
Scenario-based Data Set Generation for Use in Digital

Forensics: A Case Study

Thomas Göbel 1, Harald Baier 1, and Dennis Wolf 2

Abstract: Digital forensics is a rapidly growing and highly relevant field of cybersecurity. In case
of an incident, the subsequent digital forensic investigation and analysis shall reveal the respective
digital evidence. However, although electronic devices and their data play a central role in each
crime investigation, data sets to train experts or to validate tools are sparse. While manual data
set generation is a time-consuming, elaborate, and error-prone task, tool-based data synthesis is an
excellent candidate for simplifying data generation and solving the data set gap problem. Synthetic
data sets can be used, for example, to test and refine forensic tools and methods under controlled
conditions. In addition, entirely new approaches can be explored. Several promising data synthesis
frameworks for digital forensic data set creation have been published lately, the most recent of which
is ForTrace, a freely available, community-driven data synthesis framework written in Python for
generating digital forensic data sets. This paper shows how to apply ForTrace in a large-scale manner
without human interaction. Our main goal is to show the usability of ForTrace and demonstrate its
practicality and benefits for the digital forensic domain. We therefore provide a sample usage of
ForTrace in two scenarios, namely a VeraCrypt and a malware use case, and present the definition of
the corresponding configurations.

Keywords: Digital forensic data set, Digital corpora, Synthetic data, Ground truth data, Labeled data
set, Data set generation, Data set creation, Data synthesis framework, ForTrace

1 Introduction

In the digital forensics domain, the number and heterogeneity of devices per examination
case is steadily increasing. The demand for up-to-date data sets is high in order to train digital
forensics practitioners and make faster progress in the development and validation of forensic
tools [GBB17; Go22]. However, the manual creation of data sets is a complex, tedious,
error-prone, and time-consuming task [Ga07; Ga09; Ga12; GBB23], which increases the
need for solutions such as the automated creation of data sets [Bi24; Ce21; Du21; Gö20;
Gö22; MPZ22; SDL17].

ForTrace [Gö22] is a recent data synthesis framework that can automatically generate
forensic images with well-known forensic evidence. It is a community-driven Python 3
application capable of generating high-quality holistic data sets, i.e., the generated data set
comprises associated dumps of a persistent storage device (e.g., a hard disc), the volatile
1 University of the Bundeswehr Munich, RI CODE, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany,

thomas.goebel@unibw.de, https://orcid.org/0009-0001-5670-8150;
harald.baier@unibw.de, https://orcid.org/0000-0002-9254-6398

2 Central Office for Information Technology in the Security Sector (ZITiS), Zamdorfer Straße 88, 81677 Munich,
Germany, Dennis.Wolf@ZITiS.bund.de, https://orcid.org/0009-0008-5929-6615

cba doi:10.18420/inf2024_25

M. Klein, D. Krupka, C. Winter., M. Gergeleit, L. Martin (Hrsg.): INFORMATIK 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 355

https://orcid.org/0009-0001-5670-8150
https://orcid.org/0000-0002-9254-6398
https://orcid.org/0009-0008-5929-6615
mailto:thomas.goebel@unibw.de
https://orcid.org/0009-0001-5670-8150
https://orcid.org/0009-0001-5670-8150
mailto:harald.baier@unibw.de
https://orcid.org/0000-0002-9254-6398
https://orcid.org/0000-0002-9254-6398
mailto:Dennis.Wolf@ZITiS.bund.de
https://orcid.org/0009-0008-5929-6615
https://orcid.org/0009-0008-5929-6615
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2024_25


memory (i.e., RAM), and a network capture. On the one hand, it is possible to access and
control ForTrace via its Python interface in a programmatic manner. On the other hand, for
the sake of usability, ForTrace may also be operated scenario-based in a non-programmatic
way through YAML configuration files. This eases access to the framework for non-Python
affine users since a human-readable text file defines the scenario and is then supplied to
ForTrace to generate the respective data set.

In this paper, we focus on demonstrating the usability of ForTrace through a case study
consisting of two distinct use cases or scenarios: (1) an encryption scenario based on the
widespread VeraCrypt software and (2) a prominent ransomware scenario. We show how
the actual user interactions of a scenario are configured and how the actual data set creation
is put into practice with ForTrace, highlighting its practicality and benefits. For specific
details on the implementation of ForTrace, we refer to the original works [GBT24; Gö22;
LGB22; WGB24]. Besides the actual data set creation functionality, ForTrace provides an
XML report that contains the ground truth of the executed scenario. This report provides
key information for evaluating the generated data set. While a ForTrace scenario is running,
next to changes in the file system, many typical Windows artefacts are created, such as in
the Windows EventLog, Registry, Jump Lists, Thumbcaches, etc. [SS16]. To store the actual
ground truth data of each synthesis run, these artefacts are included in the aforementioned
XML report. In the following forensic evaluation, we will demonstrate the key findings in a
comprehensible way.

The rest of the paper is organised as follows: we present related work in Section 2 and briefly
introduce the ForTrace architecture in Section 3. After the description of our two sample
scenarios in Section 4, we provide insights into the actual ForTrace generation process in
Section 5. We then evaluate the generated traces in Section 6 and conclude our paper in
Section 7.

2 Related Work

Besides the ForTrace framework [Gö22], several other data synthesis approaches have been
published in the past. The best known of these are discussed in the following.

EviPlant [SDL17] uses a base image as a starting point. The challenges or traces can then
be downloaded in the form of evidence packages. This has the advantage that large files do
not have to be sent multiple times, which is particularly interesting for teaching purposes.
The evidence package only needs to be injected into the base image and the investigation can
be started. Unfortunately, the original GitHub repository has gone offline in the meantime.

hystck [Gö20] is a Python-based framework that can create network and hard disc traces.
The creation can be automated using Python scripts or YAML configuration files. Automated
synthesis makes it possible to create a wide variety of traces within a VM with little effort,
which can be distributed efficiently by defining the contents as changes from a template

356 Thomas Göbel et al.



image. However, the project only supports Windows-based systems and is no longer being
developed further, as it is now being continued as ForTrace.

TraceGen [Du21] is another Python-based framework to automatically generate forensic
images. It is based on an emulator that translates high-level actions and simulates user
behaviour by performing (sub)-operations inside a VM, e.g., using an Internet browser or
modifying files on a hard disc. All changes are stored on a disc image and simultaneously
logged in a separate file that serves as the ground truth. The framework currently only
supports the emulation of Windows-based systems and its source code has unfortunately
not been published.

In addition, the community provides further data set generators, e.g., for the synthesis of
mobile device images or network traffic: FADE [Ce21] is a proof of concept (PoC) to inject
static traces in an Android-based emulator by using the Android Debug Bridge (ADB). The
authors directly modify files and database entries in an Android VM to mimic user-created
content. AutoPoD-Mobile [MPZ22] is another, superior injection tool in the context of
mobile devices, i.e., it is not able to generate images from a normal desktop system. It is
a PoC framework for generating Android datasets using ADB, APIs from selected apps,
and a Google account. Unfortunately, as mentioned in the paper, the tool only works on a
few physical and meanwhile outdated Android devices (e.g., Samsung A50, Huawei Mate
20 Lite). ForTT-Gen [Bi24] is a tool that can generate and replicate network traffic using a
hybrid model that combines the replication of real data and the generation of synthetic data
through statistical techniques.

To our knowledge, the latest and most powerful framework capable of generating images
from Desktop PCs is ForTrace [Gö22], which builds upon the hystck framework [Gö20].
The framework supports automated image generation by simulating human-computer
interactions. According to the authors, this approach is intended to create more realistic
scenarios, as it not only inserts traces into existing images (as FADE and AutoPoD-Mobile do),
but fully interacts with a running operating system in real-time. Along with the generated
associated disc image, the memory dump and the network capture, ForTrace also provides
a log of the synthesised traces, which serves as ground truth.

3 Fundamentals of the ForTrace Data Synthesis Framework

In this section, we briefly introduce the digital forensic data set generation framework
ForTrace. It is the successor of the hystck [Gö20] data synthesis framework, which is only
available in Python 2 and no longer maintained.

ForTrace follows a client-server architecture depicted in Fig. 1 [Gö22]. The Framework

Master is located on the host machine and communicates with the client-side Guest

Component via an unmonitored private network. Inside the Guest Component resides the
Interaction Manager that exchanges information about the current state of the scenario

Scenario-based Data Set Generation in Digital Forensics 357



Fig. 1: Client-server architecture of the ForTrace data synthesis framework [Gö22]

execution with the Framework Master. It interacts with the client-side Application Modules –
used to control individual applications via their exposed APIs – and Guest Functionalities,
which group general functionalities like the control of the power-state together. Each guest
virtual machine (VM) has access to a second network interface (Public Network) to connect
to the local network or the Internet. This interface is monitored by tcpdump to create the
pcap file of a scenario.

A key feature of ForTrace is its ability to create random user interactions, for example, to
simulate browsing behaviour during the data synthesis process, providing realistic wear-
and-depth in the resulting data sets. We refer to [GBT24; Gö22; LGB22; WGB24] for more
details about ForTrace.

4 Example Scenarios for Data Synthesis with ForTrace

This section introduces the two scenarios used in this paper to show the usability and utility
of ForTrace. Our scenarios are available within a prepared master VM, which we make
available to the community via the following link: https://cloud.digfor.code.unibw-
muenchen.de/s/IWDF24. The master VM features the latest version of ForTrace and two
nested VMs that provide the corresponding Windows templates to drive both scenarios.
Both VMs contain a fully functional guest installation of ForTrace. Tab. 1 shows the
specifications of the downloadable VM. We stress the resource availability on your system
and the nested virtualisation to execute a scenario without performance issues.

358 Thomas Göbel et al.

https://cloud.digfor.code.unibw-muenchen.de/s/IWDF24
https://cloud.digfor.code.unibw-muenchen.de/s/IWDF24


Host VM Windows Guest VM1 Windows Guest VM2 Service VM

OS Ubuntu 22.04 Windows 10 22H2 Windows 10 22H2 Debian 12
Storage 160 GiB 40 GiB 40 GiB 20 GiB
RAM 24 GiB 8 GiB 8 GiB 4 GiB
CPU 10 vCPU cores 2 vCPU cores 2 vCPU cores 2 vCPU cores
Hypervisor QEMU 7.2 – – –

Tab. 1: ForTrace setup specifications, including a master VM with two nested VMs and a service VM

4.1 Scenario 1 – The Supposedly Secure VeraCrypt Container

In the first scenario, the Windows Guest VM is used. A user first downloads a sensitive
file from the Internet and then moves it into a previously created VeraCrypt container. To
enhance the scenario, background noise is generated by the random user interaction feature
of ForTrace as described in Section 3. The subsequent scenario step involves the Windows
Notepad application, where the user types in the password for the VeraCrypt container,
prints it out on paper, and then discards the file. From a security perspective, this leaves the
possibility that the discarded password file could be recovered from the user’s file system
before it is overwritten, compromising the security of the VeraCrypt container. In the final
flow of scenario 1, the simulated user makes use of the tool sdelete3 to securely wipe the
file containing the password for the VeraCrypt container after it was printed. Since ForTrace
can acquire RAM dumps at any time in a scenario, this opens up the possibility of analysing
the volatile memory dump to extract the password from the running Notepad instance.

4.2 Scenario 2 – The Supposedly Friendly E-Mail From a Colleague

The second scenario involves a Windows VM and a so-called service VM. It involves
malware that is received via e-mail on the Windows VM. In addition, the framework’s
service VM is used to provide a company SMB, web, and an FTP server. For the e-mail
server, both external e-mail accounts or the framework’s service VM can be used. The
attacker, Mallory, uses the webserver to upload his malware and shares the link by sending a
phishing e-mail to his victim, Alice. Since both know each other (at least from the victim’s
perspective), Alice downloads the supposedly benign file via her webbrowser. Unknowingly,
she then executes a ransomware that encrypts her computer and demands a ransom to recover
her data. This scenario demonstrates the ability of ForTrace to simulate more complex
scenarios with multiple participants, which other data synthesis frameworks in the digital
forensics domain do not cover to this extent. The user of the ForTrace framework is able to
configure several important aspects of this scenario through the YAML configuration files.
For example, the user can customise the phishing e-mail, the webserver from which the file
is downloaded, or the behaviour of the ransomware itself once it is executed on the victim’s
computer (e.g., whether and how data is exfiltrated before it is encrypted).
3 https://learn.microsoft.com/en-us/sysinternals/downloads/sdelete (last accessed on 2024-06-16)

Scenario-based Data Set Generation in Digital Forensics 359

https://learn.microsoft.com/en-us/sysinternals/downloads/sdelete


5 The ForTrace Data Synthesis Process

This section shows how to produce a YAML configuration file and the subsequent data set
based on the defined scenarios. More precisely, for both of the two scenarios from Section 4
we provide the respective YAML configuration file and then run through the ForTrace
generation process. We also show how to generate the corresponding report, which serves
as ground truth.

Fig. 2: Flowchart of the ForTrace Generator component

Fig. 2 shows the steps performed by the ForTrace Generator after initiating a scenario
with a YAML configuration file. First, the Generator starts the guest VM and reads the
configuration file. Then the Generator loads all default collections (which are shipped
with ForTrace) providing URLs, files, and other information. All applications used in the
scenario are opened to be ready to receive input. The set of actions is generated and then
randomised using the seed supplied from the configuration. The seed allows for quick
changes in the position of actions in a scenario without introducing manual changes to
the code or the configuration. The Generator executes all actions, and after the last one
concludes, the guest VM is shut down, and the pcap file is saved. An additional memory
dump can be requested anytime during the scenario’s execution. Once the synthesis process
is complete, the image with all generated artefacts is stored on the host machine.

List. 1 shows a sample YAML configuration file of the first scenario with the addition of
downloading a specific file from the Internet and performing random browsing operations.
The first three entries name, description, and author serve as meta-information and are
therefore ignored by the ForTrace Generator. The purpose of the seed field is to introduce
randomisation which was discussed before. The collections section aims at defining any
type of collection that should be used in the scenario, e.g., a single text file containing
links to websites that should be visited (as in our case through the friendly_urls.txt
file), or a directory with files that should be used throughout the scenario. The kind of
data in a collection is dependent on its type. The entries within the applications section
provide any settings for applications executed during the scenario. In the context of our
sample configuration file, some basic VeraCrypt parameters for the container’s creation
and subsequent mounting operation are defined. Additional applications and services can
also be configured here to create a larger scenario and thus more artefacts in the resulting
image. Finally, the needles section contains further scenario-relevant data, in our case the
’sensitive’ file that is downloaded from the given URL and then hidden in the VeraCrypt
container.

360 Thomas Göbel et al.



name: ForTrace VeraCrypt Sample Scenario

description: An example of creation and utilisation of a VeraCrypt container

author: Mr. X

seed: 1234

collections:

c-http-0:

type: http

urls: ../../generator/friendly_urls.txt

applications:

veracrypt:

cont_path: 'C:\Users\fortrace\Desktop\container.vc' # location of the container to be

createdõ!
cont_size: 100 # size of the container in MiB

cont_pass: "password" # password of the container

mount_point: "Z" # mount point of the container

needles:

n-http-0:

application: http

url: 'https://forensik.hs-mittweida.de/assets/images/brand/Fosil.jpg' #enter payload to be

downloaded hereõ!
amount: 1

Listing 1: Sample YAML configuration file for the first scenario

The YAML configuration file in List. 2 illustrates the configuration of the ransomware in
scenario 2 in order to download the ransomware from the given IP address and port it to the
local Downloads folder and store it as scanme.exe. For example, the AES encryption/de-
cryption key is configured to be sent to the external party (’send_key_to_service_vm: True’).
The option exfiltrate_files: defines whether the data is exfiltrated before it is encrypted. The
option remove: defines whether the downloaded ransomware file is deleted or not. The
option wipe_file: can be used to select whether the files should be securely deleted via
sdelete.exe or via the normal deletion of the OS. In addition, in List. 2 one can see two
options for how ForTrace can generate e-mails. Option one is to define an XML file (here:
email_hay.xml), which is primarily used to fill the mbox files of Thunderbird (e.g., INBOX
or Sent MBOX files). With option two, the e-mails are explicitly specified in the YAML file,
which is primarily used to define malicious e-mails in the needles section.

Of course, further options can be defined in a scenario’s YAML file, but using this sample,
it should become apparent how the human-readable configuration file of ForTrace operates.
Each application in ForTrace has its own selectable options which are documented in the
ForTrace code API. Depending on the options selected, this function makes it possible to
deploy more complex environments and drive more realistic simulations – especially since
it does not require writing Python code.

The YAML configuration file snippet in List. 3 illustrates the configuration and use of
additional required services provided by the ForTrace service VM, such as the e-mail and
SMB services used in scenario 2 to access the e-mail and SMB services. The setup of the

Scenario-based Data Set Generation in Digital Forensics 361



name: ForTrace Ransomware Sample Scenario

description: An example of sending, downloading and executing a ransomware, including data

exfiltrationõ!
author: Mr. X

seed: 42

collections:

c-ransomware-0:

type: ransomware

commands: ransomware-collection.txt

email: email_hay.xml # fill up MBOX file with arbitrary e-mails

applications:

ransomware-0: # Individual configuration of the ransomware behaviour

type: ransomware

service-vm: 192.168.103.8 # webserver IP to download ransomware

service-port: 8080 # webserver port to dowload ransomware

path: C:\Users\fortrace\Downloads # folder where ransomware is stored

downloaded_file_name: scanme.exe # name of the ransomware

send_key_to_service_vm: True

#http://evil-website.com/upload # send_key_to_specific_url

send_key_to_ftp_server: True # decryption key is send to FTP server

entry_point: C:\Users\fortrace\Documents # folder that is recursively encrypted

wipe_file: False # whether data is securely deleted

force_powershell_log: True

exfiltrate_files: True # exfiltrate data before encryption

remove: False # whether ransomware is deleted afterwards

#key: test # Select your own encryption key

hay:

h-mail-0: # Benign e-mail

application: mail-0

sender: bob_fortrace@web.de

recipient: alice_fortrace@web.de

subject: Welcome to our company

message: Dear Alice,\n\nwe welcome you to our company. We wish you a good start to your

first week.\n\nBest regards, ForTrace.õ!
amount: 1

needles:

n-mail-0: # Specific malicious phishing e-mail

application: mail-0

sender: mallory_fortrace@web.de

recipient: alice_fortrace@web.de

subject: Instructions for new employees

content: Dear Sir or Madam,\n\nplease download and run our in-house security scanner. You

can find it at http:\\192.168.103.8\scanme.exe.\n\nBest regards\n\nMalloryõ!
amount: 1

n-ransomware-0:

application: ransomware-0

collection: c-ransomware-0

Listing 2: Sample YAML configuration file for the second scenario

FTP server that is used to exfiltrate data prior to the encryption is part of the ransomware
application shown in List. 2.

362 Thomas Göbel et al.



applications:

mail-0:

type: mail

imap_hostname: imap.web.de

smtp_hostname: smtp.web.de

email: alice_fortrace@web.de

password: Vo@iLmx48Qv8m%y

username: fortrace

full_name: Alice Fortrace

socket_type: 3

socket_type_smtp: 2

auth_method_smtp: 3

smb-0:

type: smb

username: service

password: fortrace

destination: \\192.168.103.8\sambashare

Listing 3: YAML configuration file to provide the required services on the service VM for the second
scenario

6 Evaluation of the Data Synthesis Process and the Generated Images

After the actual data synthesis process, the most crucial part is evaluating the data sets using
common digital forensics software such as Autopsy and Volatility. We compare the actual
traces within the data set with the corresponding ground truth from the ForTrace report.
Sample questions of doubt, which may be easily answered using the ForTrace report, are:
When did what happen? Who triggered action X? Which files were modified?

6.1 Files from Scenario 1

Scenario 1, involving the VeraCrypt container, was configured to yield a RAM dump and
a disc image since the network dump would not contain any interesting information. The
RAM dump was created when the PowerShell session was still open. This enables to recover
the used VeraCrypt key from the RAM dump4.

6.2 Files from Scenario 2

To prepare the disc image for the forensic analysis with Autopsy, we first need to merge the
differential qcow2 image (file format that is used per default by KVM) of the clone of our
initial Windows template VM image. Furthermore, we convert the image to a raw image file
4 Please note: The comprehensive evaluation for scenario 1 is skipped here due to the page limit. However, the

provided ForTrace VM contains the corresponding scenario configuration files and the generated images.

Scenario-based Data Set Generation in Digital Forensics 363



(qemu-img convert -f qcow2 -O raw guest-xxx-0.qcow2 guest-xxx.raw) to import it
into a new Autopsy case.

Network Traffic: In Wireshark, we do not only see the DNS request for the MX server of
our web.de mailbox, but also IMAPS/POP3S traffic. Since we configured the scenario using
the send_key options to send the symmetric encryption key of the ransomware (Base64
encoded) via HTTP to the service VM (running on the local IP address 192.168.103.8),
we see it in the network capture depicted in Fig. 3 as a GET request which the associated
DownloadString(Uri) function of the ransomware is using5. In addition, it can be seen that
the ransomware file is downloaded and stored as a file called scanme.exe from the same IP
address (as configured in the YAML file).

Fig. 3: Traces of the ransomware download in the network traffic capture

Since the exfiltrate_files option was specified in the YAML configuration, the files in the
Documents folder get exfiltrated before encryption. The data exfiltration (including the
encryption/decryption key enc.key) can be seen in the pcap file, since the remote peer uses
FTP without encryption, as shown in Fig. 4.

Fig. 4: Traces of data exfiltration to an external FTP server

The login credentials for Mallory’s external FTP server can also be seen in the network
capture. We can log in and see the intact files that were exfiltrated before the encryption
started, as shown in Fig. 5.

5 https://learn.microsoft.com/en-us/dotnet/api/system.net.webclient.downloadstring?view=net-8.0 (last accessed
on 2024-05-12).

364 Thomas Göbel et al.

https://learn.microsoft.com/en-us/dotnet/api/system.net.webclient.downloadstring?view=net-8.0


Fig. 5: Files that were exfiltrated to the external FTP server, including the ransomware key

Hard Disc Image: Using Autopsy, we now analyse the hard disc image. As relevant
artefacts, we find the ransomware sample including its Zone.Identifier embedded as Alternate
Data Stream (due to option remove: False) in the Downloads folder, as depicted in Fig. 6.
On the Desktop, we find the Decryptor.exe that is also downloaded form the external
webserver. This binary is used to decrypt/recover original files that are encrypted due to the
ransomware.

Fig. 6: Downloaded ransomware binary

Due to the defined option entry_point, Autopsy indicates that all files within the Documents

folder are encrypted, while the original files were deleted (see allocation status), as can be
seen in Fig. 7. Since we have only selected to remove (not wipe) the files, in this case, as
long as no other data is stored in the unallocated byte offsets, it would be possible to restore

Scenario-based Data Set Generation in Digital Forensics 365



the original files with Autopsy without having to carve the ransomware decryption key out
of memory or analyse the network capture, etc. So we see that several different scenarios
can easily be created with ForTrace depending on the specified configuration.

Fig. 7: Documents folder that is encrypted due to the ransomware

Many other relevant traces can be recovered with Autopsy, such as the PowerShell’s
logfile (../Roaming/Microsoft/Windows/PowerShell/PSReadLine/ConsoleHost_History.txt),
the generated e-mails (an excerpt of the recovered INBOX file can be seen in Fig. 8),
the configured SMB share (e.g., as Shell Bags), the web download of the ransomware
scanme.exe, the Windows registry autostart entry created for Decryptor.exe (as shown in
List. 4) that demands the ransom and gives the opportunity to decrypt files after rebooting
the system.

user_run v.20140115

(NTUSER.DAT) [Autostart] Get autostart key contents from NTUSER.DAT hive

Software\Microsoft\Windows\CurrentVersion\Run

LastWrite Time Sat May 11 22:20:41 2024 (UTC)

Decryptor.exe: C:\Users\hystck\Desktop\Decryptor.exe --C:\users\hystck\Documents

[...]

Listing 4: Run registry key contents of the user’s NTUSER.DAT hive

Memory Dump: As shown in Fig. 9, we search for running processes using Volatility 3
and its windows.pslist plugin and actually find the running ransomware scanme.exe with
the PID 4976, as ForTrace dumps the memory during the execution of the ransomware.
It can also be seen that the process’s parent process is the powershell.exe process with
PID 4636. The memory dump scan reveals the entire sequence of processes that led to

366 Thomas Göbel et al.



Fig. 8: Excerpt from the Thunderbird INBOX file containing the specified e-mails

the execution of the ransomware. This encompasses not only operating system processes
but also processes linked to the framework. The complete process list from the process
scan is: winlogon.exe > userinit.exe > explorer.exe > cmd.exe > python.exe >
powershell.exe > scanme.exe by comparing the process ID (PID) and its parent process
ID (PPID).

Fig. 9: Volatility’s windows.pslist plugin to scan process list

We can then create a memory dump using Volatility’s windows.memmap plugin (cf. with
List. 5 to not only dump the executable (such as the windows.dumpfiles plugin would do)
but also all the process’s contents of virtual address space present in memory. With strings
applied to the dumped memory process, the actual ransomware decryption key can be found
multiple times.

Of course, there are also other methods for analysing the individual scenarios. This is just to
give an impression of how ForTrace reflects relevant artefacts depending on how the data
synthesis scenario is configured. In the YAML configuration file, for example, we can also
specify that we use the ransomware with a hardcoded key or, if desired, define an arbitrary
string that serves as the ransomware key. Depending on this, it would either be possible to

Scenario-based Data Set Generation in Digital Forensics 367



$ $./vol.py -f Ransomware-dump.DMP -o . windows.memmap --dump --pid 4976

$ strings -n 32 pid.4976.dmp

[...]

For7r@ceR@n5omW@reP@55wordFound!

[...]

Listing 5: Volatility’s windows.memmap plugin to dump the memory of the malicious process

extract the key using a reverse engineering tool such as Ghidra (if it is hardcoded in the
binary; cf. Fig. 10) or not (if the key was explicitly specified by the user in the YAML file).

Fig. 10: Recovery of hardcoded ransomware key in binary file using Ghidra

7 Conclusion and Future Work

In this paper, we showed the capabilities of the ForTrace data synthesis framework in
two scenarios. Scenario 1 introduced the basic functionality of ForTrace, a simple YAML
configuration file, and the framework’s Python interface. In the second scenario, we
demonstrated that ForTrace is also capable of simulating more complex scenarios involving
multiple participants and the provision of accompanying infrastructure, such as a ransomware
setup and e-mail or file sharing servers. In the event that the YAML-based configuration is
not desired (e.g., if the YAML configuration is not yet supported), all functions of ForTrace
can also be used with Python scripts, as ForTrace provides its open source code API.
In Sect. 6, the generated data sets were examined and the findings were evaluated using
common forensic software such as Autopsy and Volatility. The suspected traces, depending
on the selected scenario, were found.

As future work, further ForTrace functions must be validated, as this paper could not
cover all functions provided due to a limited number of pages. This includes in particular
the functions offered to generate more random data and a more detailed evaluation of the
ForTrace reporting component. Further evaluation tasks include a more detailed look at
the ForTrace GUI and the use of the ForTrace code API to script arbitrary forensic cases
independent of the Generator’s functionality.

368 Thomas Göbel et al.



References

[Bi24] Bistene, J. V. et al.: ForTT-Gen: Network Traffic Generator for Malware Forensics Analysis
Training. In: 2024 12th International Symposium on Digital Forensics and Security
(ISDFS). Pp. 1–6, 2024, ���: https://doi.org/10.1109/ISDFS60797.2024.10527345,
visited on: 07/30/2024.

[Ce21] Ceballos Delgado, A. A. et al.: FADE: A forensic image generator for android device
education. WIREs Forensic Science 4 (2), e1432, 2021, ���: https://doi.org/10.1002/
wfs2.1432, ���: https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wfs2.1432,
visited on: 07/30/2024.

[Du21] Du, X. et al.: TraceGen: User activity emulation for digital forensic test image generation.
Forensic Science International: Digital Investigation 38, p. 301133, 2021, ����: 2666-
2817, ���: https://doi.org/10.1016/j.fsidi.2021.301133, ���: https://www.sciencedirect.
com/science/article/pii/S2666281721000317, visited on: 07/30/2024.

[Ga07] Garfinkel, S.: Forensic corpora: a challenge for forensic research. Electronic Evidence
Information Center, pp. 1–10, 2007, ���: http://simson.net/ref/2007/Forensic_Corpora.
pdf, visited on: 07/30/2024.

[Ga09] Garfinkel, S. et al.: Bringing science to digital forensics with standardized forensic corpora.
Digital Investigation 6, The Proceedings of the Ninth Annual DFRWS Conference, pp. 2–
11, 2009, ����: 1742-2876, ���: https://doi.org/10.1016/j.diin.2009.06.016, visited on:
07/30/2024.

[Ga12] Garfinkel, S.: Lessons learned writing digital forensics tools and managing a 30TB digital
evidence corpus. Digital Investigation 9, The Proceedings of the Twelfth Annual DFRWS
Conference, S80–S89, 2012, ����: 1742-2876, ���: https://doi.org/10.1016/j.diin.2012.
05.002, ���: https://www.sciencedirect.com/science/article/pii/S1742287612000278,
visited on: 07/30/2024.

[GBB17] Grajeda, C.; Breitinger, F.; Baggili, I.: Availability of datasets for digital forensics –
And what is missing. Digital Investigation 22, S94–S105, 2017, ����: 1742-2876, ���:
https://doi.org/10.1016/j.diin.2017.06.004, ���: https://www.sciencedirect.com/science/
article/pii/S1742287617301913, visited on: 07/30/2024.

[GBB23] Göbel, T.; Baier, H.; Breitinger, F.: Data for Digital Forensics: Why a Discussion on
“How Realistic is Synthetic Data” is Dispensable. Digital Threats 4 (3), 2023, ���:
https://doi.org/10.1145/3609863, ���: https://dl.acm.org/doi/full/10.1145/3609863,
visited on: 07/30/2024.

[GBT24] Göbel, T.; Baier, H.; Türr, J.: Generating Usable and Assessable Datasets Containing
Anti-Forensic Traces at the Filesystem Level. In (Kurkowski, E.; Shenoi, S., eds.):
Advances in Digital Forensics XX. Springer International Publishing, Cham, 2024, ���:
https://link.springer.com/book/9783031710247, visited on: 07/30/2024.

[Gö20] Göbel, T. et al.: A Novel Approach for Generating Synthetic Datasets for Digital
Forensics. In (Peterson, G.; Shenoi, S., eds.): Advances in Digital Forensics XVI.
Springer International Publishing, Cham, pp. 73–93, 2020, ����: 978-3-030-56223-6,
���: https://doi.org/10.1007/978-3-030-56223-6_5, visited on: 07/30/2024.

[Go22] Gonçalves, P. et al.: Revisiting the dataset gap problem – On availability, assessment
and perspective of mobile forensic corpora. Forensic Science International: Digital
Investigation 43, p. 301439, 2022, ����: 2666-2817, ���: https://doi.org/10.1016/
j . fsidi . 2022 . 301439, ���: https : / / www. sciencedirect . com / science / article / pii /
S2666281722001202, visited on: 07/30/2024.

Scenario-based Data Set Generation in Digital Forensics 369

https://doi.org/https://doi.org/10.1109/ISDFS60797.2024.10527345
https://doi.org/https://doi.org/10.1002/wfs2.1432
https://doi.org/https://doi.org/10.1002/wfs2.1432
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wfs2.1432
https://doi.org/https://doi.org/10.1016/j.fsidi.2021.301133
https://www.sciencedirect.com/science/article/pii/S2666281721000317
https://www.sciencedirect.com/science/article/pii/S2666281721000317
http://simson.net/ref/2007/Forensic_Corpora.pdf
http://simson.net/ref/2007/Forensic_Corpora.pdf
https://doi.org/https://doi.org/10.1016/j.diin.2009.06.016
https://doi.org/https://doi.org/10.1016/j.diin.2012.05.002
https://doi.org/https://doi.org/10.1016/j.diin.2012.05.002
https://www.sciencedirect.com/science/article/pii/S1742287612000278
https://doi.org/https://doi.org/10.1016/j.diin.2017.06.004
https://www.sciencedirect.com/science/article/pii/S1742287617301913
https://www.sciencedirect.com/science/article/pii/S1742287617301913
https://doi.org/https://doi.org/10.1145/3609863
https://dl.acm.org/doi/full/10.1145/3609863
https://link.springer.com/book/9783031710247
https://doi.org/https://doi.org/10.1007/978-3-030-56223-6_5
https://doi.org/https://doi.org/10.1016/j.fsidi.2022.301439
https://doi.org/https://doi.org/10.1016/j.fsidi.2022.301439
https://www.sciencedirect.com/science/article/pii/S2666281722001202
https://www.sciencedirect.com/science/article/pii/S2666281722001202


[Gö22] Göbel, T. et al.: ForTrace - A holistic forensic data set synthesis framework. Forensic
Science International: Digital Investigation 40, Selected Papers of the Ninth Annual
DFRWS Europe Conference, p. 301344, 2022, ����: 2666-2817, ���: https://doi.org/
10.1016/j.fsidi.2022.301344, ���: https://www.sciencedirect.com/science/article/pii/
S2666281722000130, visited on: 07/30/2024.

[LGB22] Lukner, M.; Göbel, T.; Baier, H.: Realistic and Configurable Synthesis of Malware
Traces in Windows Systems. In (Peterson, G.; Shenoi, S., eds.): Advances in Digital
Forensics XVIII. Springer International Publishing, Cham, pp. 21–44, 2022, ����:
978-3-031-10078-9, ���: https://doi.org/10.1007/978-3-031-10078-9_2, visited on:
07/30/2024.

[MPZ22] Michel, M.; Pawlaszczyk, D.; Zimmermann, R.: AutoPoD-Mobile—Semi-Automated
Data Population Using Case-like Scenarios for Training and Validation in Mobile
Forensics. Forensic Sciences 2 (2), pp. 302–320, 2022, ���: https://doi.org/10.3390/
forensicsci2020023, visited on: 07/30/2024.

[SDL17] Scanlon, M.; Du, X.; Lillis, D.: EviPlant: An efficient digital forensic challenge creation,
manipulation and distribution solution. Digital Investigation 20, DFRWS 2017 Europe,
S29–S36, 2017, ����: 1742-2876, ���: https://doi.org/10.1016/j.diin.2017.01.010,
���: https://www.sciencedirect.com/science/article/pii/S1742287617300397, visited on:
07/30/2024.

[SS16] Shaaban, A.; Sapronov, K.: Practical Windows Forensics: Leverage the power of digital
forensics for Windows systems. https://www.packtpub.com/en-us/product/practical-
windows-forensics-9781783554096, visited on: 07/30/2024, Packt Publishing, 2016.

[WGB24] Wolf, D.; Göbel, T.; Baier, H.: Hypervisor-based data synthesis: On its potential to
tackle the curse of client-side agent remnants in forensic image generation. Forensic
Science International: Digital Investigation 48, DFRWS EU 2024 - Selected Papers
from the 11th Annual Digital Forensics Research Conference Europe, p. 301690,
2024, ����: 2666-2817, ���: https : / / doi .org /10 .1016/ j . fsidi .2023 .301690, ���:
https://www.sciencedirect.com/science/article/pii/S2666281723002093, visited on:
07/30/2024.

370 Thomas Göbel et al.

https://doi.org/https://doi.org/10.1016/j.fsidi.2022.301344
https://doi.org/https://doi.org/10.1016/j.fsidi.2022.301344
https://www.sciencedirect.com/science/article/pii/S2666281722000130
https://www.sciencedirect.com/science/article/pii/S2666281722000130
https://doi.org/https://doi.org/10.1007/978-3-031-10078-9_2
https://doi.org/https://doi.org/10.3390/forensicsci2020023
https://doi.org/https://doi.org/10.3390/forensicsci2020023
https://doi.org/https://doi.org/10.1016/j.diin.2017.01.010
https://www.sciencedirect.com/science/article/pii/S1742287617300397
https://www.packtpub.com/en-us/product/practical-windows-forensics-9781783554096
https://www.packtpub.com/en-us/product/practical-windows-forensics-9781783554096
https://doi.org/https://doi.org/10.1016/j.fsidi.2023.301690
https://www.sciencedirect.com/science/article/pii/S2666281723002093

