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Abstract
The aim of this study is the expansion of the application of particle image velocimetry (PIV) to
include the determination of particle concentration within the visualized area, in addition to
velocity analysis. The assessment of particle concentration is valuable in various lab-scale
experiments involving particle dispersion. Additionally, it plays a crucial role in evaluating the
quality of PIV images. The research investigates two particle image-based concentration
techniques: the exponential averaging-based sliding method and the Voronoi cell-based method
on the particle images. The exponential averaging method provides a straightforward approach,
utilizing a constant length scale for sliding average application to particle images. However, this
method may result in broadened interfaces or a ‘marker-shot’ effect at low concentrations,
making it less suitable for scenarios involving highly non-uniform particle distributions, such as
concentrated jet emissions into ambient environments. Consequently, detecting interfaces in
such cases requires additional effort for reliable results. In contrast, the Voronoi cell-based
technique offers the advantage of spatially adaptive resolution, making it well-suited for
variable concentration distributions and situations where interface detection is crucial. To
comprehensively evaluate the performance of these techniques, a synthetic test case was
generated to simulate a diffusion problem featuring an initial step in concentration distribution.
Both the exponential averaging and Voronoi cell-based methods were applied and compared
using this synthetic test case. Additionally, the effect of particle–particle overlap is analyzed
theoretically and experimentally with uniform concentration and comparison with particle
counter measurements. A modified Voronoi method is introduced, providing flexibility in
capturing a wide range of concentration regions and features. An example experimental scenario
involving a turbulent puff was considered demonstrating the application of the developed
methods. The results demonstrate that the Voronoi method effectively captures small structures
with high concentrations while providing reliable results in regions with low concentrations.

Supplementary material for this article is available online

Keywords: particle concentration, particle image velocimetry, diffusion, Voronoi cells,
exponential moving average

∗
Author to whom any correspondence should be addressed.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI. 1 © 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1361-6501/ad3410
https://orcid.org/0000-0003-4105-2037
mailto:abhilash.sankaran@unibw.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6501/ad3410&domain=pdf&date_stamp=2024-3-21
http://doi.org/10.1088/1361-6501/ad3410
https://creativecommons.org/licenses/by/4.0/


Meas. Sci. Technol. 35 (2024) 065206 A Sankaran et al

1. Introduction

In many fluid mechanical systems, the concentrations of the
species are time and/or space dependent. Dispersed phase ana-
lysis is important in the context of solid/liquid particles in
liquid/gaseous flows for analyzing the flow fields as well as
heat and mass exchange rates in a variety of systems (Nishino
et al 2000). Concentration field measurements are useful to
understand the spatial distribution of the particle concentra-
tion in various scenarios including detection of boundaries of
the species or mixing effectiveness, to name a few (Gnirß and
Tropea 2008). Typical methods involve a point measurement
sensor system like particle counter. Point measurement tech-
niques, however, encounter difficulties when there is need for
instantaneous spatial information on physical properties such
as velocity and concentration. Additionally, most point meas-
urement systems like particle counters sample part of the air
to count the particles. Therefore, it is intrusive to the system
being measured and can only provide an average in longer dur-
ation of the test.

For many scenarios involving aerosol dispersion analysis
like air pollution (Saïd et al 2005, Zhang et al 2020, Newland
andWoods 2023), bio-aerosol transmission studies (Shah et al
2021, Kähler et al 2023), indoor air quality (Tang et al 2020,
Kähler et al 2023), a thorough understanding of flow features,
direction, and fluctuations in species concentration is imper-
ative to assess air quality. Mean point-wise properties would
not be sufficient; instead, comprehending the spatial and tem-
poral variations in concentration becomes essential. Moreover,
it is crucial to determine if the sampled air is representative of
the sensed region (Vincent 2007). Achieving this requires a
quantitative understanding of aerosol dispersion characterist-
ics in flows, enabling a better grasp of the chances of success-
ful aerosol sampling. Remote sensing of aerosols also neces-
sitates this knowledge to optimize detection capabilities. By
gaining insight into the dispersion behavior of aerosols, one
can effectively maximize their ability to sample aerosols and
gather valuable data for further analysis and decision-making.

Particle image velocimetry (PIV) and particle tracking
velocimetry (PTV) are instantaneous whole-field fluid velo-
city measurement techniques based on imaging of particle
tracers. These methods make it possible to detect spatial flow
structures and provide information of the spatial differential
quantities of turbulence. In this work, the goal is to determ-
ine particle concentration within the field of view in addi-
tion to the velocity information. This leverages data from pre-
existing flow tracers, as opposed to employing tracer gases.
Furthermore, in addition to concentration measurements as
detailed, the particle concentration within the visualization
window is also important for assessing the quality of the PIV
images and the resultant velocity field.

An image-based method proposed previously is based on
intensity of the scattered laser light from particles (Gnirß and
Tropea 2008). However, the method involves many correc-
tions to obtain physical concentrations of which uneven illu-
mination and stray reflections pose difficulty to correct reli-
ably. Another approach utilizing image intensity information

is the autocorrelation of the image acquired (Nguyen et al
2012, Warner and Smith 2014). The peak of the autocorrel-
ation is related to the intensity within the interrogation win-
dow and can be utilized to derive particle concentration within
the window. While these methods are simple to apply, they
still depend on reliable background subtraction and appropri-
ate interrogation window selection.

In the present work, methods based on individual particle
images are discussed. One of the methods is the exponen-
tial sliding average method for concentration determination.
It needs to be emphasized that the length scale is fixed once
chosen and cannot be varied within the image even if the
concentration of the particle images is drastically different.
Another method introduced here is based on Voronoi cells,
which in principle is an adaptive grid procedure to calculate
the local particle concentration. Suchmethod has been demon-
strated for application in the cosmological application (Schaap
and Van De Weygaert 2000). However, for fluid mechan-
ical measurements only few such considerations are available.
Monchaux et al (2010) analyzed clustering of particles in tur-
bulent flows utilizing Voronoi cells.Weber et al (2023) applied
Voronoi cells for evaluation of bubbly flows. One method for
interface determination in multiphase flows is presented by
Li et al (2021) where a complementary to Voronoi cells—
the Delaunay meshing technique—is applied. Some meth-
ods discussed above (Schaap and Van De Weygaert 2000,
Li et al 2021) focus in getting the sharp features present
in the respective applications: cosmological and multiphase
flows. However, when one is interested in a particle concen-
tration field encompassing vastly different scales, it is not
straightforward to apply the above methods. This consider-
ation, which has not been explored previously, holds signi-
ficance for practical inquiries related to particle cloud disper-
sion or emitted particle plumes. In this work, methods based
on PIV particle images for particle concentration determina-
tion for fluid mechanical applications are presented and ana-
lyzed in detail. Particular focus has been applied to Voronoi
cell method, which could be applied for variety of real scen-
arios involving drastically different concentrations like pollu-
tion studies, indoor air quality to name a few.

2. Particle concentration measurement

This study primarily focuses on the particle image based con-
centration measurement based on two techniques: (a) sliding
average method; (b) Voronoi cell based method.

2.1. Sliding average method

The sliding average method is a technique that averages the
dataset by considering a moving window of data points. Here,
an exponential moving average type filter, which applies a
local filter to compute the average particle per pixel as below
is utilized (Lukin 2007),

Υavg (i) =

(
1− 1

l

)
Υavg (i − 1)+

(
1
l

)
Υ(i) (1)
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Figure 1. The contour of the variation of the local CI value with one particle at (0, 0) for different length scales for the sliding average: (a)
l = 4 pixels; (b) l = 8 pixels; (c) l = 16 pixels. The axis dimensions are in pixels.

Figure 2. (a) The Voronoi cells around uniformly spaced particles with concentrations C1 = 10−4 ppp and C2 = 0.01 ppp to the left and
right of origin, respectively. (b) Voronoi cells around practically uniform distribution with Brownian diffusion with the same concentrations
C1 = 10−4 ppp and C2 = 0.01 ppp to the left and right of origin, respectively.

Υ(i) is the intensity at a certain pixel i andΥavg is the com-
puted intensity value at pixel i and i − 1, accordingly. l is the
length scale in pixel chosen for the average computation. The
samemethod is applied in all four directions one after the other
to compute the sliding average value of the intensity values
(Lukin 2007). For simplicity, the technique is referred to as
sliding average method from this point forward.

Figure 1 illustrates the results obtained from the sliding
average method with a single particle located at position (0, 0).
Prior to applying the sliding average, the value at this location
is 1, indicating one particle at the center pixel (1 particle per
pixel, 1 ppp). It is assumed here that the particle images are
available as binary representations (ones and zeros) to focus
on the technique. Further details on how these binary images
might be obtained from PIV images are detailed later in the
experimental section. The method effectively redistributes the
particle into all four directions after passes in all directions as
given by equation (1). For example at length scale l = 4 px,
the peak value is CI ∼ 0.02 ppp at the center and progressively
decreases to 0 as the distance from the defined length scale
increases. Notably, the peak value diminishes with an increase
in the averaging length scale, while the influence of the particle
extends further as the length scale grows. This still maintains
the sum of the values in the domain to be 1.

Figure 1 reveals the importance of choosing an appropriate
length scale for the calculation of the sliding average method.
On the one hand, there must be enough particles within the

chosen length scale to reveal the average particles in the win-
dow. On the other hand, the difference in the value must sig-
nify the change in concentration rather than the effect of a
single particle.

2.2. Voronoi cell based method

The Voronoi cell surrounding a point (or particle) defines a
polygonal region encompassing the points closest to it and
forming a closed network with neighboring cells without any
overlaps or gaps (Okabe et al 2000, Schaap and Van De
Weygaert 2000). An illustrative example of Voronoi cells
with uniformly spaced particles with different spacing (con-
centration) in either side of origin is shown in figure 2(a).
Figure 2(b) depicts the Voronoi cells for the case with macro-
scopically same concentration; however, the particles are ran-
domly distributed as expected in practical case with Brownian
motion.

The inverse of the cell area technically represents the num-
ber of particles per unit area, which can be interpreted as
particle density or concentration. This can be visualized as
true for the perfect case as shown in figure 2(a) which is sim-
ilar to calculation of the unit cell as done in material sci-
ence (Callister and Rethwisch 2018). However, in the con-
text of fluid mechanics, the distribution of particles is less
ordered as shown in figure 2(b) with Brownian diffusion.
Hence, the above measure has to be rewritten to necessarily
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reflect concentration in the traditional continuum sense and not
focus on individual particles.

To address this, one can approximate the continuum by
either considering a sufficiently large number of particles or
selecting an appropriate examination window size. Here, we
consider K number of nearest neighbor cells to calculate the
average area of the K cells and the inverse of this average area
is the local concentration centered at the particle considered.

In addition, one is also interested in approximating the local
concentration when there are few particles in the domain. This
is particularly important when one needs to distinguish the low
concentration and high concentration regions either in time
or space and not averaging the entire set for sufficiently high
number of particles.

An alternate approach to Voronoi method is to utilize
the Delaunay triangles for the calculation of the concentra-
tion. However, it was found that the size distribution of the
Delaunay triangles for practically uniform cases varied sig-
nificantly, resulting in a broad distribution compared to the
Voronoi cell sizes. This results in the need of a larger num-
ber of triangles for convergence to macroscopic concentra-
tion. The distribution obtained is presented in supplementary
information. In this work, only the Voronoi method is explored
further.

3. Results and discussion with synthetic generated
images

3.1. Test case

For comparison of the different methods, a synthetic case of
a diffusion problem is considered. A domain extending from
−10 000 px < x < +10 000 px and 0 < y < 1000 px is con-
sidered. An example multiplication factor considered here is
L = 1 mm = 10 px representative of realistic scenarios. The
domain is closed by walls in x-direction. At x = 0, there is a
removable wall, which is removed at t= 0 s. A periodic bound-
ary condition is considered along the y-axis. Before removing
the wall, uniformly placed particles with C1 = 10−4 ppp and
C2 = 0.01 ppp are considered at left (x < 0) and right (x > 0)
of origin, respectively (figure 2(a)). Such concentrations are
representative concentrations of cases when one can neglect
particle–particle overlap, the effect of which is discussed later.
Considering a concentration scale C0 = C2 = 0.01 ppp, the
initial concentrations can be rewritten as C1/C0 = 0.01 and
C2/C0 = 1. The diffusion process is modeled with applying
diffusion jumps to each particle in the domain.

The diffusion jump ∆r of a particle in a time step ∆t is
given by (Daune 1999, Sankaran et al 2020):

∆r= 2

√
D∆t log

(
1
R

)
(2)

where R is a random number between 0 and 1 defining the
probability of the diffusion jump of length ∆r. This jump ∆r
occurs in random direction θ with 0⩽ θ ⩽ 2π . A diffusion
coefficient of D = 10−5 m2 s−1 is assumed here and a time

step of 1 s is considered (where the physical scale 1 mm = 10
px is considered as before).

The diffusion process is run for extended time before time
t= 0 s resulting in a practically uniform concentration on both
sides of the origin, as depicted in figure 2(b). At t = 0 s, the
wall separating the two concentration side is removed.

For time scales t ≪ L0-w2/D (where L0-w = 1000 mm =
10 000 px is the distance from center to the side walls), the
concentration distribution for t > 0 (i.e. after the wall separ-
ating region is removed), can be compared to the analytical
one-dimensional solution with an initial step in concentration.
The analytical solution for the diffusion equation starting at
t = 0 s is given by (Balluffi et al 2005)

C= (C2 −C1)

(
1
2
+

1
2
erf

(
x√
4Dt

))
+C1. (3)

One can test the capturing of the initial step in concentra-
tion with the methods detailed above. This gives the inform-
ation on the characteristics of the interface determination by
the method employed. The practical initial step distribution
before the interaction between the two different concentration
obtained at t = 0 s is shown in figure 2(b) (which also depicts
theVoronoi cells constructed around the points). Importantly, a
reflective boundary condition is applied for all the sides and the
corners for Voronoi cell construction, resulting in eight repe-
titions of the window of interest. This ensures that the cells
within the region of interest have appropriate sizes, as the end
points lead to open Voronoi cells.

The results for the instance t = 0 s for the distribution
shown in figure 2(b) following the sliding average method and
Voronoi method are presented in figures 3 and 4, respectively.
In the case of the sliding average method with length scale
l= 20 px, one can observe that the higher concentration is cap-
tured in detail with the local fluctuations and also identifies the
step change in concentration. However, at low concentration,
one can see a marker-shot like noise with values falling near
zero and peaking intermittently. This phenomenon arises from
the insufficient presence of particles within the imposed length
scale. Therefore, although the selected length scale is effect-
ive in capturing the step change and high concentrations, it is
not that suitable at low concentrations. At larger length scale
of sliding average of l = 80 px, the noise at lower concentra-
tion is present but considerably reduced. Further, the jump is
broadened towards both the higher and lower concentrations.

In case of the Voronoi method, the effect of different num-
bers of nearest neighbors (K) averaged is shown in figure 4.
With lower number of cells averaged, i.e. K = 30, concentra-
tion profile reveals all the features at small scales leading to the
fluctuations at high concentrations. It is important to highlight
that the marker-shot noise effect is eliminated with account-
ing for only K = 30 cells (cf figure 4(b)). Further, the jump
in concentration is also captured reliably. When the number
of averaged cells is increased, there is marginal improvement
at low concentrations and some smoothening at high concen-
tration (cf figure 4). However, the jump in concentration is
notably diffused to larger length scales. It is interesting that
the smoothing effect on the jump is more pronounced at lower
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Figure 3. (a) Particle density distribution at t = 0 along the line y = 500 px obtained by the sliding average method, comparing the effect of
the length scale l, and the analytical solution. (b) The zoomed-in view at the lower concentration region.

Figure 4. (a) Particle density distribution at t = 0 along the line y = 500 px obtained by the Voronoi method, comparing the effect of K and
the analytical solution. (b) The zoomed-in view at the lower concentration region.

concentrations. In contrast, at higher concentrations, the jump
remains relatively unsmoothed because the data from 100 or
500 points still falls within a relatively small physical scale.

3.2. Choosing the number of nearest neighbors K

A possible solution which can be easily implemented for
the Voronoi method is to incorporate a criterion to choose
the number of cells to be averaged depending on the local
fluctuations.

Fluctuations due to Brownian motion: To choose a nat-
ural number of cells to average, one needs to understand
the natural variation present within the uniform concentration
regime. In this regard, let us consider the case of the practic-
ally uniform concentration in a closed space with Brownian
diffusion. A large domain (x × y = 30 000 px × 30 000 px)
with the overall non-dimensional concentration (C/C0) of 1 is
considered (C0 = 0.01 ppp). Specifically, 9 × 106 randomly
distributed particles are considered within this domain.

Firstly, the Voronoi method is applied to the entire field to
cover the entire space of interest. 1000 random points away

from the sides are chosen and the effect of averaging K num-
ber of nearest cells is observed. The resulting average concen-
tration and spread of the data with the 1000 points chosen is
shown in figures 5(a) and (b).

The interesting part is that this distribution can be combined
together to a single distribution by applying the central limit
theorem (Billingsley 1995). The obtained distribution is shown
in figure 5(c). The obtained histogram follows the expected
Gaussian profile as observed in figure 5(c). This is useful to
understand the expected deviation in the concentration with K
cells considered within the uniform concentration regions.

Consequently, this insight can be extended to non-
uniformly distributed points, enabling us to anticipate the
uncertainty associated with averagingK cells. This knowledge
becomes a crucial factor in determining the appropriate value
for K. Specifically, if the deviation within K cells surpasses a
predefined threshold, reflecting a certain level of stringency,
there may be limited benefit in further increasing the number
of averaged cells. In fact, doing somight inadvertently obscure
underlying features or concentration gradients by averaging
the cells covering the entire variation. Therefore, opting for a
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Figure 5. The concentration average and the standard deviation distribution with number of Voronoi cells averaged (K) from 10 to 1000.
(b) Zoomed in view for K = 10 to K = 50. (c) The collapsed histogram of the normalized counts with scaling K1/2(C − Cexp)/C0 with the
overlaid Gaussian profile. The Cexp (=1) is the expected concentration.

smaller value of K could be more pertinent, as it has the poten-
tial to unveil these intricate details more effectively.

Cut-off criterion: By referring to the information given in
figure 5, one can observe the expected deviation with aver-
aging K number of cells. Here, we consider moving-mean of
chosen KC number of cells. For instance, if we take KC = 30,
the deviation (δ) is∼0.2 with respect to the expected value (cf
figure 5(b)).

For the real case, however, the expected value is not known
a priori and one needs to rely on the local mean. The avail-
able estimate for C0 is the locally computed CKc. The vari-
ation of CKc itself has to be accounted for, which has highest
probability to be within 0.8–1.2 times the expected value (cf
figure 5(b)). The computed value CKc has highest probability
to be within 0.8–1.2 times the expected value (cf figure 5(b)).
Hence, the total relative deviation, relative to the mean at first
KC, expected could be considered as a criticality δcrit ∼ 0.5 (2
times the deviation with respect to the expected, divided by the
lower of the local value).

Following this reasoning, prior to averaging the nearest
neighbor cells, one can monitor the variation of the moving
mean. If the moving mean lies above/below the set δcrit of the
first KC cell average, then there is significant change in the

concentration when farther cells are averaged. As a result, one
can truncate the cells to be averaged. In other words, if the
condition ∣∣∣∣Cmm (i)−CKc

CKc

∣∣∣∣> δcrit (4)

is fulfilled, then truncate the averaging at K = i number of
nearest neighbors corresponding to the point considered.

Here, Cmm(i) represents the moving mean computed over
KC number of cells where i runs from the nearest to farthest
cells from the cell in consideration. When KC is odd, the win-
dow is centered around the element in the current cell. When
KC is even, the window is centered around the current and pre-
vious cells.

The above consideration is effectively truncating the num-
ber of averaged cells depending on the deviation when K is
increased. The criticality can be generalized by following the
scaling shown in figure 5(c) for any KC:

δcrit =
2.74

KC
1/2

. (5)
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Figure 6. Particle density distribution at t = 0 s along the line y = 500 px obtained by the Voronoi method, comparing the effect of the
cut-off criterion and minimum length scale λ = 60 px for (a) KC = 30 and (b) KC = 20. The blue line is the analytical solution and the inset
shows the zoomed-in view at the transition to the lower concentration region.

The value 2.74 is the product 301/2 × 0.5 as chosen above
and the denominator generalizes for any KC from the central
limit theorem as expected from the figure 5(c).

The results for the synthetic diffusion case obtained by
applying the cut off criterion (equation (4)) with KC = 30 and
KC = 20 is shown in figures 6(a) and (b) respectively. In addi-
tion, if the length scale of truncated K cells is smaller than
the minimum length scale (λ) chosen (selected spatial resolu-
tion) then continue with averaging following the same strategy
before while ignoring the condition for truncation. This essen-
tially acts like a filter for the fluctuations at very small scales
as seen in figure 6. The minimum length does not change the
results at the low concentration (cf insets in figure 6) as expec-
ted due to the farther spacing of the particles. These results
indicate that the cut-off criterion effectively captures the jump
in the concentration within small physical scale.

To compare the different methods at different time
instances of the diffusion process, two time instances t= 100 s
and t= 500 s are shown in figure 7. It can be seen that the con-
centration profiles obtained by both methods follow similar
trend and fluctuate around the analytical solution. The sliding
average method with l = 80 px is smoothened in comparison
with the Voronoi method with cut-off criterion.

3.3. Theoretical consideration of particle image overlap

In the synthetic test case examined previously, it is supposed
that all the particles in the visualized volume are detectable in
the projected image as visualized by the cameras. However,
in real-world scenarios, especially with an increase in concen-
tration, particle image overlaps will occur. This means that as
the physical concentration increases, the number of particle
images will not reflect the actual number of the particles in the
visualized image. The theoretical consideration of this effect
is undertaken here.

Consider the total image area of A with Np number of
particles in the visualized thin volume. Assume a critical cir-
cular disc of area Acrit around the particle image in which

another particle image center falls for overlap to occur in
the image. The total probable number of overlapping particle
images,No, obtained from Poisson distribution of particles can
be expressed as (Maas 1992, Cierpka et al 2013):

N0 = (Np− 1)+
A
Acrit

(
e

−(Np−1)Acrit
A − 1

)
. (6)

To obtain the effective information/detectable particle
images visible with overlap, one needs to account for the prob-
ability of exactly m number of particles at the area considered
Acrit (Maas 1992):

P(m) =

(
NpAcrit

A

)m
m!

e
−NpAcrit

A . (7)

The relative overlap probability (Po) with j number of over-
laps (i.e. j= 1 means there is exactly one other particle within
the same Acrit) is calculated by

Po (j) =
P(j + 1)

1− (P(0)+P(1))
(8)

where P(0) and P(1) represent the probabilities of having no
particle and just one particle within the area, respectively, both
of which do not result in overlap. Po (j) indicates the probab-
ility of j overlaps occurring. The effective count of particles,
or the number of detectable particle images within the image,
is obtained by

Nd = Np−
ξ∑

j=1

j
j + 1

Po (j)No (9)

where ξ is the total number of overlaps to be taken into account
for all practically possible overlaps that occur. Here ξ = 30
is considered (where the probability of overlap is practically
negligible with Po < 10−5).

One can define the density/concentration in the image plane
when all the particles in the visualized volume are considered
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Figure 7. Particle density distribution obtained at time instances: (a) t = 100 s and (b) t = 500 s. The comparison is obtained along the line
y = 500 px obtained by the Voronoi method, with cut-off criterion (KC = 30) and minimum length scale λ = 6 mm and the sliding average
method with l = 80 px. The blue line is the analytical solution (equation (3)).

as ϕ a = Np/A, and the detectable number density of particle
images is given by ϕ d = Nd/A. At very low concentrations,
when the particle images are far from each other, the overlap
probability is practically zero and one can expect ϕ d ≈ ϕ a.

Now, the actual density of the particles in reality (Ca) in
units of particles/cm3 is the density of the particles in themeas-
urement volume. If one plots the graph of Ca vs. ϕ d relation-
ship from experimental data, the initial slope serves as themul-
tiplication factor for ϕ a, yielding theoretical concentration in
physical space at very low physical concentrations. Further,
at higher concentrations, depending on the value of Acrit the
detected density of particle images ϕ d deviates from the initial
slope depending on the overlaps (equation (9)). The resulting
theoretical curves and comparisons with experimental results
are presented in the next section.

4. Experiments

4.1. Calibration

In real experiments, one can visualize the particles within
the laser-illuminated sheet of certain thickness as done in
PIV/PTV experiments. The physical concentration informa-
tion from the visualized windows requires either the determ-
ination of the exact volume of the visualized window or calib-
ration with a particle counter at constant concentration. Here,
we take the approach with calibration with particle counter at
uniform concentration in the room. More details are given in
this section.

The measurement equipment is a stereoscopic PIV system
consisting of two cameras, a laser, and a computer. The cam-
eras are set at forward scattering mode w.r.t. the laser sheet
(Prasad 2000). This results in substantial signal to noise ratio
for accurate particle image detection. Two frames are taken
which allows the calculation of the three velocity compon-
ents in the measurement plane with stereoscopic PIV. Here,
for concentration determination only information from one of
the camera and one frame is utilized. However, in principle the

data from the other frame and other camera could also be con-
sidered in order to increase the accuracy of the concentration
measurement.

For concentration calibration, the closed room was
nebulized with DEHS particles (mean diameter ≈ 0.4 µm)
and simultaneous measurements using a particle counter AQ
Guard (Palas GmbH, Germany) were performed as reference.
The obtained raw PIV images at different particle concen-
tration are shown in figure 8(a). It is essential to underscore
the importance of sharp particle images for accurate particle
counting and is a critical consideration during experimental
setup. The average particle image diameter varied between
1.5 and 2 px for the visualized images.

To count the particle images within the PIV snapshots, it is
assumed that the particle images have 2D Gaussian intensity
profiles. The local maxima (intensity peaks) are counted as a
particle. Before applying this, a sliding local minimum is sub-
tracted to remove background noise and an intensity threshold
for the particle cutoff is selected. DaVis (LaVision 2021) is
used for performing these steps. This method does lead to
undercounting at high particle concentrations due to particle–
particle overlap as explained earlier. However, the subsequent
calibration, elaborated in this section, addresses this concern,
provided that the image particle counts do not reach saturation.

The calibration of the particle image data to the physical
concentration is needed to account for the spatial variation of
the laser intensity, the non-constant light sheet thickness and
shape, and the varying magnification factor. The distribution
of the detected particle image concentration (ϕ d) within the
visualized image is shown in figure 8(b). Further, the result-
ant calibration curve at certain location in space obtained with
Voronoi method is shown in figure 8(c). This revealed non-
linearity in dependence of the observed particles per pixel to
the physical concentration. A smoothing spline fit is obtained
for all points in the x–y-plane as a function of concentration as
shown in figure 8(c).

It can be observed that the particle image density ϕ d

increases linearly with physical concentration of particles at
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Figure 8. (a) The raw particle images at different physical concentrations, where I is the intensity in counts. The axis dimensions are in
pixels. (b) Contour of the measured variation of ϕ d (ppp) at a constant physical particle concentration of Ca = 1283.1 cm−3. The Voronoi
method with intensity threshold of 800 counts is applied. (c) The experimental points of ϕ d (ppp) at different physical particle
concentrations Ca and the calibration function obtained at point location marked by × in (b) as a smoothing spline fit. The error bars
indicate the standard deviation of the particle counter measurements.

low concentrations and deviates around 500 cm−3. However,
with further increase in physical concentration, the particle
image based density increase is more gradual. This indic-
ates the effect of the particle image overlaps in the observed
images. Consequently, the data obtained from visualization is
directly proportional to the results from the particle counter,
but only at low concentrations when particle overlap is negli-
gible. As the physical concentration increases, the likelihood
of particle overlap also rises. Next, we delve into a compar-
ison of these results with theoretical description of the overlap
effect described before.

The results obtained from the particle counter and that
measured from the visualizedwindow processedwith different

intensity threshold are depicted in figure 9. For comparison,
the results obtained from the theory presented in section 3.3
are overlaid. The theoretical curves generated are at differ-
ent Acrit corresponding to 2.0–3.2 px (overlapping) disc dia-
meter. The disc diameter is chosen in order to encompass the
experimental results observed. It needs to be noted that the
particle diameter in the images varied between 1.5 and 2 px
for the visualized images. It is reasonable to assume that the
overlapping disc diameter is of the order of the diameter of
the particle images. The theoretical curves closely follow the
experimental curve indicating the effect of the particle over-
lap. The theoretical curve corresponding to 3.2 px disc dia-
meter aligns more closely with the experimental curve at a
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Figure 9. Comparison of the experimentally measured particle number density Ca from particle counter versus detected in the image (ϕ d)
and the theoretical values at different intensity threshold: (a) experimental intensity threshold of 400 counts; (b) experimental intensity
threshold of 800 counts; (c) experimental intensity threshold of 1200 counts. The theoretical critical area (Acrit) corresponds to diameter of
2.0 (cyan), 2.4 (blue), 2.8 (green) and 3.2 (red) px. Further, the dashed line depicts the initial slope of the experimental data points which
represents the theoretical curve if there were no overlaps.

lower intensity threshold of 400 (cf figure 9(a)). Conversely,
the curve corresponding to 2.4/2.8 px disc diameter aligns
more closely with the experimental curve at a higher intens-
ity threshold of 1200 (cf figure 9(c)). The typical intensity of
the particle image is expected to follow a Gaussian profile, so
reducing the intensity threshold would lead to a larger effect-
ive particle image diameter, aligning with the observed trend.
Further, the initial slope which represents the curve without
overlap effect decreases as the intensity threshold increases.
This indicates that the total particles considered decreases as
the intensity threshold increases. Consequently, this reduction
leads to reduced difference between the overlap curves and
the curve without overlap at higher concentrations. At lower
intensity thresholds (cf figure 9(a)), particle overlap results in
a near saturation effect at higher concentrations. Hence, the
overlap effect could be reduced by choosing higher intensity
threshold.

It is important to note that the overlap effect is sim-
ilar, regardless of whether one considers the sliding average
method or the Voronoi method.

4.2. Measurement uncertainty analysis

The uncertainty of the measurements was assessed by apply-
ing the calibration function to one instance of each uniform
concentration case. The calculated uncertainty ranges between
11% and 15% of particle counter measurements, considering
maximum averaging of 100 cells for the Voronoi method. This
variation aligns with the predicted ∼10% expected variation
within the uniform case with Brownian diffusion (figure 5).
The additional uncertainty is due to the fitting function which
also includes the particle–particle overlap effect. For the slid-
ing average method, the calibration function was determined
similarly with length scale l = 16 pixel. The uncertainty
for this method is approximately ∼11% at a concentration
of 1283.1 cm−3. While the uncertainty decreases slightly at
higher concentrations, it significantly increases as the concen-
tration decreases, attributed to marker-shot-like noise, as pre-
viously explained. Further, it needs to be emphasized that this
approximation is for uniform concentration, and the uncer-
tainty would increase with local gradients.
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Figure 10. Average velocity magnitude (averaged with 10 cycles) contour at time instances: (a) t′ (non-dimensionalized by the cycle time),
and (b) t′ + 0.133. Cycle time = 3.75 s.

Figure 11. The concentration contour obtained by (a) and (b) the sliding average method with l = 16 pixel and intensity threshold of 800
counts; (c) and (d) Voronoi cell method with cut off criterion (KC = 30) and minimum length scale λ = 6 mm. The results are for same
instances as in velocity field in figure 10, i.e. instances t′ (a) and (c) and t′ + 0.133 (b) and (d).

4.3. Experimental results with a pulsatile jet
A pulsatile jet of air nebulized with DEHS particles (mean
diameter ≈ 0.4 µm) into a closed room is visualized as an
example case with concentration variation. The air is heated
through a water bath maintained at 37 ◦C and led to the source
of circular cross section of diameter 3 cm. The air is driven by
displacement method which is controlled to provide a defined
volume of air at a defined frequency. The measurement equip-
ment and the setup is the same as that utilized for the uni-
form cases such that the concentration calibration could be
utilized in determining the concentration distribution with the
case presented here.

The PIV images are captured at specific phases of the
cycle to facilitate phase averaging. A total of 30 instances
are acquired within the cycle time period. For illustration,
instances at time t′ and t′ + 0.133 (non-dimensionalized by
the cycle time) are considered, where the latter instance is the

moment when the turbulent puff is still within the visualized
window.

The obtained velocity field V (absolute velocity mag-
nitude) for the case with a total volume of 1000 ml and 16
cycles/minute is shown in figure 10.

The resulting concentration profile for the instantaneous
PIV images for two time instances is shown in figure 11. The
concentration calibration shown in figure 8 is applied for the
Voronoi method. For the sliding average method, similar cal-
ibration curve is obtained and utilized here to find the con-
centration contour. For a closer look, the comparison between
the methods along the y = 0 line is plotted in figure 12. It
can be observed from figures 11 and 12 that qualitatively
both the methods reveal similar structures on the larger scales.
However, the Voronoi method reveals finer details and sharper
variation in the concentration contour, particularly at high con-
centration. At low concentrations, the Voronoi method does
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Figure 12. The concentration profile comparison with sliding average method and Voronoi method (as presented in figure 11) along the
y = 0 line at time instances: (a) t′ and (b) t′ + 0.133.

not reveal the oscillations associated with the marker-shot
noise.

5. Conclusion and summary

In this study, we focus on the determination of particle con-
centration using images acquired from PIV. We investigate
and analyze two distinct methods for concentration determin-
ation: the sliding average method and the Voronoi cell-based
method. Synthetic data of a diffusion problem, featuring an
initial step in concentration, is utilized to explore the character-
istics and limitations of each approach. In addition to the afore-
mentioned methods, we introduce a modified Voronoi method
with a criterion to select a certain number of cells to average.
This method effectively captures large range of concentration
regions and features including initial jump conditions in a dif-
fusion problem. This newmethod offers flexibility by allowing
adjustment of theminimum physical length scale and variation
with respect to natural variations due to Brownian motion.

Furthermore, calibration of the visualized images with
respect to particle counter revealed particle–particle overlap at
higher concentration which is described by theoretical consid-
eration. The described methods were applied to a real exper-
imental case of turbulent puff. It is shown that the Voronoi
method is able to capture small structures with high concen-
trations, while providing reliable results also in regions with
low concentrations.

The advantages of the sliding average method are: (a) the
relatively simple computations, and (b) the integral value of
the concentration is the sum of the particle images. The bene-
fits with Voronoi method are: (a) the adaptive length scale,
(b) the control over feature length scale, while still maintain-
ing minimum number of points for reliable local concentra-
tion. The computational effort for the Voronoi method could
mean that it is more logical to apply when one is interested in
understanding the features in instantaneous images. When one
is interested in overall average field, sliding average method
does give the necessary information when averaged over many
snapshots.
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