messages and retrieve messages about specific topics or keywords. This
section describes the technical components and modifications made to implement
a similar system for SSI in Section 5.3.1. Further, organizational processes are
outlined in Section 5.3.2. To complete this prototype implementation, Section 5.3.3
summarizes the development and highlights key areas where the system could be
improved.

5.3.1 Technical Components

To match the scenario closely, user identification, authentication, and authoriza-
tion must be based on SSI workflows. The web application’s main “useful” fea-
tures are storing and displaying users messages using a basic web frontend. This
frontend needs to communicate with the backend to recognize users, receive their
messages, and store and retrieve them for others.

The prototype application, therefore, needs to operate as RP and issuer at the same
time. For easier integration, it is essential that most of the implementation for RP
and issuer is re-used and core functions are split into modules. The most critical
module developed for this use case is the LibWebSSI library, which provides SSI
functions to issuers and RPs.

Figure 5.1: Overview of the implemented components for the web-based SSI pro-
totype

The implemented components are shown schematically in Figure 5.1. All compo-
nents displayed in aqua are implemented using the Scala 3 programming language.
The wallet app (displayed in light green) is implemented as an extension for the
Chrome web browser using JS. As a basis for modern browser-based authentica-
tion, the WebAuthn [103] standard is utilized. WebAuthn is a standard integrated
into many modern browsers and provides an API to facilitate public key-based au-
thentication between users and web pages. It interfaces with security devices like
FIDO-enabled Yubikeys and works with recent versions of Android as an authen-
tication source. As a transport for communicating between the wallet, the issuer,
and the RP, HTTP GET and POST requests are used. The messages are encrypted
and signed by the participants, but they should be passed via HTTPS instead of
plain HTTP for added security. More details regarding the individual components
are provided in the following sections.
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5.3.1.1 Web Application

The web application is implemented using Scala 3 and the cask1 framework. Both
being written in Scala 3, this setup integrates the LibWebSSI library with the web-
server. It also provides a direct setup for the prototype without needing an external
web server, i. e., Apache2 or nginx. However, a web server is required to act as TLS
reverse proxy if access to the application must be possible via HTTPS.

The application exposes the following endpoints:

• /: This endpoint shows the main page and, depending on the visitor’s status,
a connection or post composition form. The visitor’s login status is tracked
using a server-side session and browser cookies.

• /connect: To log in to the page, the user must connect with their web SSI-
enabled wallet. The connection endpoint initiates the WebAuthn authentica-
tion workflow by generating a JSON formatted publicKeyCredentialCreation
Options configuration object. This object contains the challenge to be signed
by the user and information about eligible cryptographic methods and au-
thentication devices.

• /confirm: A challenge generated by the connection endpoint needs to be
signed, and the resulting PublicKeyCredential is returned via this endpoint
following the WebAuthn workflow. If the server can verify the challenge, a new
user session is started, and the user is logged in via a browser cookie.

• /preview: After composing a new post, it is processed by the server to extract
the contained topics and generate requests for VCs presentations. Those are
returned with the post’s preview, and the SSI wallet can notify the user about
the option to include VCs.

• /submit: The previewed post with any VCs provided by the user is submitted
to this endpoint. If the VCs can be verified, the post is added to the post list,
displayed on the website’s main page.

• /vt/<value>: The website can also issue VCs, e. g., for knowing about the
website and SSI. This endpoint creates a VC for the topic-knowledge credential
schema with the value specified in the URL.

The function of the /connect and /confirm endpoints are detailed further in the
next section, as the application relies heavily on the LibWebSSI library to process
requests to those. As part of the prototype nature of this application, it only persists
posts and users in memory. Each restart of the application results in the same
base state.

5.3.1.2 SSI Library LibWebSSI

As a core part of the prototype, the SSI library handles all operations related to
creating and verifying connections between entities and creating and verifying VCs.
It is developed using Scala 3 utilizing, a modern programming language with the
option of including numerous Java-based libraries.

The LibWebSSI library implements four essential functions for SSI on the web:

• Establishing connections: To establish a new connection, the connecting
user provides their user and display name. The library generates a unique ID
for each user they must provide for subsequent authentications. Additionally,
a random 128byte challenge is created that must be signed by the user’s au-
thenticator. The user’s ID and challenge are stored temporarily while awaiting
the response.

1https://com-lihaoyi.github.io/cask/index.html

https://com-lihaoyi.github.io/cask/index.html
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• Issuing verifiable credentials: The library provides abstractions to represent
attributes and schemata for VCs. Using a connected user’s identity and the
issuer’s private key, the library generates a JWT containing the claims and
values. The issuing instant and expiration date are managed through the
JWT.

• Verifying verifiable credentials: As VCs are represented through JWTs, the
verifying process first checks the validity of each JWT. The library does not
automatically search for the issuers’ metadata. Instead, it expects to be pro-
vided with a list of issuing entities. This allows the library to remain stateless
and leave the task of managing known issuers to the calling application.

• Retrieve issuer metadata: While the library does not store the issuers’ meta-
data, it provides a function to search and retrieve it.

Cryptographic operations are implemented using the Java cryptography API and
the Bouncy Castle API2 because no Scala 3 native alternatives offer the same func-
tionality and well-tested security. All operations requiring the processing of JWTs
utilize the JWT Scala3 library. Processing of JSON files is primarily done using uj-
son4. Additionally, all concise binary object representation (CBOR) encoding and
decoding is done through borer5.

The library manages entities of three abstraction levels. Any Entity is identified
by its ldid locally and self-identifies with its remote rdid. Using two identifiers
for one entity ensures decentralized unique identification of pairwise connections.
The other entities extend the base entity, first adding authenticatability by storing
the entity’s public key for an AuthenticatableEntity and then adding a private key for
the AuthenticatingEntity, which can authenticate to other entities. Listing 5.1 depicts
how those entities are implemented in Scala 3.

1 class Entity(
2 val ldid: String,
3 val rdid: String
4 ):
5 def canEqual(a: Any): Boolean = a.isInstanceOf[Entity]
6

7 override def equals(that: Any): Boolean = that match
8 case that: Entity =>
9 that.canEqual(this) && (that.ldid equals this.ldid)

10 case _ => false
11

12 class AuthenticatableEntity(
13 ldid: String,
14 rdid: String,
15 val authenticator: PublicKey ,
16 var authenticated: Boolean = false,
17 ) extends Entity(ldid, rdid)
18

19 class AuthenticatingEntity(
20 ldid: String,
21 rdid: String,
22 authenticator: PublicKey ,
23 val authenticatee: PrivateKey ,
24 ) extends AuthenticatableEntity(ldid, rdid, authenticator , true)

Listing 5.1: Entity representation within LibWebSSI

2https://www.bouncycastle.org/java.html
3https://jwt-scala.github.io/jwt-scala
4https://com-lihaoyi.github.io/upickle/#uJson
5https://github.com/sirthias/borer

https://www.bouncycastle.org/java.html
https://jwt-scala.github.io/jwt-scala
https://com-lihaoyi.github.io/upickle/#uJson
https://github.com/sirthias/borer
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Another essential part of the library is its handling of attributes, attribute schemas,
and VCs. For transport, they are always encoded as JWTs, but internally they are
represented as implemented with Scala 3 in Listing 5.2.

1 case class Attribute(
2 schema: AttributeSchema ,
3 value: Array[Byte],
4 )
5

6 case class Attestation(
7

8 )
9

10 case class Claim(
11 typ: String,
12 subject: AuthenticatableEntity ,
13 issuer: Entity,
14 attestation: Attestation ,
15 attributes: List[Attribute],
16 )
17

18 case class VerifiableCredential(
19 claims: List[Claim],
20 scope: String,
21 notBefore: DateTime ,
22 notAfter: DateTime ,
23 )

Listing 5.2: Attribute representation within LibWebSSI

When interfacing with the library’s API, the caller must provide those objects where
applicable.

5.3.1.3 Browser Extension

The browser extension is used as an intuitive and seamless interface for the users to
manage their connections and VCs on the Internet. An extension mimics the long-
term goal of having a browser-builtin feature for managing SSI identities on the
Internet. The extension must protect the credentials from unauthorized access and
provide an interface for receiving, presenting, and general management operations.
It can also be used to synchronize the identity data with other browser instances
of the user to allow cross-device usage. The extension is built for Chromium-based
browsers using the Chrome Extension API.

As it is explicitly not recommended [37] by the developer documentation for Chrome
browser extensions to store confidential data like passwords and private keys, the
extension utilizes the browser’s built-in capability of WebAuthn for handling the
identity keys. However, the JWT-based VCs are stored in the extension’s storage
and, if enabled, utilize the synchronization mechanism to make them available on
all browser instances of the same user.

To fulfill the basic requirements, the extension implements the following three op-
erations:

• Establishing a connection: When activated by the user, the extension injects
a small JS script into every webpage to determine if it contains an element
with the ID web-ssi-connect. If it does, further JS code is loaded into the
page, and the connect button inside the extension’s popup window is enabled.
When pressed, the extension loads the connection challenge, signs it using
the provisioned private key, and returns the signed message as JWT to the
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Figure 5.2: Screenshots of the prototype’s UI for establishing a connection and
exchanging VCs with the browser extension wallet
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server. If the server can verify the response correctly, the server handles
creating and managing the user’s session. The same workflow can be used
for first-time and repeated connections.

• Retrieving verifiable credentials: Similar to the connection establishment
process, the extension uses some JS code to determine the presence of el-
ements with a custom HTML tag name web-ssi-credential-offer. This tag
allows multiple offers to be placed and found by the script. The tag also con-
tains additional information like the VC schema, attribute value, and URL to
retrieve the offered VC. This information is passed to the extension’s popup
window, and using checkboxes, the user can select which VCs they would like
to retrieve.

• Presenting verifiable credentials: The presentation of VCs is also triggered
by a small piece of JS that scans the page for forms with input fields con-
taining the following data attributes: data-web-ssi-verification-type, data-
web-ssi-verification-schema, and data-web-ssi-verification-value. An ID
cannot be used in this case, as multiple requests may be part of the same
form. The information from the data attributes is used to build a list in the
extension’s popup window, prompting the user to select which verification re-
quests to answer using which VC from the extensions repository. If the user
selects some VCs, those are input into the form fields and sent to the server
for verification if the user submits the form.

To keep the overhead of the extension as low as possible, no JS is automatically
added to each page to look for the signature elements of an SSI-enabled web page.
Instead, the page has to notify the user of the possible use of web-based SSI,
and when opening the extension’s popup window code is injected into the page to
retrieve necessary information. A minimal example of this is shown in Listing 5.3
for enabling the “connect” button.

1 function injectConnection() {
2 return document.getElementById("web-ssi-connect");
3 }
4

5 // Activate connect button
6 chrome.tabs.query({active : true, currentWindow : true}).then((tab) => {
7 chrome.scripting.executeScript(
8 {target : {tabId : tab[0].id}, func : injectConnection},
9 (injectionResult) => {

10 if (injectionResult[0].result) {
11 // Enable the connect button in the popup window
12 connectButton.disabled = false;
13 }
14 });
15 });

Listing 5.3: Determining if the page supports web-based SSI for the extension’s
user interface

The extension utilizes the jrasign6 library for all cryptographic operations, includ-
ing signing and verifying JWTs. For the WebAuthn workflow, the webauthn-json7 li-
brary is used. It handles interfacing with the browser’s WebAuthn implementation
and supports the otherwise cumbersome conversion between binary data, which
is Base64-encoded in a JSON string, and the WebAuthn API’s expected unsigned int
ArrayBuffer. Using WebAuthn allows authenticating via Yubikeys and other FIDO-

enabled hardware tokens, as well as Android smartphones. Thus, the solution does
not require additional passwords or passphrases to manage the identity’s keys.

6https://github.com/kjur/jsrsasign
7https://github.com/github/webauthn-json

https://github.com/kjur/jsrsasign
https://github.com/github/webauthn-json
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5.3.2 Organizational Processes

The Internet is intended and built to be decentralized and resilient. As such, web-
site operators, infrastructure providers, governments, and users operate indepen-
dently and in their own interests. For handling IAM securely, the lifecycle shown in
Section 2.2, transformed into requirements in Section 2.5.1, and conceptualized
in Section 4.3 needs to be supported. Most of the requirements for secure authen-
tication are fulfilled by using WebAuthn, as described in Section 3.1.1. However,
for using VCs on top of the authentication layer, some additional, mainly organi-
zational, processes need to be addressed:

• Renewal: To renew VCs from the issuer, the user’s browser extension, acting
as the user’s agent, must contact the issuer at regular intervals. If the refresh
interval is chosen such that the pool of VCs does not run out before they are
due to be refreshed, the issuer cannot deduce how many have been used. If
the user does run out of usable VCs before they would expire, an early request
for new VCs might indicate to the issuer that the user is relying on those VCs
heavily. To prevent DoS attacks on the issuer, the issuer might also rate-limit
the number of VCs issued per entity to a manageable number. The extension
offers the user an option to define a minimum number of VCs to keep ready at
any moment. If the supply drops below, new VCs are automatically requested.

• Revocation: The scheme described in Chapter 4 argues why explicit revoca-
tion cannot work in a privacy-preserving and reliable way. The only way to
revoke an issued VC is to wait for it to expire and prevent re-issuing it. De-
pending on the necessary security level, the VC’s expiry time must be chosen.
The implemented web service issues VCs that expire after 90 days, the same
as the LetsEncrypt X.509 certificates, which inspires this model.

• Trust: Facilitating trust between different entities on the Internet is a dif-
ficult problem, which originates from the many diverse, decentralized, and
international participants. Only a few entities are globally trusted, evident by
the large number of root CAs in most operating systems and browsers. Agree-
ments between different websites on which VC they want to accept will need
to be established on a case-by-case basis. As the prototype web page is both
issuer and RP, brokering trust is unnecessary here.

5.3.3 Summary

As the first prototype, the implemented components show how an SSI system can
be built from scratch. Instead of using existing IAM projects or libraries and only
utilizing common browser technologies like X.509 certificate and JWT, a system
similar to the ones shown in Section 3.3 was built. This system also shows that
SSI not necessarily requires DLT.

While the prototype for web apps demonstrates SSI operations in a browser, fur-
ther development needs to recognize the challenge of handling private data within
this environment. Most of the storage accessible for websites and extensions is
unsuitable, as its confidentiality, integrity, and availability can not be guaranteed.
As a result, private data would need to be stored in an external password-safe-like
component, or the wallet would need to be integrated more tightly with the browser
itself. With larger adoption of SSI concepts, both solutions seem possible.
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5.4 IoT Sensors

IoT applications can differ significantly between use cases. As a result, three in-
dividual scenarios were developed to deduce the requirements in Sections 2.5.2
to 2.5.4. The prototype developed for evaluating the concept of Chapter 4 focuses
on the second scenario based around IoT sensors, described in Section 2.5.3. IoT
sensor networks and their large-scale deployment is an area of active research that
is accompanied by practical products and standardized protocols.

The prototype aims to show the applicability of the SSI concept described in Chap-
ter 4 for one IoT platform. Key areas of consideration are the integration with the
least number of changes, especially to the many devices that are potentially already
deployed and scalability. The necessary additions and changes are described from
a technical point of view in Section 5.4.1 and from an organizational point of view
in Section 5.4.2.

5.4.1 Technical Components

The prototype is designed to use a private permissioned distributed ledger, as de-
scribed in the concept’s Section 4.5.3.2. As described in the presentation of the
IoT scenarios in Section 2.5, there are many aspects to consider for IAM in IoT. The
described scenarios differentiate between IoT devices, sensors, and networks. For
the prototypical implementation, a setting containing aspects of all three of them
is chosen: a LoRaWAN®-based IoT platform primarily focused on IoT sensors, but
also supporting general IoT devices. This platform is built on the The Things Stack
(TTS)8 network server. Other similar servers, like Chirpstack9 also exist. How-
ever, the largest open LoRaWAN® network, The Things Network (TTN), is built with
TTS, making it the primary candidate for integrating SSI into a general-purpose
IoT architecture.

Another proposal to combine LoRaWAN® and blockchain for IAM by [158] has been
shown in Section 3.4.2. This approach differs by not replacing the join server with
DLT but using SSI as part of the join server’s protocol. The usual IAM setup of
LoRaWAN® is described in detail in Section 3.4.1. Integrating an SSI cloud agent
into the LoRaWAN® TTS is described in Section 5.4.1.1, and the complete process
of transmitting data from IoT sensors with SSI is shown in Section 5.4.1.2.

5.4.1.1 The Things Stack Modifications

Initially, the root keys must be configured in the TTS’s management interface
or with an external join server. When extending an existing protocol stack like
LoRaWAN® to support SSI aspects, care must be taken to keep changes to the
necessary minimum. This way, onboarding new devices is more manageable, and
utilizing the modified protocol alongside the original one remains possible. For this
reason, end devices are excluded from protocol changes and keep functioning as
before.

The base software for this prototype is TTS, which implements LoRaWAN® 1.0.X
and 1.1. TTS also includes an interoperability server that can configure different
join servers for different device IDs. This interoperability is independent of the
roaming features introduced with LoRaWAN® 1.1 and thus works for all LoRaWAN®

versions.

8https://www.thethingsindustries.com/stack
9https://www.chirpstack.io

https://www.thethingsindustries.com/stack
https://www.chirpstack.io
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The device IDs consist of a network ID and a host ID, similar to IP addresses. It
can – just like an IP address – be expressed in a CIDR-like notation. The interop-
erability server of TTS can be configured to forward network messages of certain
devices’ networks to specific servers. For example, the configuration shown in List-
ing 5.4 specifies that all devices whose device IDs start with abcd should be handled
by the join server configured in the file ./js/js.yml.

1 join-servers:
2 - file: './js/js.yml'
3 join-euis:
4 - 'abcd000000000000/16'

Listing 5.4: Example interoperability configuration for TTS

The file describing the join server more closely is shown in Listing 5.5. This list-
ing shows the necessary configuration to join devices using the SSI-enabled join
server developed for the prototype. All configuration options are described in TTS
documentation [101].

1 scheme: 'https'
2 fqdn: '172.20.0.1'
3 port: 8080
4 protocol: 'BI1.0'
5 paths:
6 join: 'joinRequest'
7 app-s-key: 'appSKeyReq'
8 tls:
9 root-ca: './ca.pem'

10 certificate: './ca.pem'
11 key: './key.pem'

Listing 5.5: Example configuration for a specific join server for TTS

For simplicity reasons and because most devices currently use it, the LoRaWAN®

1.0.X family of protocols is chosen for the prototype. It could, however, be adapted
to also support version 1.1.

With the interoperability server of TTS configured, the SSI agent must implement
the join server’s protocol to generate join responses for the end devices and ap-
plication session key requests by the applications. Those two endpoints are also
defined in the configuration of Listing 5.5.

The response to a join request has to be structured, as shown in Figure 5.3. The
whole response is the physical layer payload, and the contained medium access
control (MAC) payload controls the end device’s access to the LoRaWAN® network.
Constructing this message has to be implemented by the agent. The differences
between LoRaWAN® 1.1 and 1.0.X are minuscule for the join response and do
not affect the construction of the message. Which of the versions the response is
intended for can be indicated with the first bit of the DLSettings parameter. It must
be noted that the payload and message integrity code (MIC) are encrypted with the
AES decrypt operation. This is done to allow end devices to only implement AES
encryption. They use it to encrypt their regular messages and “decrypt” the join
response by encrypting the decrypted plaintext.

The resulting physical payload is sent by the SSI agent to the network server using
a JSON-encoded message. Using parts of the response’s payload and the applica-
tion key the end device and the agent generate the application session key and the
network session key. The end device uses those keys for any further messages ac-
cording to the LoRaWAN® protocol. The agent server stores the application session
key to pass it to the application when requested.
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Figure 5.3: Structure of the LoRaWAN® join response message returned by the join
server and passed to the end device [121, 122]

To get the current application session key, the application needs to query the join
server. The endpoint for this is specified in the interoperability configuration of
Listing 5.5 if an external join server – like the SSI agent server – is used. The
application session key is returned as part of a JSON-encoded message via HTTP,
as shown in Listing 5.6. Transmission of this message should be secured using TLS
or an additional key encryption technique. The application receiving the data via
TTS must also request this key. The answer is also JSON-encoded and displayed
in Listing 5.6.

1 {
2 "SenderID": "ABCD000000000000",
3 "ReceiverID": "000000",
4 "PHYPayload":

↪→ "20B762B56E4E19F306D2FD205F6AE25A372285F9036E36A31B9A6533B5CA2B22F8",
5 "Result": {
6 "ResultCode": "Success"
7 },
8 "Lifetime": 1000000,
9 "SessionKeyID": "9B77073050F7C56FF81B791C619EC2D7"

10 }

Listing 5.6: JSON-encoded response of the SSI agent to the TTS interoperability
server’s forwarded join request

1 {
2 "SenderID": "ABCD000000000000",
3 "ReceiverID":"000000",
4 "Result": {
5 "ResultCode":"Success"
6 },
7 "KEKLabel":"",
8 "AESKey":"42078A219C0FFD6C1F8FBC59E2B0CA0B",
9 "SessionKeyID":"A33B5DAD0B80615A52FE1B3F5BEF4B0C"

10 }

Listing 5.7: JSON-encoded response of a LoRaWAN® application’s application key
request to a join server

5.4.1.2 SSI Process

The prototype implemented for the IoT scenario acts as an SSI cloud wallet and
stores the device’s keys. Integrating into the TTS system allows the SSI-managed
devices to join a LoRaWAN® network. Additional VCs managed through the Hy-
perledger Indy DLT can be used to publish and prove identity attributes of the
devices, i. e., their operator, location, or maintenance log. A combination of this
setup and the lightweight asymmetric key signatures developed for LoRa® in [70]
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can ensure that the messages of an end device can be published with a signature
binding it to the device’s SSI identity. The resulting process is schematically shown
in Figure 5.4.

dispatch dispatch

return

dispatch
dispatch

IoT Sensor Gateway TTS ApplicationJoinServer
(Cloud Wallet)

dispatch

returnreturnreturn

dispatch
dispatchUplink

Message

Network
Join

Figure 5.4: Sequence diagram of an SSI-enabled IoT device’s measurements via
message queuing telemetry transport (MQTT)

5.4.2 Organizational Processes

With SSI, instead of relying on one platform to handle the IoT device’s information,
this information is managed by the device’s operator’s SSI wallet. To do so, SSI
features need to be added to the regular workflow of TTS. The changes are part of
the registration shown in Section 5.4.2.1,and the modifications for data processing
steps are described in Section 5.4.2.2.

5.4.2.1 Registration

For use with TTS, the end devices have to be registered with their device IDs to an
application within TTS. To utilize the SSI features, the device must be configured
to use an external join server, allowing the TTS to use the SSI cloud agent as a join
server. The device’s data can then be associated with the VCs managed through
the cloud agent’s API.

5.4.2.2 Data Processing

The data captured by the TTS network and forwarded to the application can be
processed as regular with TTS. Any VCs associated with the data, either by the
end device itself or any intermediary handler, can be verified using the workflow
from Hyperledger Indy.

5.4.3 Summary

The integration of the developed SSI cloud wallet as a LoRaWAN® join server shows
the interaction of SSI with existing IoT network infrastructures. It shows that exist-
ing protocols can be retrofitted with SSI technology without introducing breaking
changes or requiring major updates to the network. Instead, a seamless transition
and dual-stack operation can be achieved by routing SSI and non-SSI authentica-
tion requests to different join servers using different join-euis.
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While this prototypical implementation shows SSI integrated with the LoRaWAN®

join process, it does not include the handling of VCs, as this is already included in
the web application and eID implementation. Using VCs would work the same as
in the other implemented scenarios.

5.5 Electronic Identification (eID)
Strong and secure IAM is especially important for eGovernment and eID appli-
cations. As described in Section 2.5.6 and shown with the overview of existing
approaches in Section 3.5.1, current solutions are very country-specific and some-
times require special smart cards. SSI can unify the landscape in an international
context that necessarily exists on the Internet.

The prototype described in this section describes a real-world use case discussed
with the German ministry for digitalization in Bavaria Bayerisches Staatsminis-
terium für Digitales (StMD) within the context of the projects DISKURS and DISPUT.
The demonstrator developed for those projects recreates a use case for cross-state
eID. Within this use case, a fictional Bavarian resident, Paula, wants to move to
the state of North Rhine-Westphalia (NW). To be able to work there as a teacher,
she must provide proof of her successful state examination. In the workflow using
FIM, Bavaria and NW both have a state-run IdP and SP, combined as a dipole that
residents of one state can use to access the eID services of the other. Figure 5.5
showcases this original workflow.

SAML Dipole
(SP&IDP)

Nutzerkonto NRW

select authentication method

SAML Dipole
(SP&IDP)

Nutzerkonto BY

request
authentication

promt login
authenticate

provide authentication assertion

request authentication

provide access

Figure 5.5: Workflow for cross-state eID using an FIM dipole architecture

The main goal of the demonstrator is to showcase how this workflow would change
with the introduction of SSI. This has been achieved by recreating the use case in a
dedicated environment based on Hyperledger Indy and Aries. Additionally, a mobile
application has been developed that interfaces with the DLT components through
Hyperledger Aries Cloud Agent - Python (ACA-PY) and shows what a Bavarian eID
smartphone app could look like. Further technical components are described in
Section 5.5.1, and organizational challenges found during the project are discussed
in Section 5.5.2.

5.5.1 Technical Components
Similar to the prototype for IoT, the eID prototype is based around the DLT of Hyper-
ledger Indy. It uses the ACA-PY library to connect to the ledger and manage a cloud
wallet. In this prototype, an application for Android smartphones is developed to
serve as a user interface.
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Figure 5.6: Screenshot of the eID prototype wallet application
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A screenshot of the app’s credential screen is shown in Figure 5.6. The app’s
text is in German, as the project was done in Germany. The app implements all
necessary operations to showcase the SSI workflow of connecting to other entities
by scanning a QR code. All interactions are performed using the API of a private
DLT instance running Hyperledger Indy. The app is developed using the React
Native10 framework and tested on an Android smartphone. Due to React Native,
the app could also be directly used on iOS.

The app is programmed by defining the seven necessary UI screens as React Na-
tive .tsx files. Those contain the logic for the screens’ primary functions as Java
code and the layout defined as HTML. Each of the three main tabs for displaying
connections, credentials, and history is defined in its own .tsx file. It query the
respective ACA-PY API to display the results as individual cards.

Additionally, screens for displaying details of connections and credentials are de-
fined to show details for a specific credential or connection. Those screens also
offer methods for deleting the entry. The two remaining screens are the camera
screen used to scan and process QR codes, and an error screen displayed if a
requested screen can not be loaded.

The wallet’s backend is provided by the ACA-PY API. Using a cloud agent’s API
to perform SSI operations is the wallet prototype’s biggest limitation to being a
genuine SSI wallet. However, the frontend matters more in this case, as it should
be usable for basically all citizens with access to smartphones, and the backend
for an SSI eID system should – similar to cryptographic operations – utilize an SSI
library and special protected storage like TPMs, anyway.

The demonstrator’s server components are managed through a Docker Compose
file. Figure 5.7 provides an overview of the services. The containers are shown
as components with their exposed ports as circles and mounted volumes as file-
shaped rectangles. All containers are connected via the backend network displayed
as a pentagon.

net: backend

reverse-proxy

/var/run/docker.sock 80443 8080

indy-pool

named: ${PWD}/indy_pool

/indy_poolsk1-agent

/indy_pool

sk2-agent

/indy_pool

app-agent

/indy_pool

uni-agent

/indy_pool

club-agent

/indy_pool

9701-9708

setup

sk1 sk2

Figure 5.7: Overview of the dockerized setup of the eID demonstrator environment

The DLT components are implemented using a Hyperledger Indy pool. A local
demonstration and testing network of four validator nodes started from a cus-
tomized genesis file, is used to run this pool. The pool’s genesis file is required by
the agents, which can access it via a common, read-only mounted volume. Web ser-
vices for the two issuers have been implemented using Django11 and are started as
individual Docker containers. The RP’s front end utilizes ACA-PY agents for all SSI
operations. So for each RP, a corresponding agent container is also started. The

10https://reactnative.dev
11https://www.djangoproject.com

https://reactnative.dev
https://www.djangoproject.com
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issuers do not have a web frontend for this demonstration. Their credentials are
issued automatically at the start of the network by a helper setup container. Each
issuer, however, is represented by their agent, also run as an individual Docker
container.

All of those containers are connected using a Traefik12 reverse proxy. It is used to
route HTTP requests to the right services, as all services’ hostnames are resolved
to localhost using /etc/hosts entries.

5.5.2 Organizational Processes
While the technical details of the eID implementation do not differ much from the
other scenarios, the organizational restraints are more pronounced. As described
in Section 3.5, eID is governed by national and international legal frameworks
that need to be considered and conformed to. While integration into organiza-
tional processes was not part of the DISPUT project, some preparations have been
discussed and implemented. Those affect the management of VCs, as shown in
Section 5.5.2.1, and security management, as described in Section 5.5.2.2.

5.5.2.1 Verifiable Credential Management

As discussed for IAM federations in Section 3.2, larger federations and inter-feder-
ations suffer from a more and more reduced set of commonly available attributes.
The eID scenario has the advantage over self-organizing federations because the
core attributes necessary are described by legislation. On an international scale,
the EU also describes required attributes for cross-border eID, thus providing both
issuers and RPs with a well-defined set of usable attributes.

For this prototype, the attribute definitions given by the German BSI were trans-
lated to credential definitions usable with Hyperledger Indy using the process
described in Section 4.5.2. The source attribute definitions were given as XML
schema definitions (XSDs) and were translated into the corresponding JSON-LD
syntax. An example of a translated definition is shown in Listing 5.8.

The original XSD’s translation into a syntax for VCs allows both attribute descrip-
tions to be as similar as possible and aids in simplifying the translation of actual
attributes from one system to the other. Migration or a side-by-side deployment of
eID systems is, therefore, easier to setup.

5.5.2.2 Security Management

The decentralized security management process envisioned for SSI is described in
Section 4.3.8. As the prototype is only used for demonstration, integration with
security management processes was not part of the project and could not be tested.
However, the restricted participants of an eID deployment would allow for easier
security management than a completely open IAM system, as the participants are
primarily government agencies bound by strict regulations.

5.5.3 Summary
The prototype developed for eID was able to show the basic suitability of SSI. Im-
plementing the Hyperledger Indy and Aries frameworks was straightforward, and
integration with prototypical web services was relatively easy. This kind of connec-
tion of an agent system to a service is close to what would be implemented in an
actual deployment. In a live scenario, however, the security management aspect
needs to be focused. Primary actions to be taken include securing the agent using

12https://doc.traefik.io/traefik

https://doc.traefik.io/traefik
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1 {
2 "@context": {
3 "@version": 1.1,
4 "@protected": true,
5 "id": "@id",
6 "type": "@type",
7 "xsd": "http://www.w3.org/2001/XMLSchema#",
8 "eid": "http://bsi.bund.de/eID#",
9 "NaturalPerson": {

10 "@id": "http://bsi.bund.de/eID#NaturalPerson",
11 "@context": {
12 "@version": 1.1,
13 "@protected": true,
14 "id": "@id",
15 "type": "@type",
16 "Place": {
17 "@id": "eid:Place",
18 "@context": {
19 "@version": 1.1,
20 "@protected": true,
21 "id": "@id",
22 "type": "@type",
23 "street": { "@id": "eid:PlaceStreet", "@type": "xsd:string" },
24 "city": { "@id": "eid:PlaceCity", "@type": "xsd:string" },
25 "state": { "@id": "eid:PlaceState", "@type": "xsd:string" },
26 "country": { "@id": "eid:PlaceCountry", "@type": "xsd:string" },
27 "zipcode": { "@id": "eid:PlaceZipcode", "@type": "xsd:string" }
28 }
29 },
30 "DocumentType": { "@id": "eid:DocumentType", "@type": "xsd:string" },
31 "ICAOCountry": { "@id": "eid:ICAOCountry", "@type": "xsd:string" },
32 ...

Listing 5.8: Part of the resulting JSON-LD syntax after translating an XSD
attribute definition for VCs

an intrusion detection system (IDS) and defining a process for updating the agent
and the corresponding components. During the testing period, multiple vulnera-
bilities were discovered, patched, and updates needed to be done. The resulting
service interruptions would need to be avoided in a real setup.

The wallet app implemented and used also lacks basic security features necessary
to protect the user’s privacy. A proper implementation would need to utilize native
platform features to store confidential data in secure environments. Additionally,
the UI design needs to be evaluated more thoroughly, as shown by exploiting the
human factor of operating wallet apps.
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After conceptualizing a system for SSI in Chapter 4 and implementing selected
essential parts in Chapter 5, this chapter evaluates whether the implementation
according to the concept could achieve the major design goals. The concept itself
is assessed in Section 4.6, and most requirements are determined to be covered
completely.

This evaluation focuses on a technical exploration of the individual implementa-
tions in Section 6.1 and the combination of the implemented prototypes in Sec-
tion 6.2. The latter part is especially interesting for forming the envisioned com-
prehensive IAM system. Section 6.3 summarizes the evaluation and provides a
graphical overview of the fulfillment in Table 6.1.

The evaluation criteria are defined in Section 4.6, where the concept is evaluated.
Each requirement can be evaluated as completely fulfilled, fulfilled, partially ful-
filled, or not fulfilled. To reach completely fulfilled, all aspects of the requirement
need to be handled, and the prototype must be able to show that it works reliably.
A fulfilled requirement needs to be implemented in the prototype and must cover
most, but not all, edge cases. Partially fulfilled is achieved by a requirement im-
plemented in the prototype but missing relevant functionality. Requirements that
are not implemented or do not work as expected are classified as not fulfilled.

6.1 Prototype Implementations
Chapter 5 describes the implementation of three prototype SSI systems developed
for Scenario 1, Scenario 2b, and Scenario 4. The following sections describe how
each of those prototypes fulfills the requirements from Section 2.5.

183
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6.1.1 Web Applications

The first prototype implemented utilizes a non-DLT system to build SSI with web
technologies to explore its suitability for Scenario 1. The following paragraphs
explain the chosen fulfillment levels in detail. Table 6.1 shows this description
summarized.

As prescribed by the concept, the implementation follows the requirements of Se-
curity by design (SEC5) and Security by default (SEC4), as well as Privacy by
design (DAT2) and Privacy by default (DAT1). The requirements for security are
fulfilled by utilizing standard libraries for encryption and signatures. However,
the implementation knowingly disregards the recommendations and best practices
around storing sensitive information in browser extensions, and therefore require-
ment Security by design (SEC5) is downgraded to partially fulfilled. The privacy-
related requirements are fulfilled completely, as the implementation does not share
any information without the user’s explicit consent and protects transmitted infor-
mation using state-of-the-art technology. As a result, the implementation partly
fulfills the requirement GDPR (DAT3). To attest a higher fulfillment level, a legal
evaluation would be necessary. For SSI, however, no such evaluation exists to date.

Requirements Identity provisioning (SAT4), Identification (SAT3), and Authen-
tication (SAT1) are completely fulfilled using WebAuthn. Each entity uses two
DIDs for identifying itself to and being identified by others. A pair of these local
and remote DID are combined into a unique connection. The step of establishing
credentials – described by requirement Credential establishment (INF1) – is also
completely fulfilled by WebAuthn. Related to Identity provisioning (SAT4) is the
requirement Multiple identities (DAT4). It can be completely fulfilled by using
multiple profiles in the browser, thus separating the extension’s local storage for
identity data.

The use of WebAuthn allows the system to build on standard authentication tech-
nology implemented by many web browser providers. Using HTTPS for the com-
munication between the browser extension and the website allows for requirement
Mutual authentication (SEC3) to be fulfilled.

The next basic action of IAM, authorization, is described by requirement Autho-
rization (SAT2) and built with its own implementation. This implementation en-
tails both the server’s and the user’s browser side. The implementation is inte-
grated into the browser as an extension for Chromium-based web browsers and
stores all necessary key material and VCs. As a result, the requirement is com-
pletely fulfilled.

The demonstrator web application’s implementation also shows how to enforce ac-
cess controls, which are described by requirement Access controls (SEC1). This
can be done by utilizing the implemented library to check the validity of the VCs
and fulfills the requirement. The implementation is documented in Chapter 5.3,
fulfilling requirement Documentation (INF2).

As all identity data is stored in the browser extension’s local memory, requirement
Identity de-provisioning (CON1) can be achieved by deleting this storage. This
step is not entirely fulfilled as it could be improved by providing methods for re-
moving individual parts of the identity.

To facilitate synchronization of the identities between multiple browsers and to
prevent data loss, requirement Credential recovery (CON2) can be achieved by
activating a synchronization provider. This synchronization stores the browser’s
data, including the extension’s data, in the cloud. Such services are available
from many browser manufacturers.
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Requirements Accessibility (ROB2) and Approachability (ROB3) are fulfilled by
using the browser extension as a very unobtrusive way of providing SSI in the
browser. Other parts of the login workflow are only modified slightly and resemble
the use of a password safe. As a result, requirement Usability (ROB4) is completely
fulfilled. Application of the prototype within an experimental setup also shows its
reliability, fulfilling requirement Reliability (ROB1).

The requirement Credential revocation (SEC2) is not implemented, as all design
options for this requirement were determined to be unreliable by the concept. The
requirement for Multi-factor authentication (SEC6) is not fulfilled by WebAuthn,
as the user’s authenticator is viewed as the only authentication factor, even if it
is protected by additional authentication, e. g., a personal identification number
(PIN) or fingerprint.

6.1.2 IoT
The prototype developed for Scenario 2b integrates an SSI agent into the existing
LoRaWAN® implementation TTS. A visual representation of the prototype’s fulfill-
ment of the requirements is depicted in Table 6.1. The following paragraphs explain
the results of the evaluation.

The IoT implementation extends the existing TTS and adds SSI features. The archi-
tectures of TTS and LoRaWAN® are designed with requirements Privacy by design
(DAT2), Privacy by default (DAT1), and GDPR (DAT3), as well as Security by de-
sign (SEC5) and Security by default (SEC4) in mind. Respective descriptions
of TTS and LoRaWAN® are provided in Section 3.4.1. The prototype extends the
TTS with SSI as an additional method of authenticating IoT devices. Requirements
DAT2 and DAT1 are marked as “not applicable” in this evaluation, as the imple-
mentation does not directly affect users’ privacy guarantees. Instead, requirement
DAT3 is marked as fulfilled, as the implementation does not rely on users’ personal
information, and the managed identities are device identities.

An SSI identity’s lifecycle begins in the prototype by creating the device in the
TTS web-based interface and marking it as an externally managed device. Devices
are identified by their standard LoRaWAN® device ID, as specified in and com-
pletely fulfilling requirement Identification (SAT3). Any join requests received by
TTS are routed to the prototype’s join server to handle exchanging the necessary
keys. This completely fulfills requirement Identity provisioning (SAT4). Within
the LoRaWAN® (join) protocol, each device can only have one identity. As a result,
requirement Multiple identities (DAT4) cannot be fulfilled.

The prototype’s join server completely fulfills requirement Authentication (SAT1)
by authenticating the device via its application key. The keys for authentication
are established by the user registering the device in the TTS and by connecting
the prototype SSI agent to an SSI network. Deploying the initial keys needs to be
done manually and – while not especially scalable – completely fulfills requirement
Secure setup (SEC10). However, this procedure only partially fulfills requirement
Credential establishment (INF1), as two independent configuration steps and lo-
cations are involved. Removing keys as part of requirements Identity de-provi-
sioning (CON1) and Secure de-provisioning (SEC9) is fulfilled, as removing the
keys from the SSI system immediately removes the sensor from the network.

Requirement Credential recovery (CON2) is out of scope for the prototype and
the scenario. The sensor can only be issued new credentials if there is suspi-
cion that the previous credentials have been compromised or the sensor has lost
data, including the keys. Requirement Credential revocation (SEC2) is not imple-
mented in the prototype. A possible solution is redeploying new keys to the device
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and SSI backend. While using secure keys is sufficient in most situations, the
prototype cannot easily be extended to utilize MFA and cannot fulfill requirement
Multi-factor authentication (SEC6).

This setup fulfills requirement Access controls (SEC1), but only allows for binary
decisions. Different levels of access rights are not possible due to the design of
the LoRaWAN® join protocol, which only discerns between allowing and denying
access to the network. Similarly, requirement Authorization (SAT2) is fulfilled but
limited to yes/no decisions. Performing authentication or authorization offline,
as described by requirement Offline authNZ (ROB5), is not in this prototype’s
scope, as it only handles the device’s join process into the network. The proto-
type does not implement requirements Access delegation (SAT6) and Delegation
parameters (SEC8). The LoRaWAN® protocol includes limited delegation to other
network providers from version 1.1. This roaming functionality also partially ful-
fills requirement Transitive trust (ROB8), even though it is a LoRaWAN® feature
independent of the prototype’s implementation. The same process also allows re-
quirement Trust establishment (SAT5) to be partially fulfilled.

The prototype cannot fulfill requirements Digital twin (CON3), Digital identifi-
cation (INF3), Physical identification (INF4), and Product specification (INF5).
Each of those must be handled at the application level, which the prototype does
not include in favor of only handling joining devices to the LoRaWAN® network. The
focus on LoRaWAN® and TTS also prevents requirements Platform independence
(ROB7) and Communication protocol independence (ROB9) from being fulfilled.

However, the prototype successfully shows that it is possible to use SSI in a re-
source-efficient (requirement Resource efficiency (ROB10)) and scalable (require-
ment Scalability (ROB6)) way. Requirements Tamper-evident (SEC7), Tamper-re-
sistant (SEC11), and Protected application storage (DAT5) can only be partially
fulfilled by the prototype. The used devices do not contain specialized hardware
TPM to protect their keys. However, outages can be detected within the network and
successfully manipulating the devices to impersonate them is difficult. LoRaWAN®

can fulfill requirement Correlation resistance (DAT6).

Due to the limited feature set of the implemented prototype, requirement Usability
(ROB4) can only be partially fulfilled. More complete fulfillment would require a
more straightforward configuration of devices and identities, e. g., through a dedi-
cated web interface. Similarly, requirements Accessibility (ROB2) and Approach-
ability (ROB3) can only be partially fulfilled. Documentation of the prototype is
provided in Section 5.4 to fulfill requirement Documentation (INF2). Additionally,
the reliability of the prototype was shown in the experimental setup, which fulfills
requirement Reliability (ROB1).

6.1.3 eID

Developed to fulfill the requirements of Scenario 4, the prototype described in Sec-
tion 5.5 utilizes DLT and state-of-the-art SSI technologies to showcase SSI in an
eID setting. The complete list comparing the scenario’s requirements and the pro-
totype’s implementation is depicted in Table 6.1. The following paragraphs describe
the reasons for the respective evaluation.

In an IAM system with high-quality personal information, like eID, completely ful-
filling requirements Privacy by design (DAT2), Privacy by default (DAT1), and
GDPR (DAT3) is essential. The prototype does this by utilizing the well-researched
backend of Hyperledger Indy / Aries. Similarly, the prototype fulfills requirements
Security by design (SEC5) and Security by default (SEC4). Due to the backend’s
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new and constantly changing nature, those requirements cannot be completely
fulfilled. A more stable version of the backend software and protocol would be
necessary.

Identification, as demanded by requirement Identification (SAT3), happens via
connections between two entities, facilitated through pairwise DIDs. This com-
pletely fulfills the requirement. The process of provisioning an identity (require-
ment Identity provisioning (SAT4)) is also completely fulfilled, as any individual
can create their digital identity using a smartphone app. Multiple identities are
possible, but support from applications to handle those are limited and not shown
in the prototype. Requirement Multiple identities (DAT4) is therefore only par-
tially fulfilled. The two eID-specific requirements, Identity data set (INF10) and
Identity data set matching (SAT8), are not fulfilled by the prototype. Implement-
ing those would be possible in any actual use of a setup similar to the prototype
by ensuring that during issuing of an identity’s attributes, all required attributes
are present. Also, the eID-specific requirement Once-only (CON6) can be fulfilled
by SSI if legislation agrees.

Requirement Authentication (SAT1) is completely fulfilled by the protocol cho-
sen for the prototype. The steps to establish connections also completely fulfills
requirement Credential establishment (INF1) and partially fulfills requirement
Off-the-record (OTR) (SEC12). Not possible, however, is the usage of MFA so
requirement Multi-factor authentication (SEC6) cannot be fulfilled. Users’ au-
thorization is done according to the VCs’ attributes and values. This completely
fulfills requirement Authorization (SAT2) and also completely fulfills requirement
Access controls (SEC1). Authorization decisions can also include LoAs as de-
scribed by requirement Level of assurance (INF11). While the prototype does not
explicitly use LoAs and a decentralized system would need overlying infrastructure
to manage LoAs, LoAs can be expressed as VCs and the requirement INF11 can be
partially fulfilled. Requirement Trust service providers (SEC13), which can only
be partially fulfilled by issuing trust certificates as VCs, could also interface with
specifying LoAs.

Connections formed between entities can be broken by deleting the keys to the
pairwise DIDs. Further, VCs are stored within the user’s wallet and can be safely
deleted there. Both points together fulfill requirement Identity de-provisioning
(CON1). Handling lost credentials, as described by requirement Credential recov-
ery (CON2), is impossible in the prototype setup and not fulfilled. Comparable
to the physical world, a lost wallet must be replaced by re-issuing all contained
VCs. Requirement Credential revocation (SEC2) is discussed within the Hyper-
ledger Community and is possible in some instances, but the prototype does not
showcase or utilize those features and does not fulfill the requirement.

The prototype could show that the system is usable and fairly easy to understand.
This completely fulfills requirement Usability (ROB4). It is also accessible, to
the degree that a smartphone is needed, and fulfills requirements Accessibility
(ROB2) and Approachability (ROB3). Within the prototype setup the system could
also show that it can perform reliably and fulfills requirement Reliability (ROB1).
Large-scale tests of similar systems are underway and seem to support this eval-
uation. Utilizing a well-documented protocol for this prototype, the protocol’s de-
scription and the own implementation’s details fulfill requirement Documentation
(INF2).

Not implemented in the prototype and still an open problem is described by require-
ment Message delivery services (SAT9). Delivering messages to entities within the
SSI system and proving their delivery is not widely implemented. The requirement
cannot be fulfilled.
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6.2 Combination of the Implemented Prototypes
Individual IAM solutions are plentiful. The prototypes described in Chapter 5 for
web-based, IoT, and eID scenarios are also mostly standalone systems. Ideally,
the prototypes could be combined to form a large-scale identity ecosystem. A suc-
cessful combination of the scenarios can show the bridging potential of SSI. This
section evaluates the suitability to achieve this, following the concept from Chap-
ter 4.

For this purpose, a combined scenario is assembled. In this scenario, an IoT sensor
publishes data via an IoT WAN to a web-based platform. The platform stores and
processes the data and provides a web-based interface for users to download the
data. This interface is accessible to users after authenticating with an eID.

The challenges of combining the prototypes to cover this combined scenario are
described in more detail in Section 6.2.1. Afterwards, solutions using the concept’s
components CLS and TGW are presented in Section 6.2.2 and Section 6.2.3. The
theoretical evaluation of this combined system is performed in Section 6.2.4.

6.2.1 Challenges
With the prototypes implemented individually, the main challenge is interfacing
the three prototypes’ VCs:

• On a technical level, the syntax of VCs differs between the eID prototype’s
DLT-based VC and the web platform’s X.509 certificate-based VC.

• Within each of the prototype systems, the semantics between VC attributes
can differ.

• From an organizational point of view, trust between the parties within the
respective scenarios and their prototypes cannot be guaranteed.

A graphical representation of this combined scenario and the three main chal-
lenges is shown in Figure 6.1. The authentication of the IoT devices via SSI needs
to be associated with the data they produce outside the prototype’s TTS. To extend
the scope of where the IoT device’s identity can be shown to be the origin of its
data, a bridge between both prototypes is required. This bridge needs to be able to
(unidirectionally) transform syntax and adapt semantics. A process that requires
exceptional trust in the correctness and confidentiality of both sides.

Figure 6.1: Overview of the combined evaluation setup

Between the eID prototype and the web app prototype, similar conversions are
necessary. However, as both systems have fully functioning SSI wallets and VCs,
there is no need for an entity to join data and identities. This part only requires
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syntax and semantics to be aligned for use within the other prototype’s system.
Trust in this conversion being done correctly is also very important, but easier to
verify, with VCs available on both sides.

Those challenges are alike the problems described for FIM in Section 3.2: Similar
but differently implemented IAM systems need to communicate with each other to
allow users to move between them. As FIM and its challenges are part of the inputs
to the design of the concept for SSI described in this work, it should account for
those challenges and provide components to solve them.

6.2.2 Use of the Credential Localization Service
According to the concept, the challenge of connecting the web-app prototype to the
eID prototype can be tackled by introducing a CLS. The CLS, as described in Sec-
tion 4.3.6, is responsible for providing SPs with the rules necessary for translating
credentials to the target platform. In the case of the combined scenario, both SSI
prototypes use differing concepts for representing and storing VCs. As a result,
the CLS needs to be able to offer translations between those different kinds of VC,
namely VCs from Hyperledger Indy and JWT. To do so, the following steps need to
be passed by the SP, which in this case is the web app:

1. Validate the VC in the source system. Before continuing, the web app must
ensure that the VC the user provides is valid. To do so, the web app must be
part of the eID prototype’s SSI system.

2. Get a suitable localization rule from the CLS. With the source VC validated,
its contents must be adapted to “fit” the local SSI system.

3. Localize the VC’s contents. Using the localization rule obtained from the
CLS, the web app can convert the VC’s assertions to the corresponding JWT
assertions.

4. Create a VC in the target system’s syntax and add the localized asser-
tions. A new JWT VC must be built to be processed by the local SSI system.

5. (Self-)sign the VC. As the new ephemeral VC, in JWT form, must pass the
full validation of the local SSI system, it needs to be signed. The keys for this
signature can be kept completely local.

6. Pass the VC to the internal IAM system. The resulting JWT VC should be
processed as any other by the local SSI system.

The concept’s description focuses on Step 2, the localization rules, and their ex-
change. Conceptually, this step is evaluated in Section 4.6. To evaluate the suit-
ability of the CLS in this scenario, the other steps need to be included in the
evaluation in Section 6.2.4.

6.2.3 Use of the Trust Gateway
The challenge of bringing the IoT prototype’s data into the web app is solved using
a TGW. As described in Section 4.3.7, the TGW can be used to import data from
the TTS LoRaWAN® system. A TGW provides an additional SSI agent and wallet
acting as a proxy. This is required in the combined scenario because IoT devices
cannot directly issue VC for their published data. Implementing IoT device-issued
VC is considered and shown in [70] but not included in this scenario to keep full
LoRaWAN® compatibility.

The TGW is connected to TTS as an application, on the one hand. This way, it can
receive the IoT sensor’s data directly via an API and obtains the application key
that ensures within the TTS that the data is authentic (see Section 5.4.1).
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On the other hand, the TGW can utilize the LibWebSSI library developed for the
web app prototype to provide each IoT sensor with its own identity. These identities
can then be used to create JWT VCs for the IoT sensor’s data and upload it to the
web app.

In between those two connectors, the TGW has to perform similar syntactic and
semantic conversions as the CLS in Section 6.2.2. On its own, this step is evaluated
in Section 4.6. Together with the complete workflow of the combined scenario, the
evaluation is detailed in Section 6.2.4.

6.2.4 Evaluation

Introducing CLS and TGW to the prototypes does not hinder the fulfillment of most
requirements. The following paragraphs discuss which requirements are possible
and which are impossible to fulfill in the scenario of combining the implemented
prototypes. The results are also added to the previous evaluation results shown in
Table 6.1.

Requirements Privacy by design (DAT2) and Privacy by default (DAT1) are pos-
sible. The CLS and TGW are new software components but are as privacy-preser-
ving as possible. The same is true for requirements Security by design (SEC5)
and Security by default (SEC4). As there are no legal challenges or decisions for
requirement GDPR (DAT3) yet, it is undecided if it can be fulfilled.

The addition of the CLS does not affect requirements Identification (SAT3), Iden-
tity provisioning (SAT4), or Multiple identities (DAT4). Neither does the TGW,
so the requirements are still possible to be fulfilled. Requirements Identity data
set (INF10), Identity data set matching (SAT8), and Once-only (CON6) originate
from the eID scenario and can be fulfilled with the CLS. Those requirements can
therefore be fulfilled in the combined scenario. If the TGW were used for bridging
eID to the web app, requirement Once-only (CON6) would not be possible to fulfill,
as the TGW essentially stores another copy of the user’s attributes in another SSI
wallet.

Fulfilling requirements Credential establishment (INF1), Authentication (SAT1),
and Mutual authentication (SEC3) is still possible. The additional components do
not change this. The TGW, however, requires establishing additional credentials.
Retiring identities, described in requirements Identity de-provisioning (CON1)
and Secure de-provisioning (SEC9), also remains possible.

Necessities for IAM described through requirements Access controls (SEC1) and
Authorization (SAT2) are possible to implement. They are also part of the imple-
mented prototypes. Impossible, however, is the fulfillment of requirement Offline
authNZ (ROB5). This is because querying for CLS rules and communicating with
the TGW requires network connections to those third parties. Delegating access,
as described by requirements Access delegation (SAT6) and Delegation param-
eters (SEC8), is impossible and not implemented in any prototype. Important for
the success of the system, requirements Trust establishment (SAT5) and Transi-
tive trust (ROB8) are possible, particularly because CLS and TGW can be used to
broaden the trust network. To improve building this trust network, it is also pos-
sible to implement requirements Level of assurance (INF11) and Trust service
providers (SEC13). Equally possible to implement is the requirement Platform
independence (ROB7) and Communication protocol independence (ROB9).

The addition of new components always risks bloating the system. In this case,
requirements Resource efficiency (ROB10), Scalability (ROB6), and Correlation
resistance (DAT6) are still possible to fulfill. Especially, ROB6 can be improved by
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allowing different SSI systems to work together. Similarly, requirements Usability
(ROB4), Accessibility (ROB2), Approachability (ROB3), and Reliability (ROB1)
remain possible to achieve.

The remaining requirements have not been evaluated for the combined prototype’s
scenario for the following reasons. Requirements Credential recovery (CON2) and
Multi-factor authentication (SEC6) have not been implemented for any prototype.
As a result, they cannot be shown in the combined scenario. Requirements Digital
twin (CON3), Digital identification (INF3), Physical identification (INF4), Prod-
uct specification (INF5), Protected application storage (DAT5), Tamper-evident
(SEC7), Tamper-resistant (SEC11), and Secure setup (SEC10) are IoT-specific
and thus not evaluated for this combination of prototypes. They also have not been
implemented for the IoT prototype, as they are more related to the application level
than the IAM operation. Requirement Documentation (INF2) cannot be evaluated
as there is no actual implementation and documentation for this scenario. The
concept deliberately chose to exclude requirement Credential revocation (SEC2),
so it is impossible to implement using this concept. Similarly, requirement Mes-
sage delivery services (SAT9) is not evaluated, as it is also excluded from the
concept and implementations. Requirement Off-the-record (OTR) (SEC12) is not
evaluated, as it is not part of each prototype.

6.3 Summary
The evaluation performed in this chapter shows that the three standalone pro-
totypes can fulfill many of the requirements gathered from the initial scenarios.
To summarize fulfillment of requirements, any fulfillment (i. e., completely fulfilled,
fulfilled, or partially fulfilled) is counted as “fulfilling” the requirement. The nu-
ances are described in the respective evaluations above and displayed in Table 6.1.
Additionally, only requirements not classified as not applicable are counted. Using
this simplification, the following fulfillment statistics are achieved:

• The concept (Section 4) fulfills 24/24 essential, 30/31 important, and 1/2
optional requirements.

• The web app prototype (Section 5.3) fulfills 13/14 essential, 5/7 important,
and 1/1 optional requirements.

• The IoT sensor network prototype (Section 5.4) fulfills 14/17 essential, 12/19
important, and 0/1 optional requirements.

• The eID prototype (Section 5.5) fulfills 13/15 essential, 8/11 important, and
1/2 optional requirements.

• The combination of prototypes (Section 6.2) is possible for 16/18 essential,
13/17 important, and 1/1 optional requirements.

The fulfillment of the concept, and the prototypes for the web app and eID scenario
are excellent. The prototype for the IoT scenario is lacking fulfillment of multiple
essential and important requirements. This is because those additional missing
requirements are generally needed for the scenario but are not necessary, and
thus not implemented, for the prototype’s scenario. Combining the prototypes is
possible and can fulfill most of the requirements.
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Table 6.1: Evaluation of the requirements’ fulfillment in each scenario’s prototype,
as well as in the combined setting
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Table 6.1: Evaluation of the requirements’ fulfillment in each scenario’s prototype,
as well as in the combined setting (Continued)
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Security and scalability of IAM systems are hindered by username/password com-
binations being the prevalent method for identification and authentication. SSI
promises to allow decentralizing IAM to achieve both security and scalability. This
work explores SSI for various scenarios and shows how to implement SSI systems
for three exemplary settings. To highlight the most critical contributions, Sec-
tion 7.1 provides a summary of the previous chapters. Section 7.2 uses the initial
research questions posed in Section 1.2 and provides succinct answers and ref-
erences to the relevant sections. Last but not least, Section 7.3 discusses topics
suitable for further research.

7.1 Recapitulation
IAM presents multifaceted challenges in system design, implementation, and op-
eration. Those challenges are often technical, especially when scaling systems to
larger user counts or requiring interoperability between systems. Organizational
challenges arise once the technical solutions are found. This work describes SSI,
a new IAM concept, and its design, implementation, and application in various
scenarios. The focus of this description is technical but organizational challenges
are considered, where they are expected or presumed. This section revisits the
chapters, summarises their content, and highlights exciting discoveries, new con-
tributions, and potential applications beyond this work.

Developing and describing a new iteration of IAM systems requires careful exam-
ination of existing systems and understanding of their strong points and deficits,
as well as understanding changed or new requirements of current applications of
IAM. To gather the most relevant requirements for a broad spectrum of applica-
tions, Chapter 2 examines existing IAM concepts, namely CIM, FIM, and SSI. On
top of those existing systems, application scenarios for the Internet, IoT, cloud and
edge computing, and electronic identities are described. Each scenario describes
a typical use case for its respective domain. However, the IoT scenario is broken up
into three sub-scenarios focusing on IoT devices, less capable and more battery-
constrained IoT sensors, and complete IoT networks.

195
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• Scenario 1 describes a fairly generic web application with a text-based pub-
lish/subscribe system for registered users. From an IAM point of view, this
application is similar to many real-world applications on the Internet today.
Therefore, the resulting requirements fit most web applications that require
users’ sign-in.

• Even though the IoT scenarios cover a similar topic, each of the following
scenarios is described as its independent scenario.

– The first Scenario 2a introduces requirements relevant to IoT devices.
Those devices are Internet-connected products that can be found every-
where (e. g., in households, businesses, or manufacturing).

– A specialization of IoT devices in the form of IoT sensors is used as a
model for deducing requirements in Scenario 2b. Those sensors are
heavily restricted in their hardware capabilities, connection speeds, and
latency. They are designed to be run on battery power for many months
and even up to multiple years. This scenario introduces requirements to
handle those constraints in resource usage. Being mindful of resource
usage can also be beneficial in the other scenarios.

– Scenario 2c broadens the view from individual IoT devices within their
respective environments and finds requirements necessary to build com-
plete networks of IoT devices. Those networks can consist of minimal
sensors, more capable devices acting as routers, and gateways connected
to the Internet. Organization and communication contribute additional
requirements in this setting.

• Scenario 3 discusses the requirements necessary for cloud and edge com-
puting. Many of the requirements of this scenario are similar to those of
the preceding scenarios. However, negotiation of capabilities and monitoring
agreements are new aspects that are found to be necessary in this scenario,
and supporting those features through IAM design has its own challenges.

• Scenario 4 explores the realm of eID and introduces requirements set by gov-
ernment agencies and legislation. The eID space is one where SSI concepts
can provide many benefits, partly due to the existing systems being difficult
to use. However, this scenario also results in the most non-technical require-
ments, as legislation highly regulates everything. Parts of this scenario are
also applied in a project with the German Bayerisches Staatsministerium für
Digitales responsible for eID in Bavaria and part of leading the German eID
initiative.

On their own, the requirements resulting from those six scenarios are too many
and lack structure to form a concept and implementation. To fix this and to fo-
cus on the most important requirements, they are categorized as either essential,
important, or optional. Combined, the scenarios yield 25 essential, 31 important,
and 3 optional requirements. This set of requirements is then used throughout
this work but provides value beyond. For example, individual requirements can be
re-used for a specific scenario, similar to one described here, or as a whole, as a
reference for covering a wide range of IAM needs.

Using the determined requirements, Chapter 3 explores the current state-of-the-
art of IAM and SSI in research, implementations, and standardization. As IAM is
a very well-researched topic, the requirements are used to narrow down relevant
results. To include sources from all relevant aspects, a graphical representation of
the analyzed topic is used to visualize its place within the dimensions of identity,
access, and management.
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• The identity dimension is split into device, personal, and organizational iden-
tities.

• Access describes which identification, authentication, and authorization pro-
cesses are covered.

• The aspect of management is split into the main characteristics of central-
ized, federated, or self-sovereign.

Most combinations are covered by at least one regarded source. From the number
of state-of-the-art descriptions, the following selection of projects – deemed most
relevant – are compared to the requirements.

• FIDO 2 is the project developing the WebAuthn standard, which is imple-
mented by most major browsers and provides password-less authentication
on the web. Its wide adaption makes it highly relevant for any authentication
system on the Internet. As such, it is used in the prototype for Scenario 1.

• Mozilla Persona was a project aimed at bringing decentralized identities to
the Internet through browser-based identity stores. This project serves as in-
spiration for the concept and implementation of the prototype for Scenario 1.

• Dynamic FIM is an extension of regular FIM where federations can form dy-
namic groups with use case-specific rules around required attribute formats,
validity, and usage. Some variations of dynamic FIM describe and employ a
trust broker component to facilitate trust between those federations. This ap-
proach is adapted in the concept to describe the TGW and CLS components.

• Hyperledger Indy is the base of many currently operating SSI systems. Indy
is a private/permissioned DLT implementation and specialized for IAM opera-
tions. Together with the Hyperledger Aries protocol stack, it offers a complete
architecture for SSI and is the go-to solution for many successful projects.
This architecture is used in the prototype implementation of Scenario 4.

• Inspecting the current German eID systems is required to find the challenges
hindering its widespread adoption and use.

• For IoT-specific IAM, the protocol LoRaWAN® was chosen. It is used for large
IoT star networks with very low-power sensor devices reporting data through
gateways to the Internet. Its security architecture shows how to manage de-
vice identities for extremely low-power devices. The prototype for Scenario 2b
adds SSI characteristics to LoRaWAN®.

The output of this chapter is a comparison of existing approaches and technologies
with the requirements of Chapter 2. This comparison shows clearly that there is no
solution fulfilling all – or even close to all – requirements. For the established IAM
concepts, this chapter provides a concise overview of technologies and implemen-
tations that can be of value to other publications. The subject of SSI, however, is
currently under constant development and evolution and thus may only represent
the state-of-the-art for a short time.

The core contribution of this work is described in Chapter 4. This chapter shows
a concept for building an SSI system specifically designed to be flexible enough
to adapt to the scenarios’ different characteristics. Additionally, the concept is
designed to be interoperable even if adapted to a specific scenario in order to achieve
universal interoperability of identity and attribute exchanges.

To provide flexibility, the concept describes its components individually and com-
bines them to form the reference architecture. The components used in the concept
are the following.
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• The backend used to store metadata, which the IdP or the federation would or-
dinarily store, is kept in a distributed ledger. The metadata describes which
identity attributes exist and how they should be interpreted based on the con-
text. As an alternative to DLT, the prototype for Scenario 1 also demonstrates
how PKI can be used.

• To store any identity information that could be considered PII, the wallet is
designed to keep the user in immediate control of this information.

• Communication between entities might not always be possible directly. In
those cases, agents offer their users a persistent endpoint that can be used to
send and receive messages, even if the wallet is not online when the message
is sent.

• The relying party is the entity receiving and processing VCs that contain the
users’ attested attributes. Relying parties are sometimes also called SPs or
verifiers.

• The issuer attests the users’ attributes and provides them with VCs. Contrary
to the RP/SP/verifier, an issuer differs from an IdP, as they only provide at-
tribute attestation and do not provide an entire identity. In this regard, they
are more similar to a fully independent version of FIM AAs.

• Because of the decentralized nature of SSI, the credential localization ser-
vice is required and introduced as a new SSI component to help attributes
be understood across different use cases.

• As a gateway to other SSI or non-SSI systems, the TGW is a newly described
component for SSI. It is vital to increase the chances of adoption by making
older IAM systems accessible and enabling SSI without requiring the world to
agree on one particular flavor immediately.

• As the last component, the community is a more abstract component which
is vital to fill the technical framework of the other components with life. The
community must also work together to develop the ecosystem further, discuss
new proposals, and handle security incidents.

The concept also provides templates for building new SSI systems or migrating
existing IAM infrastructure to SSI. Both templates are applied to a subset of the
scenarios to determine the best way of making them SSI-capable while using the
concept. The scenarios are chosen to cover as many different settings as possible
while avoiding unnecessary repetition. The chosen scenarios are used throughout
the further chapters and are partially implemented as prototypes.

• The first scenario chosen is Scenario 1. As respective components, the DLT
is replaced with the Internet-prevalent PKI. It is assumed that issuers are
mainly corporations and RPs are any web application. The user’s browser
is chosen as their wallet application, and possible agents are additional web
services. This scenario does not require CLS or TGWs and is managed by a
public community.

• As the second scenario, Scenario 2b is chosen. It features IoT sensors and
uses a private/permissioned DLT. Issuers are sensor manufacturers, and RPs
are data processors. The devices’ wallets are embedded into the respective
sensors. The connection between the sensors and data processors may be
augmented by agents, which run as cloud services or simple gateways. CLS
and TGWs are included in this scenario and run by specialized service provi-
ders. The community is sector-specific, which also motivates why translation
services for connection to the Internet or other sectors are required.
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• To complete the selection of scenarios, Scenario 4 is chosen because of its
different scope. To fulfill the public interest, this scenario uses a public/per-
missioned DLT. Issuers and RPs are primarily government agencies. The high
standard for confidentiality and integrity requires the use of TPMs in combi-
nation with the wallet software. Specially certified providers provide agents.
A CLS is not required due to the high standardization of attributes, but TGWs
are provided by certified portal providers. The community is built by public-
private partnerships.

Concluding the chapter, a first evaluation of the concept’s design with the require-
ments of Chapter 2 results in fulfilling 24/24 essential, 30/31 important, and 1/2
optional requirements. This indicates that the concept covers nearly all needed
requirements. The individual components, their descriptions, and the complete
concept are supposed to be usable beyond this work. Component descriptions can
help with the design, and implementation and the reference architecture provides a
detailed, helpful characterization to show complete contemplation of own systems.

To prove the concept’s soundness, Chapter 5 describes how the three selected
scenarios are implemented as prototypes following the concept’s description. The
implementations adopt the options chosen in the concept’s integration section,
summarized above.

• As the first prototype, Scenario 1 is implemented in three parts. The proto-
type is based on PKI with X.509 certificate to sign and verify the VCs. VCs
are stored in the first newly implemented part, an SSI wallet as an extension
for Chromium-based browsers. This extension integrates with websites to al-
low users to obtain and show VCs. Those VCs are encoded using the web
standard JWT. Authentication is done via another web standard WebAuthn,
already available in most major browsers. The second implemented part is a
web application, which simultaneously acts as an issuer and RP. Users can
post messages on this web application and add proof of their knowledge about
the topic. To keep the prototype concise, attestation of topical knowledge can
also be obtained from the same page. In the third part, a library LibWebSSI is
implemented, which handles all SSI operations and can be used to add SSI
to different front ends.

• A second prototype is created to match Scenario 2b. This prototype inte-
grates SSI features into the LoRaWAN® system provided by TTS. To do so,
the LoRaWAN® join server is extended to manage the sensors’ identities us-
ing SSI principles but without modifying the LoRaWAN® communication be-
tween sensors and gateways. This prototype forgoes implementing a PKI or
DLT backend, as PKI is shown in the first and DLT is used in the third proto-
type.

• The third prototype implementation tackles Scenario 4 and implements a
smartphone wallet, multiple issuers, and RPs. This prototype uses Hyper-
ledger Indy as the backend DLT and Hyperleger Aries as the protocol. The
wallet is implemented using the cross-platform development framework Re-
act Native and uses the ACA-PY framework to handle SSI operations.

The choice of technology shown in the implemented prototypes can be an inspi-
ration for implementing actual SSI products. The prototypes highlight implemen-
tation aspects that work well with SSI, e. g., using PKI and integrating SSI with
WebAuthn or adding SSI functions to existing LoRaWAN® infrastructure. However,
other findings show where improvement needs to be made, e. g., securing the users’
wallets, especially in the web browser but also for IoT and smartphones.
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The implemented prototypes are evaluated against the requirements from Chap-
ter 6. This evaluation shows that the individual prototypes fulfill most require-
ments. Missing requirements can be added on an application level and do not
affect core IAM functionality.

• The web-app prototype fulfills 13/14 essential, 5/7 important, and 1/1 op-
tional requirements. The credential revocation is missing as an essential re-
quirement, which has been deliberately excluded from the concept and thus
could not be fulfilled. Further missing important requirements are creden-
tial recovery and MFA. As WebAuthn handles authentication, those could be
achieved but are omitted as they are not unique to this prototype.

• The IoT sensor network prototype fulfills 14/17 essential, 12/19 important,
and 0/1 optional requirements. This prototype also omits credential revoca-
tion and does not implement the requirements for digital and physical identi-
fication of IoT devices. Both requirements can be implemented on an applica-
tion level if needed. The set of important requirements not implemented also
contains credential recovery, MFA, and further application-specific require-
ments. As a missing optional requirement, this prototype could not fulfill the
multiple identities requirement without changing the LoRaWAN® protocol. It
was thus omitted.

• The eID prototype fulfills 13/15 essential, 8/11 important, and 1/2 optional
requirements. In addition to the omitted credential revocation, this prototype
does not specify an identity data set as an essential required feature. Defining
a meaningful set of required attributes must be done at an organizational
level. An additional important but missing requirement is the identity data
set matching requirement. It is not implemented, as no identity data set has
been defined. Message delivery services, as an optional requirement, are not
implemented, as they are application-specific.

The evaluation discusses a combined scenario to cover the two components, CLS
and TGW, which are not part of the prototypes. In this combined setting, all proto-
types are connected to depict a workflow where data from the IoT sensor is sent to
a web platform that offers users log-in via eID. As a result of this combination, it is
argued that 16/18 essential, 13/17 important, and 1/1 optional requirements can
be implemented with the concept. Here, the impossible requirements are a subset
of the ones of the prototypes. Credential recovery is not possible, as it is excluded
from the concept. MFA, credential recovery, and offline authentication and autho-
rization are also not specified and thus impossible to implement according to the
concept. Application-level requirements, such as access delegation and delegation
parameters, are not specified on the SSI level.

Even though not all requirements are shown in the prototypes, the core IAM me-
chanics are. The prototypes and the combined scenario feature issuing and veri-
fying VCs and basic handling of VCs within the users’ wallets. Furthermore, the
combined scenario also presents how the new components of CLS and TGW can
be utilized to ease the migration and deployment of SSI-based IAM systems.

7.2 Revisiting the Research Questions
Eleven research questions have been formulated at the beginning of this work in
Section 1.2. This section provides the answers based on the work’s contribution.

1. Which techniques enable SSI to provide usability, freedom, and privacy
guarantees to users of web services and IoT devices, which conventional
IAM systems (e. g., CIM or FIM) cannot provide?
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SSI achieves better usability through the usage of mostly smartphone or
browser-based wallets. All relevant solutions shown in Section 3.3.2 use apps,
and the prototypes developed for this work also use smartphone-based (Sec-
tion 5.5) or browser-based apps (Section 5.3). Those wallets can authenticate
with other entities (e. g., websites) without managing individual username
and password combinations. Instead, a simple PIN code or biometric authen-
tication (e. g., fingerprint or face scan) unlocks the wallet app to access all
the users’ identities. Large-scale adoption of a similar system (e. g., through
WebAuthn) is not foreseeable. However, ease of use also poses dangers, as
shown in the master’s thesis of Moriz Teuschel, whose research highlights
the subject’s necessity for future development. Increased freedom through
simpler data portability, as shown by combining the prototypes in Section 6.2
and using VCs in very distinct settings. SSI can only marginally improve pri-
vacy guarantees, as it is still up to the services receiving VCs to handle the
containing data safely. The improvement of privacy arises from the possibil-
ity of viewing one’s transaction history and knowing exactly which VCs have
been shared with which verifier.

2. How is the type of security offered by distributed ledgers (i. e., consensus
on transaction ordering and prevention of double spending in a network
of untrusted peers) useful to IAM systems in general and SSI in particu-
lar?

The primary benefit is independence from other service providers. As long as
parties are interested in continuing the ledger, it will persist. With every ac-
tive participant responsible for continuing the ledger, the cost is shared, and
only little dependency on others is created. This and the subsequent stan-
dardization through a common API for accessing the ledger and representing
VCs is a tangible benefit over federated or centralized systems.

3. Which characteristics of a distributed ledger are required to be suitable
for a privacy-conscious IAM system, and which of the currently available
blockchains and distributed ledgers possess those characteristics?

It is shown through the development of the web prototype in Section 5.3 that
SSI can function without DLT. However, as discussed in RQ 2, there are ben-
efits to using DLT. If DLT is used, those benefits can only exist if the DLT is
publicly readable, can scale from zero to hundreds of transactions, and be
efficient with energy consumption and storage consumption.

4. How can a process be defined to securely and permanently bind a digital
identity (digital twin) to a (real world) entity?

The process for enrolling entities in an IDM system depends on the concrete
use case. Enrollment is described by registering an identity and establishing
credentials in Section 2.2. In an eID use case, the only secure and permanent
option of associating a digital identity to one citizen is by deriving the digital
identity from an official identity document, e. g., an ID card. For IoT devices,
attached markers (i. e., QR codes or serial numbers) can be used to identify
devices, but they can be copied or modified easily. A secure and permanent
method uses PUFs included in the device’s hardware. In the scenario of web
users, where the primary aspect is recognizing repeated visits and offering
customized experiences or data, a unique identifier combined with a secret is
usually sufficient.

5. Which methodologies enable a distributed ledger to manage the identi-
ties of many web services and a growing number of IoT devices?
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Scaling SSI happens at the user, the participating issuers and verifiers, and
the infrastructure (e. g., the DLT). A wallet application for all personas can
aggregate the user’s identities at a central place, similar to a password safe.
Both solutions increase the secure scalability of maintaining accounts and
connections to many entities, such as websites. For issuers and verifiers, an
SSI system has minimal effect on the scalability of their systems. They still
need to administrate their local databases for their users’ data. Scaling the
infrastructure with DLT is one of the key challenges. As the concept described
in Chapter 4 only utilizes the DLT as a universal repository for attribute defi-
nitions, only a few transactions for creating or updating attribute definitions
are necessary. However, the DLT should provide provisions to prune outdated
data without violating integrity guarantees.

6. How can standardization enable organizations to use DLT to trust each
other’s assertions and data quality guarantees on an international scale?

The immediate trust between two entities cannot be formed by the technolog-
ical solutions primarily developed in this work. Instead, this always requires
contractual agreements. The new standards developed for SSI (e. g., for DIDs
or VCs) offer advantages over established IAM standards (e. g., SAML, OIDC,
or WebAuthn). Section 4.3.8 describes basic needs of an SSI community. In
addition, the standardization for SSI displayed in Section 3.3 shows a strong
unifying tendency, which – though also technical – eases shaping agreements.

7. Which organizational approaches can ensure that a distributed ledger for
SSI can be used by many parties for different use cases and with different
implementations?

From an organizational point of view, it is essential to keep a ledger focused
on one or a few specific tasks. This can be seen implemented in architectures
that utilize multiple ledgers for different aspects of their system.

8. How can an IAM system for SSI be implemented on a distributed ledger?

Implementation of an IAM system on a distributed ledger alone is not possi-
ble. Some solutions shown in the state-of-the-art in Section 3.3 do run as
Smart Contracts or Chaincode, but they need to include necessary features
as discussed in Section 3.3.3. Utilizing distributed ledgers as part of an IAM
system is possible, as shown in Section 4.3.1.

9. How does an interface to a decentralized identity management system
need to be designed to be able to use it as a replacement for classic IAM
systems?

The basic operations required for IAM are determined in Section 2.2. Those
operations need to be exposed by an interface to the SSI system. As part
of the three implementations described in Chapter 5, interfaces for the web
(Section 5.3), IoT (Section 5.4), and eID (Section 5.5) have been described.

10. Which adjustments must be made to use the self-sovereign IAM system
on very constrained (i. e., connectivity, power usage, memory, computa-
tional power) IoT devices?

With the example of LoRaWAN®, a very low-power IoT WAN has been adapted
without any changes to the end devices. A system for IoT mesh systems has
been developed in [70]. This architecture requires IoT devices to perform more
cryptography (i. e., public key cryptography). As a result, for any IoT system
where IoT devices need to verify identities and assertions independently, effi-
cient public key signature and encryption methods need to be implemented.
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11. How can SSI be used in an international eID system, like it is proposed
by the EU’s eIDAS?

SSI can provide a strong unifying aspect to the various IAM systems deployed
today. The result is adapting eID systems for interoperability with one SSI
wallet API and preventing having to build proxies or adapters for the many
systems used around the EU. This chance to provide an EU-wide system is
also reflected in the new revision of eIDAS [150].

7.3 Outlook on Future Work
This work and related research for SSI shows that the technical challenges can be
solved for most applications. The only requirement chosen to be excluded from
this work is Credential revocation (SEC2). State-of-the-art research is shown in
Section 3.3.3.1, but no universal procedure has been developed yet. Further re-
search might be capable of finding a solution for credential revocation that does
not centralize the system and works reliably across different SSI implementations.
Additional remaining technical challenges of SSI systems involve the following as-
pects:

• Securing VCs and corresponding private keys is a hardware (i. e., TPM) and
software challenge. This is described by requirement Protected application
storage (DAT5) and is conceptually easy to fulfill, but none of the prototypes
implemented a solution that could fulfill this requirement. Additional work
must be done to make secure hardware features easier and more accessible
on all platforms.

• An additional requirement, which was not implemented in the prototypes,
is Multi-factor authentication (SEC6). To secure the identities stored in
the wallets, access control to the wallets needs to be strengthened, including
adding provisions for MFA.

Organizational challenges similar – or even exacerbated – to those of FIM exist with
the SSI systems. Those challenges are explored by the projects trying to build real-
world usable SSI systems. The more successful, i. e., those running for multiple
years, are still fairly centralized in their organization. Much of this is related to
legal issues and financial responsibilities. Exploring the non-technical aspects of
providing and legally running a world-wide backend for SSI services is still a very
open field. Some of the most pressing challenges include the following:

• The idea of SSI strives for decentralized IAM accessible to anyone. In reality,
the currently successful systems use private/permissoned DLT, incur host-
ing and management costs, and need a way to monetize their IAM platform,
at least from a long-term perspective. How can systems which require invest-
ment to start, run, and maintain be decentralized and open?

• A decentralized approach to a critical IAM infrastructure, like SSI aims to
be, is susceptible to security incidents that need handling. This handling is
difficult to orchestrate in a decentralized architecture and requires the devel-
opment of new and improved approaches.

Last but not least, technical and organizational challenges cannot be solved if users
do not accept the new IAM system. Designing a successful product that is quickly
adopted by a relevant number of users is very demanding. Additionally, the user
must be capable of using the SSI product to their advantage. A first step in this
direction is studying users’ behavior with the new powers of sharing high-quality
identity information from their smartphones. Further questions regarding UI are:
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• What are the effects of using SSI and wallet-based IAM systems for the general
population? Especially the effects on people with limited or no access to
modern smartphones need to be considered, as they should not be excluded
by introducing a new IAM paradigm.

• This and most related work focus on personal identities while designing ap-
plications for SSI wallets. However, the interaction with IoT devices and user-
friendly management of their VCs needs to be improved to allow actual prod-
ucts to use SSI technology.

Based on this selection of open questions around SSI, there are still plenty of op-
portunities for additional research and contributions. This work provides a base
SSI concept helpful in continuing with those questions.



Bibliography

[1] Josh Aas et al. “Let’s Encrypt: An Automated Certificate Authority to En-
crypt the Entire Web”. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’19. New York, NY, USA: As-
sociation for Computing Machinery, Nov. 2019, pp. 2473–2487. isbn: 978-
1-4503-6747-9. doi: 10.1145/3319535.3363192.

[2] Moussa Aboubakar, Mounir Kellil, and Pierre Roux. “A Review of IoT Network
Management: Current Status and Perspectives”. In: Journal of King Saud
University - Computer and Information Sciences 34.7 (July 2022), pp. 4163–
4176. issn: 1319-1578. doi: 10.1016/j.jksuci.2021.03.006. (Visited on
06/28/2023).

[3] Andreas Abraham et al. “Revocable and Offline-Verifiable Self-Sovereign
Identities”. In: 2020 IEEE 19th International Conference on Trust, Secu-
rity and Privacy in Computing and Communications (TrustCom). Dec. 2020,
pp. 1020–1027. doi: 10.1109/TrustCom50675.2020.00136.

[4] Nazrul M. Ahmad et al. “Improving Identity Management of Cloud-Based
IoT Applications Using Blockchain”. In: 2018 International Conference on
Intelligent and Advanced System (ICIAS). Aug. 2018, pp. 1–6. doi: 10.1109/
ICIAS.2018.8540564.

[5] Ifteher Alom et al. “Dynamic Management of Identity Federations Using
Blockchain”. In: 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). May 2021, pp. 1–9. doi: 10.1109/ICBC51069.2021.
9461128.

[6] Patricia Arias Cabarcos et al. “Enabling SAML for Dynamic Identity Feder-
ation Management”. In: Wireless and Mobile Networking. Ed. by Jozef Woz-
niak et al. IFIP Advances in Information and Communication Technology.
Berlin, Heidelberg: Springer, 2009, pp. 173–184. isbn: 978-3-642-03841-9.
doi: 10.1007/978-3-642-03841-9_16.

[7] Siddhartha Arora. “National E-ID Card Schemes: A European Overview”.
In: Information Security Technical Report 13.2 (May 2008), pp. 46–53. issn:
1363-4127. doi: 10.1016/j.istr.2008.08.002.

[8] Katja Assaf et al. “Prison Break: From Proprietary Data Sources to SSI Ver-
ifiable Credentials”. In: Advanced Information Networking and Applications.
Ed. by Leonard Barolli. Lecture Notes in Networks and Systems. Cham:
Springer International Publishing, 2023, pp. 355–366. isbn: 978-3-031-
28451-9. doi: 10.1007/978-3-031-28451-9_31.

[9] Mikaël Ates et al. “Interoperability between Heterogeneous Federation Archi-
tectures: Illustration with SAML and WS-Federation”. In: 2007 Third Inter-
national IEEE Conference on Signal-Image Technologies and Internet-Based
System. Dec. 2007, pp. 1063–1070. doi: 10.1109/SITIS.2007.148.

205

https://doi.org/10.1145/3319535.3363192
https://doi.org/10.1016/j.jksuci.2021.03.006
https://doi.org/10.1109/TrustCom50675.2020.00136
https://doi.org/10.1109/ICIAS.2018.8540564
https://doi.org/10.1109/ICIAS.2018.8540564
https://doi.org/10.1109/ICBC51069.2021.9461128
https://doi.org/10.1109/ICBC51069.2021.9461128
https://doi.org/10.1007/978-3-642-03841-9_16
https://doi.org/10.1016/j.istr.2008.08.002
https://doi.org/10.1007/978-3-031-28451-9_31
https://doi.org/10.1109/SITIS.2007.148


206 Bibliography

[10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of Things:
A Survey”. In: Comput. Netw. 54.15 (Oct. 2010), pp. 2787–2805. issn: 1389-
1286. doi: 10.1016/j.comnet.2010.05.010.

[11] C. Warren Axelrod. “IAM Risks during Organizational Change and Other
Forms of Major Upheaval”. In: Digital Identity and Access Management: Tech-
nologies and Frameworks. Ed. by Raj Sharman, Sanjukta Das Smith, and
Manish Gupta. Hershey, PA, USA: IGI Global, 2012, pp. 1–18. isbn: 978-1-
61350-498-7. doi: 10.4018/978-1-61350-498-7.ch001.

[12] Mehmet Aydar et al. “Private Key Encryption and Recovery in Blockchain”.
In: arXiv:1907.04156 [cs] (June 2020). arXiv: 1907.04156 [cs]. url: http
://arxiv.org/abs/1907.04156.

[13] Mark C. Ballandies, Marcus M. Dapp, and Evangelos Pournaras. “Decrypt-
ing Distributed Ledger Design—Taxonomy, Classification and Blockchain
Community Evaluation”. In: Cluster Computing 25.3 (June 2022), pp. 1817–
1838. issn: 1573-7543. doi: 10.1007/s10586-021-03256-w.

[14] Elaine Barker et al. A Framework for Designing Cryptographic Key Manage-
ment Systems. Tech. rep. NIST Special Publication (SP) 800-130. National
Institute of Standards and Technology, Aug. 2013. doi: 10.6028/NIST.SP.
800-130.

[15] Tom Barton et al. “A Security Incident Response Trust Framework for Fed-
erated Identity (Sirtfi)”. In: (Dec. 2015). url: https://refeds.org/wp-content
/uploads/2016/01/Sirtfi-1.0.pdf (visited on 04/20/2021).

[16] Diana Berbecaru and Antonio Lioy. “On the Design, Implementation and In-
tegration of an Attribute Provider in the Pan-European eID Infrastructure”.
In: 2016 IEEE Symposium on Computers and Communication (ISCC). June
2016, pp. 1263–1269. doi: 10.1109/ISCC.2016.7543910.

[17] BIS Research. Global Biometric Authentication and Identification Market in
2020 and 2026, by End User (in Million U.S. Dollars) [Graph]. Feb. 2022. url:
https://www.statista.com/statistics/1299001/biometric-authentication
-and-identification-market-by-end-user/ (visited on 06/24/2023).

[18] Board of Trustees. Sovrin Foundation Amended and Restated Bylaws. Jan.
2018. url: https://sovrin.org/wp-content/uploads/Sovrin-By-Laws-V1.pdf
(visited on 02/01/2021).

[19] Flavio Bonomi et al. “Fog Computing and Its Role in the Internet of Things”.
In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing. MCC ’12. Helsinki, Finland: Association for Computing Machin-
ery, Aug. 2012, pp. 13–16. isbn: 978-1-4503-1519-7. doi: 10.1145/2342509.
2342513.

[20] Nikita Borisov, Ian Goldberg, and Eric Brewer. “Off-the-Record Communi-
cation, or, Why Not to Use PGP”. In: Proceedings of the 2004 ACM Work-
shop on Privacy in the Electronic Society - WPES ’04. Washington DC, USA:
ACM Press, 2004, p. 77. isbn: 978-1-58113-968-6. doi: 10.1145/1029179.
1029200.

[21] Carsten Bormann, Mehmet Ersue, and Ari Keränen. “Terminology for
Constrained-Node Networks”. In: Request for Comments 7228 (May 2014),
p. 17. doi: 10.17487/RFC7228.

[22] Pelle Braendgaard and et al. Ethr-DID Library. June 2020. url: https://
github.com/uport-project/ethr-did (visited on 06/25/2020).

[23] Bundesamt für Sicherheit in der Informationstechnik. Requirements for
Smart Card Readers Supporting eID and QES Based on EAC. Feb. 2020.

https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.4018/978-1-61350-498-7.ch001
https://arxiv.org/abs/1907.04156
http://arxiv.org/abs/1907.04156
http://arxiv.org/abs/1907.04156
https://doi.org/10.1007/s10586-021-03256-w
https://doi.org/10.6028/NIST.SP.800-130
https://doi.org/10.6028/NIST.SP.800-130
https://refeds.org/wp-content/uploads/2016/01/Sirtfi-1.0.pdf
https://refeds.org/wp-content/uploads/2016/01/Sirtfi-1.0.pdf
https://doi.org/10.1109/ISCC.2016.7543910
https://www.statista.com/statistics/1299001/biometric-authentication-and-identification-market-by-end-user/
https://www.statista.com/statistics/1299001/biometric-authentication-and-identification-market-by-end-user/
https://sovrin.org/wp-content/uploads/Sovrin-By-Laws-V1.pdf
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/1029179.1029200
https://doi.org/10.1145/1029179.1029200
https://doi.org/10.17487/RFC7228
https://github.com/uport-project/ethr-did
https://github.com/uport-project/ethr-did


Bibliography 207

[24] Bundesamt für Sicherheit in der Informationstechnik. Technische Richtlinie
TR-03160-1 Servicekonten. Oct. 2019. url: https://www.bsi.bund.de/DE/
Themen / Unternehmen - und - Organisationen / Standards - und - Zertifizierung
/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03160/tr03160_node
.html (visited on 06/13/0202).

[25] Bundesamt für Sicherheit in der Informationstechnik. TR-03121-2 Biomet-
rics for Public Sector Application. 2011. url: https : / / www . bsi . bund . de
/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03121/TR-
03121 - 2 _ Biometrics _ 2 _ 3 . pdf ? _ _ blob = publicationFile & v = 3 (visited on
07/23/2020).

[26] Bundesgesetzblatt. Gesetz über Personalausweise und den elektronischen
Identitätsnachweis vom 24. Juni 2009. June 2009. url: https://www.bmi
.bund.de/SharedDocs/downloads/DE/gesetzestexte/eperso.html (visited on
06/30/2023).

[27] Michael Burrows, Martín Abadi, and Roger Needham. “A Logic of Authenti-
cation”. In: Acm Transactions on Computer Systems 8 (1990), pp. 18–36.

[28] Vitalik Buterin. A Next-Generation Smart Contract and Decentralized Ap-
plication Platform. 2014. url: https : / / www . weusecoins . com / assets / pdf
/ library / Ethereum _ white _ paper - a _ next _ generation _ smart _ contract _
and_decentralized_application_platform-vitalik-buterin.pdf (visited on
07/19/2016).

[29] Kim Cameron. The Laws of Identity. 2005. url: http://www.identityblog
.com/stories/2005/05/13/TheLawsOfIdentity.pdf (visited on 10/27/2018).

[30] Marian Carcary et al. “Exploring the Determinants of IoT Adoption: Find-
ings from a Systematic Literature Review”. In: Perspectives in Business Infor-
matics Research. Ed. by Jelena Zdravkovic et al. Lecture Notes in Business
Information Processing. Cham: Springer International Publishing, 2018,
pp. 113–125. isbn: 978-3-319-99951-7. doi: 10.1007/978-3-319-99951-7_8.

[31] Ann Cavoukian. “Privacy by Design: The Definitive Workshop. A Foreword
by Ann Cavoukian, Ph.D”. In: Identity in the Information Society 3.2 (Aug.
2010), pp. 247–251. issn: 1876-0678. doi: 10.1007/s12394-010-0062-y.

[32] David W. Chadwick. “Federated Identity Management”. In: Foundations of
Security Analysis and Design V: FOSAD 2007/2008/2009 Tutorial Lectures.
Ed. by Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 96–120. isbn:
978-3-642-03829-7. doi: 10 . 1007 / 978 - 3 - 642 - 03829 - 7 _ 3. (Visited on
03/12/2022).

[33] Richard Chang and Vitaly Shmatikov. “Formal Analysis of Authentication
in Bluetooth Device Pairing”. In: FCS-ARSPA’07 45 (2007).

[34] Bharat S. Chaudhari, Marco Zennaro, and Suresh Borkar. “LPWAN Tech-
nologies: Emerging Application Characteristics, Requirements, and Design
Considerations”. In: Future Internet 12.3 (Mar. 2020), p. 46. issn: 1999-
5903. doi: 10.3390/fi12030046.

[35] Rowdy Chotkan, Jérémie Decouchant, and Johan Pouwelse. “Distributed
Attestation Revocation in Self-Sovereign Identity”. In: 2022 IEEE 47th Con-
ference on Local Computer Networks (LCN). Sept. 2022, pp. 414–421. doi:
10.1109/LCN53696.2022.9843323.

[36] Christian Kjærgaard-Winther. A.P. Moller - Maersk and IBM to Discontinue
TradeLens, a Blockchain-Enabled Global Trade Platform. Nov. 2022. url:
https://www.maersk.com/news/articles/2022/11/29/maersk-and-ibm-to
-discontinue-tradelens (visited on 07/03/2023).

https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03160/tr03160_node.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03160/tr03160_node.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03160/tr03160_node.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03160/tr03160_node.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03121/TR-03121-2_Biometrics_2_3.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03121/TR-03121-2_Biometrics_2_3.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03121/TR-03121-2_Biometrics_2_3.pdf?__blob=publicationFile&v=3
https://www.bmi.bund.de/SharedDocs/downloads/DE/gesetzestexte/eperso.html
https://www.bmi.bund.de/SharedDocs/downloads/DE/gesetzestexte/eperso.html
https://www.weusecoins.com/assets/pdf/library/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://www.weusecoins.com/assets/pdf/library/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://www.weusecoins.com/assets/pdf/library/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
http://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
https://doi.org/10.1007/978-3-319-99951-7_8
https://doi.org/10.1007/s12394-010-0062-y
https://doi.org/10.1007/978-3-642-03829-7_3
https://doi.org/10.3390/fi12030046
https://doi.org/10.1109/LCN53696.2022.9843323
https://www.maersk.com/news/articles/2022/11/29/maersk-and-ibm-to-discontinue-tradelens
https://www.maersk.com/news/articles/2022/11/29/maersk-and-ibm-to-discontinue-tradelens


208 Bibliography

[37] Chrome Developers. Chrome Developers Extension API Reference:
Chrome.Storage. url: https : / / developer . chrome . com / docs / extensions
/reference/storage/ (visited on 06/19/2022).

[38] Conor P. Cahill et al. Profiles for the OASIS Security Assertion Markup Lan-
guage (SAML) V2. 0. Mar. 2005.

[39] D. Cooper et al. Internet X.509 Public Key Infrastructure Certificate and Cer-
tificate Revocation List (CRL) Profile. Tech. rep. RFC5280. RFC Editor, May
2008, RFC5280. doi: 10.17487/rfc5280.

[40] George Coulouris et al. Distributed Systems: Concepts and Design. 5 edition.
Boston: Pearson, May 2011. isbn: 978-0-13-214301-1.

[41] Council of European Union. “Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016 on the Protection of Natural
Persons with Regard to the Processing of Personal Data and on the Free
Movement of Such Data, and Repealing Directive 95/46/EC (General Data
Protection Regulation)”. In: Official Journal of the European Union L 119 (May
2016), pp. 1–88. url: https://eur-lex.europa.eu/eli/reg/2016/679/oj
(visited on 10/01/2018).

[42] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. “Goal-Directed
Requirements Acquisition”. In: Science of Computer Programming 20.1 (Apr.
1993), pp. 3–50. issn: 0167-6423. doi: 10.1016/0167-6423(93)90021-G.

[43] Sumit Singh Dhanda, Brahmjit Singh, and Poonam Jindal. “Lightweight
Cryptography: A Solution to Secure IoT”. In: Wireless Personal Communica-
tions 112.3 (June 2020), pp. 1947–1980. issn: 1572-834X. doi: 10.1007/s
11277-020-07134-3.

[44] Vikram Dhillon, David Metcalf, and Max Hooper. “The DAO Hacked”. In:
Blockchain Enabled Applications: Understand the Blockchain Ecosystem and
How to Make It Work for You. Ed. by Vikram Dhillon, David Metcalf, and Max
Hooper. Berkeley, CA: Apress, 2017, pp. 67–78. isbn: 978-1-4842-3081-7.
doi: 10.1007/978-1-4842-3081-7_6.

[45] Mario Dobrovnik et al. “Blockchain for and in Logistics: What to Adopt and
Where to Start”. In: Logistics 2.3 (Sept. 2018), p. 18. doi: 10.3390/logistics
2030018.

[46] Drummond Reed. Decentralized Key Management System. Apr. 2017. url:
https://github.com/WebOfTrustInfo/rwot4-paris (visited on 05/21/2019).

[47] Drummond Reed et al. Decentralized Identifiers (DIDs) v1.0. Aug. 2021. url:
https://w3c.github.io/did-core/ (visited on 08/11/2021).

[48] Paul Dunphy and Fabien A.P. Petitcolas. “A First Look at Identity Man-
agement Schemes on the Blockchain”. In: IEEE Security Privacy 16.4 (July
2018), pp. 20–29. issn: 1558-4046. doi: 10.1109/MSP.2018.3111247.

[49] eIDAS Technical Sub-group. eIDAS SAML Attribute Profile. Aug. 2016.
[50] Rachid El Bansarkhani and Jan Sturm. “An Efficient Lattice-Based Mul-

tisignature Scheme with Applications to Bitcoins”. In: Cryptology and Net-
work Security. Ed. by Sara Foresti and Giuseppe Persiano. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2016,
pp. 140–155. isbn: 978-3-319-48965-0. doi: 10.1007/978-3-319-48965-0_9.

[51] Abdulmotaleb El Saddik. “Digital Twins: The Convergence of Multimedia
Technologies”. In: IEEE MultiMedia 25.2 (Apr. 2018), pp. 87–92. issn: 1070-
986X, 1941-0166. doi: 10.1109/MMUL.2018.023121167.

[52] EU. A Digital Single Market Strategy for Europe. May 2015. url: https://eur
-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52015DC0192 (visited on
12/11/2019).

https://developer.chrome.com/docs/extensions/reference/storage/
https://developer.chrome.com/docs/extensions/reference/storage/
https://doi.org/10.17487/rfc5280
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1016/0167-6423(93)90021-G
https://doi.org/10.1007/s11277-020-07134-3
https://doi.org/10.1007/s11277-020-07134-3
https://doi.org/10.1007/978-1-4842-3081-7_6
https://doi.org/10.3390/logistics2030018
https://doi.org/10.3390/logistics2030018
https://github.com/WebOfTrustInfo/rwot4-paris
https://w3c.github.io/did-core/
https://doi.org/10.1109/MSP.2018.3111247
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1109/MMUL.2018.023121167
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52015DC0192
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52015DC0192


Bibliography 209

[53] Geovane Fedrecheski et al. “Self-Sovereign Identity for IoT Environments: A
Perspective”. In: 2020 Global Internet of Things Summit (GIoTS) (June 2020),
pp. 1–6. doi: 10.1109/GIOTS49054.2020.9119664. arXiv: 2003.05106.

[54] Adrienne Porter Felt et al. “Measuring HTTPS Adoption on the Web”. In:
26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC:
USENIX Association, Aug. 2017, pp. 1323–1338. isbn: 978-1-931971-40-
9. url: https://www.usenix.org/conference/usenixsecurity17/technical
-sessions/presentation/felt.

[55] Haonan Feng et al. “A Formal Analysis of the FIDO UAF Protocol.” In: NDSS.
2021.

[56] Md. Sadek Ferdous and Ron Poet. “Dynamic Identity Federation Using Se-
curity Assertion Markup Language (SAML)”. In: Policies and Research in
Identity Management. Ed. by Simone Fischer-Hübner, Elisabeth de Leeuw,
and Chris Mitchell. IFIP Advances in Information and Communication Tech-
nology. Berlin, Heidelberg: Springer, 2013, pp. 131–146. isbn: 978-3-642-
37282-7. doi: 10.1007/978-3-642-37282-7_13.

[57] Ana Juan Ferrer, Joan Manuel Marquès, and Josep Jorba. “Towards the
Decentralised Cloud: Survey on Approaches and Challenges for Mobile, Ad
Hoc, and Edge Computing”. In: ACM Computing Surveys 51.6 (Jan. 2019),
111:1–111:36. issn: 0360-0300. doi: 10.1145/3243929.

[58] Daniel Fett, Ralf Küsters, and Guido Schmitz. “An Expressive Model for the
Web Infrastructure: Definition and Application to the Browser ID SSO Sys-
tem”. In: 2014 IEEE Symposium on Security and Privacy. May 2014, pp. 673–
688. doi: 10.1109/SP.2014.49.

[59] FIDO Alliance. FIDO Alliance FAQs. July 2022. url: https://fidoalliance
.org/faqs/ (visited on 08/04/2022).

[60] Andreas Freitag. A New Privacy Preserving and Scalable Revocation Method
for Self Sovereign Identity – The Perfect Revocation Method Does Not Exist Yet.
Nov. 2022. doi: 10.48550/arXiv.2211.13041. arXiv: 2211.13041 [cs].

[61] Ruti Gafni and Dudu Nissim. “To Social Login or Not Login? Exploring Fac-
tors Affecting the Decision”. In: Issues in Informing Science and Information
Technology 11 (Jan. 2014), pp. 57–72. doi: 10.28945/1980.

[62] Pedro Garcia Lopez et al. “Edge-Centric Computing: Vision and Challenges”.
In: ACM SIGCOMM Computer Communication Review 45.5 (Sept. 2015),
pp. 37–42. issn: 0146-4833. doi: 10.1145/2831347.2831354.

[63] Simson Garfinkel. PGP: Pretty Good Privacy. ”O’Reilly Media, Inc.”, 1995.
isbn: 978-1-56592-098-9.

[64] Samson Kahsay Gebresilassie et al. “Distributed, Secure, Self-Sovereign
Identity for IoT Devices”. In: 2020 IEEE 6th World Forum on Internet of Things
(WF-IoT). June 2020, pp. 1–6. doi: 10.1109/WF-IoT48130.2020.9221144.

[65] Geldwäschegesetz - GwG. Gesetz Über Das Aufspüren von Gewinnen Aus
Schweren Straftaten § 11. url: https://www.gesetze-im-internet.de/gwg_
2017/__11.html (visited on 06/12/2020).

[66] Arthur Gervais et al. “On the Security and Performance of Proof of Work
Blockchains”. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’16. New York, NY, USA: Associ-
ation for Computing Machinery, Oct. 2016, pp. 3–16. isbn: 978-1-4503-
4139-4. doi: 10.1145/2976749.2978341.

[67] Giovanni Buttarelli. Preliminary Opinion on privacy by design. May 2018.
url: https://edps.europa.eu/data-protection/our-work/publications
/opinions/privacy-design_en (visited on 10/22/2019).

https://doi.org/10.1109/GIOTS49054.2020.9119664
https://arxiv.org/abs/2003.05106
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://doi.org/10.1007/978-3-642-37282-7_13
https://doi.org/10.1145/3243929
https://doi.org/10.1109/SP.2014.49
https://fidoalliance.org/faqs/
https://fidoalliance.org/faqs/
https://doi.org/10.48550/arXiv.2211.13041
https://arxiv.org/abs/2211.13041
https://doi.org/10.28945/1980
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1109/WF-IoT48130.2020.9221144
https://www.gesetze-im-internet.de/gwg_2017/__11.html
https://www.gesetze-im-internet.de/gwg_2017/__11.html
https://doi.org/10.1145/2976749.2978341
https://edps.europa.eu/data-protection/our-work/publications/opinions/privacy-design_en
https://edps.europa.eu/data-protection/our-work/publications/opinions/privacy-design_en


210 Bibliography

[68] Michael Grabatin and Wolfgang Hommel. “Blockchain-Basiertes Föderiertes
Identity Management Am Beispiel von Ethereum Smart Contracts”. In:
Sicherheit in Vernetzten Systemen 24. DFN-Konferenz, 2017, Hamburg,
Februar 14-15, 2017. Hamburg: DFN / Universität der Bundeswehr
München, Fakultät für Informatik, INF 2 - Institut für Softwaretechnolo-
gie, Professur: Hommel, Wolfgang, 2017, B1–B16.

[69] Michael Grabatin and Wolfgang Hommel. “Reliability and Scalability Im-
provements to Identity Federations by Managing SAML Metadata with Dis-
tributed Ledger Technology”. In: NOMS 2018 - 2018 IEEE/IFIP Network Oper-
ations and Management Symposium. Taipei: IEEE, Apr. 2018, pp. 1–6. isbn:
978-1-5386-3416-5. doi: 10.1109/NOMS.2018.8406310.

[70] Michael Grabatin and Wolfgang Hommel. “Self-Sovereign Identity Manage-
ment in Wireless Ad Hoc Mesh Networks”. In: 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM). May 2021, pp. 480–
486.

[71] Michael Grabatin, Wolfgang Hommel, and Michael Steinke. “Policy-Based
Network and Security Management in Federated Service Infrastructures
with Permissioned Blockchains”. In: Security in Computing and Commu-
nications. Ed. by Sabu M. Thampi et al. Communications in Computer
and Information Science. Springer Singapore, 2019, pp. 145–156. isbn:
9789811358265.

[72] Michael Grabatin et al. “A Matrix for Systematic Selection of Authentication
Mechanisms in Challenging Healthcare Related Environments”. In: Proceed-
ings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical
Systems. SAT-CPS ’21. New York, NY, USA: Association for Computing Ma-
chinery, Apr. 2021, pp. 88–97. isbn: 978-1-4503-8319-6. doi: 10 . 1145 /
3445969.3450424.

[73] Michael Grabatin et al. “Improving the Scalability of Identity Federations
through Level of Assurance Management Automation”. In: 9. DFN-Forum
Kommunikationstechnologien. Gesellschaft für Informatik eV, 2016.

[74] Paul A Grassi, Michael E Garcia, and James L Fenton. Digital Identity Guide-
lines. Tech. rep. NIST SP 800-63-3. Gaithersburg, MD: National Institute of
Standards and Technology, June 2017, NIST SP 800-63–3. doi: 10.6028/
NIST.SP.800-63-3.

[75] Paul A Grassi et al. Digital Identity Guidelines: Authentication and Lifecy-
cle Management. Tech. rep. NIST SP 800-63b. Gaithersburg, MD: National
Institute of Standards and Technology, June 2017, NIST SP 800–63b. doi:
10.6028/NIST.SP.800-63b.

[76] Paul A Grassi et al. Digital Identity Guidelines: Enrollment and Identity Proof-
ing. Tech. rep. NIST SP 800-63a. Gaithersburg, MD: National Institute of
Standards and Technology, June 2017, NIST SP 800–63a. doi: 10.6028/
NIST.SP.800-63a.

[77] Paul A Grassi et al. Digital Identity Guidelines: Federation and Assertions.
Tech. rep. NIST SP 800-63c. Gaithersburg, MD: National Institute of Stan-
dards and Technology, June 2017, NIST SP 800–63c. doi: 10.6028/NIST.SP.
800-63c.

[78] Andreas Grüner et al. “Quo Vadis, Web Authentication? – An Empirical
Analysis of Login Methods on the Internet”. In: Advanced Information Net-
working and Applications. Ed. by Leonard Barolli. Lecture Notes in Networks
and Systems. Cham: Springer International Publishing, 2023, pp. 471–479.
isbn: 978-3-031-28694-0. doi: 10.1007/978-3-031-28694-0_45.

https://doi.org/10.1109/NOMS.2018.8406310
https://doi.org/10.1145/3445969.3450424
https://doi.org/10.1145/3445969.3450424
https://doi.org/10.6028/NIST.SP.800-63-3
https://doi.org/10.6028/NIST.SP.800-63-3
https://doi.org/10.6028/NIST.SP.800-63b
https://doi.org/10.6028/NIST.SP.800-63a
https://doi.org/10.6028/NIST.SP.800-63a
https://doi.org/10.6028/NIST.SP.800-63c
https://doi.org/10.6028/NIST.SP.800-63c
https://doi.org/10.1007/978-3-031-28694-0_45


Bibliography 211

[79] Ruth Halperin and James Backhouse. “A Roadmap for Research on Identity
in the Information Society”. In: Identity in the Information Society 1.1 (Dec.
2008), pp. 71–87. issn: 1876-0678. doi: 10.1007/s12394-008-0004-0.

[80] D. Hardt. RFC6749 – The OAuth 2.0 Authorization Framework. Internet En-
gineering Task Force (IETF), Oct. 2012.

[81] Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard Neumair. Integrated
Management of Networked Systems: Concepts, Architectures and Their Oper-
ational Application. Morgan Kaufmann, Aug. 1999. isbn: 978-1-55860-571-
8.

[82] Wolfgang Hommel. “Architektur- und Werkzeugkonzepte für föderiertes
Identitäts-Management”. PhD thesis. Ludwig-Maximilians-Universität
München, July 2007. url: https://edoc.ub.uni-muenchen.de/7300/.

[83] Wolfgang Hommel et al. “Level of Assurance Management Automation for
Dynamic Identity Federations Based on Vectors of Trust”. In: PIK - Praxis
der Informationsverarbeitung und Kommunikation 39.3-4 (Jan. 2017). issn:
1865-8342, 0930-5157. doi: 10.1515/pik-2016-0003.

[84] Qinwen Hu, Muhammad Rizwan Asghar, and Nevil Brownlee. “A Large-Scale
Analysis of HTTPS Deployments: Challenges, Solutions, and Recommenda-
tions”. In: Journal of Computer Security 29.1 (Jan. 2021), pp. 25–50. issn:
0926227X. doi: 10.3233/JCS-200070.

[85] Andries Van Humbeeck. “The Blockchain-GDPR Paradox”. In: Journal of
Data Protection & Privacy 2.3 (Mar. 2019), pp. 208–212. url: https://ideas
.repec.org/a/aza/jdpp00/y2019v2i3p208-212.html.

[86] Hyperledger White Paper Working Group. “An Introduction to Hyperledger”.
In: Linux Foundation: San Fransisco, CA, USA (2018).

[87] “IEEE Draft Standard for Telecommunications and Information Exchange
between Systems - Local and Metropolitan Area Networks– Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications -
Amendment 4: Enhancements For Transit Links Within Bridged Networks”.
In: IEEE P802.11ak/D4.0, March 2017 (Jan. 2017), pp. 1–108.

[88] “IEEE Standard for Ethernet”. In: IEEE Std 802.3-2015 (Revision of IEEE Std
802.3-2012) (Mar. 2016), pp. 1–4017. doi: 10.1109/IEEESTD.2016.7428776.

[89] “IEEE Standard for Information Technology– Local and Metropolitan Area
Networks– Specific Requirements– Part 15.1a: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal
Area Networks (WPAN)”. In: IEEE Std 802.15.1-2005 (Revision of IEEE Std
802.15.1-2002) (June 2005), pp. 1–700. doi: 10.1109/IEEESTD.2005.96290.

[90] “IEEE Standard for Low-Rate Wireless Networks”. In: IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011) (Apr. 2016), pp. 1–709. doi: 10.
1109/IEEESTD.2016.7460875.

[91] International Civilian Aviation Organization (ICAO). Doc 9303 – Machine
Readable Travel Documents – Part 3: Specifications Common to All MRTD.
2015. url: https://www.icao.int/publications/Documents/9303_p3_cons_en
.pdf.

[92] International Telecommunication Union. “Recommendation M. 3010”. In:
Principles for a Telecommunication Management Network [Z] (Feb. 2000).

[93] Mehzabien Iqbal, Abu Yousha Md Abdullah, and Farzana Shabnam. “An
Application Based Comparative Study of LPWAN Technologies for IoT En-
vironment”. In: 2020 IEEE Region 10 Symposium (TENSYMP). June 2020,
pp. 1857–1860. doi: 10.1109/TENSYMP50017.2020.9230597.

https://doi.org/10.1007/s12394-008-0004-0
https://edoc.ub.uni-muenchen.de/7300/
https://doi.org/10.1515/pik-2016-0003
https://doi.org/10.3233/JCS-200070
https://ideas.repec.org/a/aza/jdpp00/y2019v2i3p208-212.html
https://ideas.repec.org/a/aza/jdpp00/y2019v2i3p208-212.html
https://doi.org/10.1109/IEEESTD.2016.7428776
https://doi.org/10.1109/IEEESTD.2005.96290
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2016.7460875
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf
https://doi.org/10.1109/TENSYMP50017.2020.9230597


212 Bibliography

[94] A. K. M. Najmul Islam, Matti Mäntymäki, and Marja Turunen. “Why Do
Blockchains Split? An Actor-Network Perspective on Bitcoin Splits”. In: Tech-
nological Forecasting and Social Change 148 (Nov. 2019), p. 119743. issn:
0040-1625. doi: 10.1016/j.techfore.2019.119743.

[95] ISO/IEC 24760-1:2019 IT Security and Privacy – A Framework for Identity
Management – Part 1: Terminology and Concepts. ISO/IEC JTC 1/SC 27,
May 2019. url: https://www.iso.org/standard/77582.html.

[96] ISO/IEC 27002:2013. Oct. 2013. url: http://www.iso.org/cms/render/live
/en/sites/isoorg/contents/data/standard/05/45/54533.html (visited on
08/23/2019).

[97] ISO/IEC 7498–4. Information Processing Systems — Open Systems Intercon-
nection — Basic Reference Model — Part 4: Management Framework. Nov.
1989.

[98] Ivonne Thomas and Christoph Meinel. “From Domain-Based Identity Man-
agement Systems to Open Identity Management Models”. In: Digital Identity
and Access Management: Technologies and Frameworks. Hershey, PA, USA:
IGI Global, 2012, pp. 19–38. isbn: 978-1-61350-498-7. doi: 10.4018/978-
1-61350-498-7.ch002.

[99] Nima Jafari Navimipour and Farnaz Sharifi Milani. “A Comprehensive Study
of the Resource Discovery Techniques in Peer-to-Peer Networks”. In: Peer-to-
Peer Networking and Applications 8.3 (May 2015), pp. 474–492. issn: 1936-
6450. doi: 10.1007/s12083-014-0271-5. (Visited on 07/20/2023).

[100] Joe Andrieu, Sunny Lee, and Nate Otto. Verifiable Claims Use Cases. June
2017. url: https://www.w3.org/TR/verifiable-claims-use-cases/ (visited
on 05/10/2019).

[101] Johan Stokking and Roman Volosatovs. LoRaWAN Backend Interfaces In-
teroperability. July 2022. url: https://www.thethingsindustries.com/docs
/reference/interop-repository/ (visited on 07/25/2022).

[102] John Bradley et al., eds. Client to Authenticator Protocol (CTAP). June 2022.
url: https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client
-to-authenticator-protocol-v2.1-ps-errata-20220621.html (visited on
08/04/2022).

[103] Michael B. Jones, Akshay Kumar, and Emil Lundberg, eds. Web Authenti-
cation: An API for Accessing Public Key Credentials - Level 3. Apr. 2021. url:
https://w3c.github.io/webauthn/ (visited on 06/26/2022).

[104] Bastian Kemmler and Dieter Kranzlmüller. “Redefining the Cloud Based on
Beneficial Service Characteristics - A New Cloud Taxonomy Leads to Eco-
nomically Reasonable Semi-Cloudification”. In: Proceedings of the 5th In-
ternational Conference on Cloud Computing and Services Science - Volume
1: CLOSER, SciTePress / INSTICC, 2015, pp. 135–144. isbn: 978-989-758-
104-5. doi: 10.5220/0005446401350144.

[105] Olga Kieselmann, Nils Kopal, and Arno Wacker. “A Novel Approach to Data
Revocation on the Internet”. In: Data Privacy Management, and Security As-
surance. Ed. by Joaquin Garcia-Alfaro et al. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2016, pp. 134–149. isbn:
978-3-319-29883-2. doi: 10.1007/978-3-319-29883-2_9.

[106] John Klensin and Peter Saint-Andre. RFC 8141: Uniform Resource Names
(URNs). Tech. rep. Apr. 2017. url: https://tools.ietf.org/html/rfc8141.

[107] Hermann Kopetz. “Internet of Things”. In: Real-Time Systems. Real-Time
Systems Series. Springer, Boston, MA, 2011, pp. 307–323. isbn: 978-1-
4419-8236-0. doi: 10.1007/978-1-4419-8237-7_13.

https://doi.org/10.1016/j.techfore.2019.119743
https://www.iso.org/standard/77582.html
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/45/54533.html
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/45/54533.html
https://doi.org/10.4018/978-1-61350-498-7.ch002
https://doi.org/10.4018/978-1-61350-498-7.ch002
https://doi.org/10.1007/s12083-014-0271-5
https://www.w3.org/TR/verifiable-claims-use-cases/
https://www.thethingsindustries.com/docs/reference/interop-repository/
https://www.thethingsindustries.com/docs/reference/interop-repository/
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://w3c.github.io/webauthn/
https://doi.org/10.5220/0005446401350144
https://doi.org/10.1007/978-3-319-29883-2_9
https://tools.ietf.org/html/rfc8141
https://doi.org/10.1007/978-1-4419-8237-7_13


Bibliography 213

[108] Nikita Korzhitskii and Niklas Carlsson. “Revocation Statuses on the Inter-
net”. In: Passive and Active Measurement. Ed. by Oliver Hohlfeld, Andra
Lutu, and Dave Levin. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2021, pp. 175–191. isbn: 978-3-030-72582-2.
doi: 10.1007/978-3-030-72582-2_11.

[109] Robert Krimmer et al. “Exploring and Demonstrating the Once-Only Prin-
ciple: A European Perspective”. In: Proceedings of the 18th Annual Interna-
tional Conference on Digital Government Research. Dg.o ’17. Staten Island,
NY, USA: Association for Computing Machinery, June 2017, pp. 546–551.
isbn: 978-1-4503-5317-5. doi: 10.1145/3085228.3085235.

[110] Taisya Krivoruchko, James Diamond, and Jeff Hooper. “Storing RSA Private
Keys In Your Head”. In: 2006 12th Pacific Rim International Symposium on
Dependable Computing (PRDC’06). Dec. 2006, pp. 129–138. doi: 10.1109/
PRDC.2006.58.

[111] Herbert Kubicek and Torsten Noack. “Different Countries-Different Paths
Extended Comparison of the Introduction of eIDs in Eight European Coun-
tries”. In: Identity in the Information Society 3.1 (July 2010), pp. 235–245.
issn: 1876-0678. doi: 10.1007/s12394-010-0063-x.

[112] Dennis Kügler and Ingo Naumann. “Sicherheitsmechanismen für kontak-
tlose Chips im deutschen Reisepass: Ein Überblick über Sicherheitsmerk-
male, Risiken und Gegenmaßnahmen”. In: Datenschutz und Datensicherheit
- DuD 31.3 (Mar. 2007), pp. 176–180. issn: 1614-0702, 1862-2607. doi:
10.1007/s11623-007-0066-4.

[113] Dennis Lamken et al. “Design Patterns and Framework for Blockchain In-
tegration in Supply Chains”. In: 2021 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). May 2021, pp. 1–3. doi: 10.1109/
ICBC51069.2021.9461062.

[114] Peter Landrock. “X.509”. In: Encyclopedia of Cryptography and Security. Ed.
by Henk C. A. van Tilborg. Boston, MA: Springer US, 2005, pp. 669–669.
isbn: 978-0-387-23483-0. doi: 10.1007/0-387-23483-7_462.

[115] Jason Law and Lovesh Harchandani. “Scaling a BFT Consensus Proto-
col for Identity”. In: ID2020 Rebooting the Web of Trust Design Shop (May
2016). url: https://github.com/WebOfTrustInfo/rwot2-id2020 (visited on
01/20/2021).

[116] Paul J. Leach, Michael Mealling, and Rich Salz. A Universally Unique IDen-
tifier (UUID) URN Namespace. Tech. rep. IETF Network Working Group, July
2005. url: https://tools.ietf.org/html/rfc4122.

[117] Ulrike Lechner, ed. LIONS Monitor : Resilience and Digital Sovereignty in Or-
ganizations. 1st edition. Neubiberg: Universität der Bundeswehr München
/ Universität der Bundeswehr München, Fakultät für Informatik, INF 8 -
Institut für Schutz und Zuverlässigkeit, Professur: Lechner, Ulrike, 2023.
isbn: 978-3-943207-67-5 978-3-943207-68-2.

[118] Huang-Chen Lee and Kai-Hsiang Ke. “Monitoring of Large-Area IoT Sensors
Using a LoRa Wireless Mesh Network System: Design and Evaluation”. In:
IEEE Transactions on Instrumentation and Measurement 67.9 (Sept. 2018),
pp. 2177–2187. issn: 1557-9662. doi: 10.1109/TIM.2018.2814082.

[119] Gabriel M. Lentner and Peter Parycek. “Electronic Identity (eID) and Elec-
tronic Signature (eSig) for eGovernment Services – a Comparative Legal
Study”. In: Transforming Government: People, Process and Policy 10.1 (Jan.
2016), pp. 8–25. issn: 1750-6166. doi: 10.1108/TG-11-2013-0047.

[120] Sin Kuang Lo et al. “Analysis of Blockchain Solutions for IoT: A Systematic
Literature Review”. In: IEEE Access 7 (2019), pp. 58822–58835. issn: 2169-
3536. doi: 10.1109/ACCESS.2019.2914675.

https://doi.org/10.1007/978-3-030-72582-2_11
https://doi.org/10.1145/3085228.3085235
https://doi.org/10.1109/PRDC.2006.58
https://doi.org/10.1109/PRDC.2006.58
https://doi.org/10.1007/s12394-010-0063-x
https://doi.org/10.1007/s11623-007-0066-4
https://doi.org/10.1109/ICBC51069.2021.9461062
https://doi.org/10.1109/ICBC51069.2021.9461062
https://doi.org/10.1007/0-387-23483-7_462
https://github.com/WebOfTrustInfo/rwot2-id2020
https://tools.ietf.org/html/rfc4122
https://doi.org/10.1109/TIM.2018.2814082
https://doi.org/10.1108/TG-11-2013-0047
https://doi.org/10.1109/ACCESS.2019.2914675


214 Bibliography

[121] LoRa Alliance. LoRaWAN® 1.0.4 Specification Package. 2020. url: https:
//lora-alliance.org/resource_hub/lorawan-104-specification-package/
(visited on 07/17/2022).

[122] LoRa Alliance. LoRaWAN® 1.1 Specification. 2017. url: https : / / lora -
alliance.org/sites/default/files/2018-04/lorawantm_specification_-v
1.1.pdf (visited on 10/16/2018).

[123] Manu Sporny, Dave Longley, and David Chadwick. Verifiable Credentials
Data Model 1.0. Mar. 2019. url: https://www.w3.org/TR/verifiable-claims
-data-model/ (visited on 05/08/2019).

[124] Markus Sabadello et al. Introduction to DID Auth. July 2018. url: https:
//github.com/WebOfTrustInfo/rwot6-santabarbara (visited on 05/21/2019).

[125] Larry Masinter, Tim Berners-Lee, and Roy T. Fielding. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986. IETF Network Working Group,
Jan. 2005. url: https://tools.ietf.org/html/rfc3986.

[126] Lucica Matei and José Luis Vázquez-Burguete. Permanent Study Group:
Public and Nonprofit Marketing : Proceedings. Matei Lucica, 2012. isbn: 978-
973-709-612-8.

[127] Friedemann Mattern and Christian Floerkemeier. “From the Internet of
Computers to the Internet of Things”. In: From Active Data Management
to Event-Based Systems and More. Springer, 2010, pp. 242–259.

[128] Roman Matzutt et al. “A Quantitative Analysis of the Impact of Arbitrary
Blockchain Content on Bitcoin”. In: Financial Cryptography and Data Secu-
rity. Ed. by Sarah Meiklejohn and Kazue Sako. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2018, pp. 420–438. isbn: 978-3-662-
58387-6. doi: 10.1007/978-3-662-58387-6_23.

[129] Roman Matzutt et al. “Thwarting Unwanted Blockchain Content Insertion”.
In: 2018 IEEE International Conference on Cloud Engineering (IC2E). Apr.
2018, pp. 364–370. doi: 10.1109/IC2E.2018.00070.

[130] R. J. Mcwaters et al. “A Blueprint for Digital Identity the Role of Financial
Institutions in Building Digital Identity”. In: World Economic Forum, Future
of Financial Services Series. Aug. 2016, pp. 1–108.

[131] millsd. Introducing BrowserID: A Better Way to Sign In. Blog. July 2011. url:
https://web.archive.org/web/20130128201115/http://identity.mozilla
.com/post/7616727542/introducing-browserid-a-better-way-to-sign-in
(visited on 08/04/2022).

[132] Anita Mittal. Catalog of Technical Standards for Digital Identification Sys-
tems. Tech. rep. Washington, D.C.: World Bank Group, Sept. 2018. url:
http://documents.worldbank.org/curated/en/707151536126464867/Catalog
-of-Technical-Standards-for-Digital-Identification-Systems (visited on
07/02/2020).

[133] Mozilla/Persona. Mozilla. July 2022. url: https://github.com/mozilla/
persona (visited on 08/04/2022).

[134] Alexander Mühle et al. “A Survey on Essential Components of a Self-Sover-
eign Identity”. In: Computer Science Review 30 (Nov. 2018), pp. 80–86. issn:
1574-0137. doi: 10.1016/j.cosrev.2018.10.002.

[135] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Oct. 2008.
url: http://www.cryptovest.co.uk/resources/Bitcoin%20paper%20Original
.pdf (visited on 07/19/2016).

https://lora-alliance.org/resource_hub/lorawan-104-specification-package/
https://lora-alliance.org/resource_hub/lorawan-104-specification-package/
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://www.w3.org/TR/verifiable-claims-data-model/
https://www.w3.org/TR/verifiable-claims-data-model/
https://github.com/WebOfTrustInfo/rwot6-santabarbara
https://github.com/WebOfTrustInfo/rwot6-santabarbara
https://tools.ietf.org/html/rfc3986
https://doi.org/10.1007/978-3-662-58387-6_23
https://doi.org/10.1109/IC2E.2018.00070
https://web.archive.org/web/20130128201115/http://identity.mozilla.com/post/7616727542/introducing-browserid-a-better-way-to-sign-in
https://web.archive.org/web/20130128201115/http://identity.mozilla.com/post/7616727542/introducing-browserid-a-better-way-to-sign-in
http://documents.worldbank.org/curated/en/707151536126464867/Catalog-of-Technical-Standards-for-Digital-Identification-Systems
http://documents.worldbank.org/curated/en/707151536126464867/Catalog-of-Technical-Standards-for-Digital-Identification-Systems
https://github.com/mozilla/persona
https://github.com/mozilla/persona
https://doi.org/10.1016/j.cosrev.2018.10.002
http://www.cryptovest.co.uk/resources/Bitcoin%20paper%20Original.pdf
http://www.cryptovest.co.uk/resources/Bitcoin%20paper%20Original.pdf


Bibliography 215

[136] Niels Hackius and Moritz Petersen. “Blockchain in Logistics and Supply
Chain: Trick or Treat?” In: Digitalization in Supply Chain Management and
Logistics: Smart and Digital Solutions for an Industry 4.0 Environment. Pro-
ceedings of the Hamburg International Conference of Logistics (HICL), Vol.
23. Ed. by Thorsten Ringle, Christian M. Kersten, and Wolfgang Blecker.
Berlin: epubli GmbH, 2017, pp. 3–18. isbn: 978-3-7450-4328-0. doi: 10.
15480/882.1444.

[137] Torsten Noack and Herbert Kubicek. “The Introduction of Online Authenti-
cation as Part of the New Electronic National Identity Card in Germany”. In:
Identity in the Information Society 3.1 (July 2010), pp. 87–110. issn: 1876-
0678. doi: 10.1007/s12394-010-0051-1.

[138] Overview of Pre-Notified and Notified eID Schemes under eIDAS. Apr. 2023.
url: https : / / ec . europa . eu / digital - building - blocks / wikis / display /
EIDCOMMUNITY/Overview+of+pre-notified+and+notified+eID+schemes+under
+eIDAS (visited on 06/25/2023).

[139] Eleni Panopoulou et al. “Stakeholder Community for Once-Only Principle”.
In: Public management review 6 (2004), pp. 21–53.

[140] Chang-Seop Park. “On Certificate-Based Security Protocols for Wireless Mo-
bile Communication Systems”. In: IEEE Network 11.5 (Sept. 1997), pp. 50–
55. issn: 1558-156X. doi: 10.1109/65.620522.

[141] Moritz Platt et al. “The Energy Footprint of Blockchain Consensus Mecha-
nisms Beyond Proof-of-Work”. In: 2021 IEEE 21st International Conference
on Software Quality, Reliability and Security Companion (QRS-C). Dec. 2021,
pp. 1135–1144. doi: 10.1109/QRS-C55045.2021.00168.

[142] Daniela Pöhn. “Architektur und Werkzeuge für dynamisches Identitätsman-
agement in Föderationen”. PhD thesis. Ludwig-Maximilians-Universität
München, Nov. 2016. url: https://edoc.ub.uni-muenchen.de/20203/ (visited
on 04/24/2019).

[143] Daniela Pöhn, Michael Grabatin, and Wolfgang Hommel. “eID and Self-
Sovereign Identity Usage: An Overview”. In: Electronics 10.22 (Nov. 2021),
p. 2811. issn: 2079-9292. doi: 10.3390/electronics10222811.

[144] Daniela Pöhn, Michael Grabatin, and Wolfgang Hommel. “Modeling the
Threats to Self-Sovereign Identities”. In: Open Identity Summit 2023. Ed. by
Heiko Roßnagel, Christian H. Schunck, and Jochen Günther. Bonn, Ger-
many: Gesellschaft für Informatik e.V., 2023, pp. 85–96. doi: 10.18420/
OID2023_07.

[145] Daniela Pöhn and Wolfgang Hommel. “Management Architecture for Dy-
namic Federated Identity Management”. In: Computer Science & Informa-
tion Technology ( CS & IT ). Academy & Industry Research Collaboration
Center (AIRCC), May 2016, pp. 211–226. isbn: 978-1-921987-51-9. doi:
10.5121/csit.2016.60617.

[146] Daniela Pöhn and Wolfgang Hommel. “Proven and Modern Approaches to
Identity Management”. In: Advances in Cybersecurity Management. Ed. by
Kevin Daimi and Cathryn Peoples. Cham: Springer International Publish-
ing, 2021, pp. 421–443. isbn: 978-3-030-71381-2. doi: 10.1007/978-3-030-
71381-2_19.

[147] Daniela Pöhn and Wolfgang Hommel. “Universal Identity and Access Man-
agement Framework for Future Ecosystems”. In: Journal of Wireless Mobile
Networks, Ubiquitous Computing, and Dependable Applications 12.1 (Mar.
2021), pp. 64–84. doi: 10.22667/JOWUA.2021.03.31.064.

https://doi.org/10.15480/882.1444
https://doi.org/10.15480/882.1444
https://doi.org/10.1007/s12394-010-0051-1
https://ec.europa.eu/digital-building-blocks/wikis/display/EIDCOMMUNITY/Overview+of+pre-notified+and+notified+eID+schemes+under+eIDAS
https://ec.europa.eu/digital-building-blocks/wikis/display/EIDCOMMUNITY/Overview+of+pre-notified+and+notified+eID+schemes+under+eIDAS
https://ec.europa.eu/digital-building-blocks/wikis/display/EIDCOMMUNITY/Overview+of+pre-notified+and+notified+eID+schemes+under+eIDAS
https://doi.org/10.1109/65.620522
https://doi.org/10.1109/QRS-C55045.2021.00168
https://edoc.ub.uni-muenchen.de/20203/
https://doi.org/10.3390/electronics10222811
https://doi.org/10.18420/OID2023_07
https://doi.org/10.18420/OID2023_07
https://doi.org/10.5121/csit.2016.60617
https://doi.org/10.1007/978-3-030-71381-2_19
https://doi.org/10.1007/978-3-030-71381-2_19
https://doi.org/10.22667/JOWUA.2021.03.31.064


216 Bibliography

[148] Daniela Pöhn, Stefan Metzger, and Wolfgang Hommel. “Géant-TrustBroker:
Dynamic, Scalable Management of SAML-Based Inter-federation Authen-
tication and Authorization Infrastructures”. In: ICT Systems Security and
Privacy Protection. Ed. by Nora Cuppens-Boulahia et al. IFIP Advances in
Information and Communication Technology. Berlin, Heidelberg: Springer,
2014, pp. 307–320. isbn: 978-3-642-55415-5. doi: 10.1007/978-3-642-
55415-5_25.

[149] Andreas Poller et al. Electronic Identity Cards for User Authentica-
tion—Promise and Practice. Text. Jan. 2012. doi: 10.1109/MSP.2011.148.

[150] Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL Amending Regulation (EU) No 910/2014 as Regards Establishing
a Framework for a European Digital Identity. 2021. url: https://eur-lex
.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0281 (visited on
01/09/2022).

[151] Benedikt Putz and Günther Pernul. “Detecting Blockchain Security
Threats”. In: 2020 IEEE International Conference on Blockchain (Blockchain).
Nov. 2020, pp. 313–320. doi: 10.1109/Blockchain50366.2020.00046.

[152] Qahhar Muhammad Qadir et al. “Low Power Wide Area Networks: A Survey
of Enabling Technologies, Applications and Interoperability Needs”. In: IEEE
Access 6 (2018), pp. 77454–77473. issn: 2169-3536. doi: 10.1109/ACCESS.
2018.2883151.

[153] Maninder Singh Raniyal et al. “Passphrase Protected Device-to-Device Mu-
tual Authentication Schemes for Smart Homes”. In: SECURITY AND PRI-
VACY 1.3 (2018), e42. issn: 2475-6725. doi: 10.1002/spy2.42.

[154] Mohammadreza Rasolroveicy and Marios Fokaefs. “Performance Evaluation
of Distributed Ledger Technologies for IoT Data Registry : A Comparative
Study”. In: 2020 Fourth World Conference on Smart Trends in Systems, Se-
curity and Sustainability (WorldS4). July 2020, pp. 137–144. doi: 10.1109/
WorldS450073.2020.9210358.

[155] Drummond Reed, Jason Law, and Daniel Hardman. “The Technical Foun-
dations of Sovrin”. In: (Sept. 2016), p. 26.

[156] REFEDS. “A Security Incident Response Trust Framework for Federated
Identity (Sirtfi) Version 2”. In: (28 J ULY 2022). url: https://refeds.org/wp
-content/uploads/2022/08/Sirtfi-v2.pdf (visited on 07/05/2023).

[157] Regulation (EU) No 910/2014 of the European Parliament and of the Council
of 23 July 2014 on Electronic Identification and Trust Services for Electronic
Transactions in the Internal Market and Repealing Directive 1999/93/EC.
Aug. 2014. url: http://data.europa.eu/eli/reg/2014/910/oj/eng (visited
on 12/11/2019).

[158] Victor Ribeiro et al. “A Fault-Tolerant and Secure Architecture for Key Man-
agement in LoRaWAN Based on Permissioned Blockchain”. In: IEEE Access
10 (2022), pp. 58722–58735. issn: 2169-3536. doi: 10.1109/ACCESS.2022.
3179004.

[159] Markus Sabadello and Dmitri Zagidulin. Decentralized Identifier Resolu-
tion (DID Resolution) v0.2. Ed. by Markus Sabadello and Dmitri Zagidulin.
Feb. 2022. url: https://w3c-ccg.github.io/did-resolution/ (visited on
03/12/2022).

[160] Natsuhiko Sakimura et al. “Openid Connect Core 1.0”. In: The OpenID Foun-
dation (2014), S3. url: https://openid.net/specs/openid-connect-core-
1_0-final.html (visited on 06/25/2023).

https://doi.org/10.1007/978-3-642-55415-5_25
https://doi.org/10.1007/978-3-642-55415-5_25
https://doi.org/10.1109/MSP.2011.148
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0281
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0281
https://doi.org/10.1109/Blockchain50366.2020.00046
https://doi.org/10.1109/ACCESS.2018.2883151
https://doi.org/10.1109/ACCESS.2018.2883151
https://doi.org/10.1002/spy2.42
https://doi.org/10.1109/WorldS450073.2020.9210358
https://doi.org/10.1109/WorldS450073.2020.9210358
https://refeds.org/wp-content/uploads/2022/08/Sirtfi-v2.pdf
https://refeds.org/wp-content/uploads/2022/08/Sirtfi-v2.pdf
http://data.europa.eu/eli/reg/2014/910/oj/eng
https://doi.org/10.1109/ACCESS.2022.3179004
https://doi.org/10.1109/ACCESS.2022.3179004
https://w3c-ccg.github.io/did-resolution/
https://openid.net/specs/openid-connect-core-1_0-final.html
https://openid.net/specs/openid-connect-core-1_0-final.html


Bibliography 217

[161] Salah Machani et al., eds. FIDO UAF Architectural Overview. Oct. 2020. url:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf
-overview-v1.2-ps-20201020.html (visited on 08/04/2022).

[162] Sampath Srinivas et al., eds. Universal 2nd Factor (U2F) Overview. Apr.
2017. url: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/
fido-u2f-overview-v1.2-ps-20170411.html (visited on 08/04/2022).

[163] S. Santesson et al. X.509 Internet Public Key Infrastructure Online Certifi-
cate Status Protocol - OCSP. Tech. rep. RFC6960. RFC Editor, June 2013,
RFC6960. doi: 10.17487/rfc6960.

[164] Mahadev Satyanarayanan. “The Emergence of Edge Computing”. In: Com-
puter 50.1 (Jan. 2017), pp. 30–39. issn: 1558-0814. doi: 10.1109/MC.2017.9.

[165] Mahadev Satyanarayanan et al. “The Case for VM-Based Cloudlets in Mobile
Computing”. In: IEEE Pervasive Computing 8.4 (Oct. 2009), pp. 14–23. issn:
1558-2590. doi: 10.1109/MPRV.2009.82.

[166] Rüdiger Schollmeier, Ingo Gruber, and Michael Finkenzeller. “Routing in
Mobile Ad-hoc and Peer-to-Peer Networks A Comparison”. In: Web Engineer-
ing and Peer-to-Peer Computing. Ed. by Enrico Gregori et al. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2002, pp. 172–187. isbn:
978-3-540-45745-9. doi: 10.1007/3-540-45745-3_16.

[167] Abubakar-Sadiq Shehu, Antonio Pinto, and Manuel E. Correia. A Decen-
tralised Real Estate Transfer Verification Based on Self-Sovereign Identity
and Smart Contracts. July 2022. doi: 10.48550/arXiv.2207.04459. arXiv:
2207.04459 [cs].

[168] Clay Shirky. “What Is P2p... and What Isn’t”. In: The O’Reilly P2P Conference.
2000.

[169] Mahesh Shirole, Maneesh Darisi, and Sunil Bhirud. “Cryptocurrency
Token: An Overview”. In: IC-BCT 2019. Ed. by Dhiren Patel et al.
Blockchain Technologies. Singapore: Springer, 2020, pp. 133–140. isbn:
9789811545429. doi: 10.1007/978-981-15-4542-9_12.

[170] Soraya Sinche et al. “A Survey of IoT Management Protocols and Frame-
works”. In: IEEE Communications Surveys & Tutorials 22.2 (2020), pp. 1168–
1190. issn: 1553-877X. doi: 10.1109/COMST.2019.2943087.

[171] Karen R. Sollins. “IoT Big Data Security and Privacy Versus Innovation”.
In: IEEE Internet of Things Journal 6.2 (Apr. 2019), pp. 1628–1635. issn:
2327-4662. doi: 10.1109/JIOT.2019.2898113.

[172] Gabor Soos et al. “IoT Device Lifecycle – A Generic Model and a Use Case
for Cellular Mobile Networks”. In: Aug. 2018, pp. 176–183. doi: 10.1109/Fi
Cloud.2018.00033.

[173] Statista. Statistics Report about Password Security. 2023. url: https://www
.statista.com/study/109492/password-security/ (visited on 06/24/2023).

[174] Unal Tatar, Yasir Gokce, and Brian Nussbaum. “Law versus Technology:
Blockchain, GDPR, and Tough Tradeoffs”. In: Computer Law & Security Re-
view 38 (Sept. 2020), p. 105454. issn: 0267-3649. doi: 10.1016/j.clsr
.2020.105454.

[175] Technical Commitee: ISO/IEC JTC 1/SC 17. ISO/IEC 14443-4:2018. June
2018. url: https : / / www . iso . org / cms / render / live / en / sites / isoorg /
contents/data/standard/07/35/73599.html (visited on 07/17/2020).

[176] Technical Committee ISO/IEC JTC 1. ISO/IEC 29115:2013. Apr. 2013. url:
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data
/standard/04/51/45138.html.

https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-overview-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-overview-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://doi.org/10.17487/rfc6960
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1007/3-540-45745-3_16
https://doi.org/10.48550/arXiv.2207.04459
https://arxiv.org/abs/2207.04459
https://doi.org/10.1007/978-981-15-4542-9_12
https://doi.org/10.1109/COMST.2019.2943087
https://doi.org/10.1109/JIOT.2019.2898113
https://doi.org/10.1109/FiCloud.2018.00033
https://doi.org/10.1109/FiCloud.2018.00033
https://www.statista.com/study/109492/password-security/
https://www.statista.com/study/109492/password-security/
https://doi.org/10.1016/j.clsr.2020.105454
https://doi.org/10.1016/j.clsr.2020.105454
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/35/73599.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/35/73599.html
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/51/45138.html
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/51/45138.html


218 Bibliography

[177] Technical Committee: ISO/IEC JTC 1/SC 17. ISO/IEC 7501-1:2008. Sept.
2008. url: https : / / www . iso . org / cms / render / live / en / sites / isoorg /
contents/data/standard/04/55/45562.html (visited on 07/17/2020).

[178] Technical Committee: ISO/IEC JTC 1/SC 37 Biometrics. ISO/IEC 19784-
1:2018 Information Technology – Biometric Application Programming Interface
– Part 1: BioAPI Specification. Apr. 2018. url: https://www.iso.org/cms
/render/live/en/sites/isoorg/contents/data/standard/07/08/70866.html
(visited on 07/23/2020).

[179] National Institute of Standards and Technology. Digital Signature Standard
(DSS). Tech. rep. Federal Information Processing Standard (FIPS) 186-4.
U.S. Department of Commerce, July 2013. doi: 10.6028/NIST.FIPS.186-4.

[180] National Institute of Standards and Technology. Security Requirements for
Cryptographic Modules. Tech. rep. Federal Information Processing Standard
(FIPS) 140-3. U.S. Department of Commerce, Mar. 2019. doi: 10.6028/NIST.
FIPS.140-3.

[181] Andrew Tobin. Sovrin: What Goes on the Ledger? Sept. 2018. url: https
://www.evernym.com/wp-content/uploads/2017/07/What-Goes-On-The-Ledger
.pdf (visited on 06/18/2020).

[182] Andrew Tobin, Drummond Reed, and Phillip J Windley. The Inevitable Rise
of Self-Sovereign Identity. Sept. 2016. url: https://www.evernym.com/wp
- content / uploads / 2017 / 07 / The - Inevitable - Rise - of - Self - Sovereign -
Identity.pdf (visited on 01/19/2021).

[183] TradeLens. TradeLens Blockchain-Enabled Digital Shipping Platform Con-
tinues Expansion with Addition of Major Ocean Carriers Hapag-Lloyd and
Ocean Network Express. July 2019. url: https : / / www . maersk . com / news
/ articles / 2019 / 07 / 02 / hapag - lloyd - and - ocean - network - express - join
-tradelens (visited on 03/13/2022).

[184] Transforma Insights. Number of Internet of Things (IoT) Connected Devices
Worldwide from 2019 to 2021, with Forecasts from 2022 to 2030 (in Billions)
[Graph]. July 2022. url: https://www.statista.com/statistics/1183457/iot
-connected-devices-worldwide/ (visited on 06/24/2023).

[185] Michal Trnka and Tomas Cerny. “Identity Management of Devices in Internet
of Things Environment”. In: 2016 6th International Conference on IT Conver-
gence and Security (ICITCS). Sept. 2016, pp. 1–4. doi: 10.1109/ICITCS.2016.
7740343.

[186] Twitter, Inc. Overview. 2020. url: https://developer.twitter.com/en/docs
/basics/authentication/overview (visited on 07/27/2020).

[187] Dejan Vujičić, Dijana Jagodić, and Siniša Ranđić. “Blockchain Technology,
Bitcoin, and Ethereum: A Brief Overview”. In: 2018 17th International Sym-
posium INFOTEH-JAHORINA (INFOTEH). Mar. 2018, pp. 1–6. doi: 10.1109/
INFOTEH.2018.8345547.

[188] Arno Wacker et al. “A Fault-Tolerant Key-Distribution Scheme for Securing
Wireless Ad Hoc Networks”. In: Pervasive Computing: Second International
Conference, PERVASIVE 2004, Linz/Vienna, Austria, April 21-23, 2004. Pro-
ceedings 2. Springer, 2004, pp. 194–212.

[189] Arno Rüdiger Wacker. “Key Distribution Schemes for Resource-Constrained
Devices in Wireless Sensor Networks”. PhD thesis. 2007.

[190] Yvonne Wilson and Abhishek Hingnikar. Solving Identity Management in
Modern Applications: Demystifying OAuth 2, OpenID Connect, and SAML 2.
Berkeley, CA: Apress, 2023. isbn: 978-1-4842-8260-1 978-1-4842-8261-8.
doi: 10.1007/978-1-4842-8261-8.

https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/55/45562.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/55/45562.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/08/70866.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/08/70866.html
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.FIPS.140-3
https://www.evernym.com/wp-content/uploads/2017/07/What-Goes-On-The-Ledger.pdf
https://www.evernym.com/wp-content/uploads/2017/07/What-Goes-On-The-Ledger.pdf
https://www.evernym.com/wp-content/uploads/2017/07/What-Goes-On-The-Ledger.pdf
https://www.evernym.com/wp-content/uploads/2017/07/The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf
https://www.evernym.com/wp-content/uploads/2017/07/The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf
https://www.evernym.com/wp-content/uploads/2017/07/The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf
https://www.maersk.com/news/articles/2019/07/02/hapag-lloyd-and-ocean-network-express-join-tradelens
https://www.maersk.com/news/articles/2019/07/02/hapag-lloyd-and-ocean-network-express-join-tradelens
https://www.maersk.com/news/articles/2019/07/02/hapag-lloyd-and-ocean-network-express-join-tradelens
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://doi.org/10.1109/ICITCS.2016.7740343
https://doi.org/10.1109/ICITCS.2016.7740343
https://developer.twitter.com/en/docs/basics/authentication/overview
https://developer.twitter.com/en/docs/basics/authentication/overview
https://doi.org/10.1109/INFOTEH.2018.8345547
https://doi.org/10.1109/INFOTEH.2018.8345547
https://doi.org/10.1007/978-1-4842-8261-8


Bibliography 219

[191] Ibrar Yaqoob et al. “Mobile Ad Hoc Cloud: A Survey”. In: Wireless Commu-
nications and Mobile Computing 16.16 (2016), pp. 2572–2589. issn: 1530-
8677. doi: 10.1002/wcm.2709.

[192] Hakan Yildiz et al. “Connecting Self-Sovereign Identity with Federated and
User-centric Identities via SAML Integration”. In: 2021 IEEE Symposium on
Computers and Communications (ISCC). Sept. 2021, pp. 1–7. doi: 10.1109/
ISCC53001.2021.9631453.

[193] Thomas Zefferer and Peter Teufl. “Leveraging the Adoption of Mobile eID
and E-Signature Solutions in Europe”. In: Electronic Government and the
Information Systems Perspective. Ed. by Andrea Kő and Enrico Francesconi.
Lecture Notes in Computer Science. Cham: Springer International Publish-
ing, 2015, pp. 86–100. isbn: 978-3-319-22389-6. doi: 10.1007/978-3-319-
22389-6_7.

[194] Fan Zhang et al. “DECO: Liberating Web Data Using Decentralized Oracles
for TLS”. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’20. New York, NY, USA: Association for
Computing Machinery, Nov. 2020, pp. 1919–1938. isbn: 978-1-4503-7089-
9. doi: 10.1145/3372297.3417239.

[195] Ming Zhao et al. “A Comprehensive Study of RPL and P2P-RPL Routing
Protocols: Implementation, Challenges and Opportunities”. In: Peer-to-Peer
Networking and Applications 10.5 (Sept. 2017), pp. 1232–1256. issn: 1936-
6450. doi: 10.1007/s12083-016-0475-y. (Visited on 07/20/2023).

[196] Gary Zimmerman and Drummond Reed. Becoming a Sovrin Steward. 2016.
url: https://www.evernym.com/wp-content/uploads/2017/07/Becoming-a
-Sovrin-Steward.pdf (visited on 01/19/2021).

https://doi.org/10.1002/wcm.2709
https://doi.org/10.1109/ISCC53001.2021.9631453
https://doi.org/10.1109/ISCC53001.2021.9631453
https://doi.org/10.1007/978-3-319-22389-6_7
https://doi.org/10.1007/978-3-319-22389-6_7
https://doi.org/10.1145/3372297.3417239
https://doi.org/10.1007/s12083-016-0475-y
https://www.evernym.com/wp-content/uploads/2017/07/Becoming-a-Sovrin-Steward.pdf
https://www.evernym.com/wp-content/uploads/2017/07/Becoming-a-Sovrin-Steward.pdf

	Introduction
	Motivation and Objective
	Research Questions
	Structure
	Focus of Publications

	Scenarios and Requirements
	Identity and Access Management Models
	Centralized Identity Management
	Federated Identity Management
	Self-Sovereign Identity Management

	Identity and Access Management Basics
	Federated Identity Management Basics
	Self-sovereign Identity Basics
	Scenarios
	Scenario 1: Web Applications
	Scenario 2a: IoT Devices
	Scenario 2b: IoT Sensors
	Scenario 2c: IoT Networks
	Scenario 3: Cloud & Edge Computing
	Scenario 4: Electronic Identity (eID)

	Requirement Summary

	State-of-the-Art
	Centralized Web
	Fast Identity Online
	Public Key Infrastructure
	Mozilla Persona

	Federated Identity Management
	Security Assertion Markup Language
	OpenID Connect and OAuth 2.0
	Research

	Self-sovereign Identity
	Standards
	Hyperledger Indy
	Research

	Internet of Things
	Low Power Wide Area Networks
	Research

	Electronic Identification (eID)
	Standards
	eID Implementations

	Summary
	Satisfaction
	Information
	Consistency
	Security
	Data Protection
	Robustness
	Combined Evaluation


	Concept for a Comprehensive SSI and IAM Integration
	Scope
	High-Level View of the Architecture
	SSI Components
	Distributed Ledger
	Wallet
	Agents
	Relying Party
	Issuers
	Credential Localization Service
	Trust Gateways
	Community
	Component Dependencies

	Reference Architecture
	Integration
	Starting a New SSI System from Scratch
	Migrating IAM Systems to SSI
	Integrating SSI in the Scenarios

	Assessment
	Essential Requirements
	Important Requirements
	Optional Requirements


	Prototype Implementation and Application
	Selection of Components to Implement
	Selection of Scenarios to Apply the Implementation to
	Web Applications
	Technical Components
	Organizational Processes
	Summary

	IoT Sensors
	Technical Components
	Organizational Processes
	Summary

	Electronic Identification (eID)
	Technical Components
	Organizational Processes
	Summary


	Evaluation
	Prototype Implementations
	Web Applications
	IoT
	eID

	Combination of the Implemented Prototypes
	Challenges
	Use of the Credential Localization Service
	Use of the Trust Gateway
	Evaluation

	Summary

	Conclusion
	Recapitulation
	Revisiting the Research Questions
	Outlook on Future Work


