
A Comprehensive Description
of

Consistent Document Engineering

Jan Sche�czyk
Uwe M. Borgho�

Peter Rödig
Lothar Schmitz

Report 2003-03
December 2003

University of the Federal Armed Forces Munich

Department of

COMPUTER SCIENCE

Werner-Heisenberg-Weg 39 • D-85577 Neubiberg

Abstract

When a group of authors collaboratively edits inter-
related documents, consistency problems occur almost
immediately. Current document management systems
(DMS) provide useful mechanisms such as document
locking and version control, but often lack consistency
management facilities. If at all, consistency is �de�ned�
via informal guidelines, which do not support automatic
consistency checks.

In this paper, we propose to use explicit formal consis-
tency rules for heterogeneous repositories that are man-
aged by traditional DMS. Rules are formalized in a vari-
ant of �rst-order temporal logic. Functions and pred-
icates, implemented in a full programming language,
provide complex (even higher-order) functionality. A
static type system supports rule formalization, where
types also de�ne (formal) document models. In the
presence of types, the challenge is to smoothly combine
a �rst-order logic with a useful type system including
subtyping. In implementing a tolerant view of consis-
tency, we do not expect that repositories satisfy consis-
tency rules. Instead, a novel semantics precisely pin-
points inconsistent document parts and indicates when,
where, and why a repository is inconsistent.

Speed is a key issue in our approach towards tolerating
inconsistencies. We, therefore, developed e�cient tech-
niques for consistency rule evaluation. Our strategy is
known from databases: (1) static analysis character-
izes and simpli�es consistency rules and (2) at run-time
rules are evaluated incrementally. The major di�erences
to databases are that we consider informal documents
and explicitly allow inconsistencies. Consequently, we
lack formal update descriptions and cannot rely on con-
sistency prior to updates.

Our major contributions are

1. the use of explicit formal rules giving a precise (and
still comprehensible) notion of consistency,

2. a static type system securing the formalization pro-
cess,

3. a novel semantics pinpointing inconsistent docu-
ment (parts) precisely,

4. e�cient techniques for consistency rule evaluation,
and

5. a design of how to automatically check consistency
for document engineering projects that use existing
DMS.

We have implemented a prototype of a consistency
checker. Applied to real world content, it shows that
our contributions can signi�cantly improve consistency
in document engineering processes.

1 Introduction

Larger works of writing � e.g., books, technical docu-
mentations, or software speci�cations � contain many
documents1 that are collaboratively and concurrently
edited by a number of authors. Mainstream DMS store
documents in repositories and provide version control,
rights management etc. Usually, authors aim to pro-
duce an overall consistent work, i.e., certain relations
between the documents are maintained. These rela-
tions, however, are mostly implicit and vague, e.g.,
�Links inside documents must have a valid target.� In
order to achieve consistency, authors have to spend
much time re-reading and revising their own and re-
lated documents. Worse, each check-in to the reposi-
tory potentially invalidates consistency. Larger compa-
nies de�ne guidelines and policies for writing; but still, a
human reviewer is required to enforce them. What pre-
vents automatic checks is that guidelines are implicit
or at least informal. Yet recent proposals for managing
XML documents appear to neglect these shortcomings
[45].

We, therefore, propose the use of explicit formal con-
sistency rules to manage consistency in heterogeneous
repositories. Strict rules must be adhered to, whereas
weak rules may be violated. In addition, each rule has
a priority, which allows to gauge the impact of an in-
consistency. Rules may restrict how documents evolve
in time � hence we employ temporal logic. Since rule
design is a complex task, a static type system helps to
de�ne syntactically well-formed consistency rules. Be-
ing aware that check-ins potentially violate consistency
rules, we replace traditional boolean semantics by a
novel semantics, which pinpoints inconsistencies within
documents.

This provides automatic checks indicating precisely
when, where, and why inconsistencies occur and opens
the road to tolerating inconsistencies � a necessity in
many areas [12, 24]. For example, if documents evolve
at di�erent rates enforcing consistency may cause dead-
locks. Consistency rules may be too strict for some pur-
poses � an inconsistency may indicate an exception or
a design alternative. Finally, the impact of an incon-
sistency can be low compared to the costs of resolving
it.

Speed is a key to user acceptance. After a check-in to
the repository, authors want to know almost immedi-
ately whether this check-in is accepted and how it meets
the consistency rules. Therefore, we need e�cient tech-

1We use the term �document� informally here, being aware
that documents do not need to follow a formal document model.
Using XML, however, we gain several advantages.

2

documents

manualskey resolverskey

key
name
kind+

Figure 1: Example repository

niques for evaluating �rst-order linear temporal formu-
lae against a heterogeneous repository while retaining
our tolerant semantics. We improve e�ciency by two
measures: The �rst is to reduce checking complexity
by static analysis that is performed prior to actually
evaluating consistency rules. The second is to reduce
the complexity of the checking algorithm itself during
evaluation. Static rule analysis attempts to decrease
the number of rules to be re-evaluated at a check-in
by �localizing� and �ltering, and to decrease the static
computational complexity of a rule by rewriting. Our
evaluation algorithm dynamically reduces quanti�er do-
mains. Since we allow inconsistencies in previous repos-
itory states we employ an incremental algorithm that
makes heavy use of previous consistency reports.

The following running example illustrates the formal
part of our paper. In practice we come across far more
complex examples of the same kind, e.g., in [20]. Doc-
uments linking to the current version of another doc-
ument and persistent URLs [36] impose closely related
problems.

Example 1 Assume we want to archive manuals over
a long period of time. Documents (and manuals) refer-
ence manuals through a key � see Fig. 1. Since names
and kinds of manuals may change over time, we need
key resolvers mapping keys to their semantics, e.g.,
manual kind and name. There may exist many key
resolvers, the actual names of which are hidden from
authors. To ensure consistency we require that (1) (two-
step) links are valid and (2) names and kinds of manuals
are invariant over time. For example, a referenced key
k is invalid if no resolver contains k, or a resolver maps
k to a manual that does not exist, or a resolver maps k
to an existing manual m but m's kind is di�erent from
the kind of k's resolver entry. ¤

This paper2 is organized as follows: Sect. 2 shows how
we integrate our work into document engineering pro-
cesses that are based on DMS. Sect. 3 describes how
consistency rules are formalized. Sect. 4 sketches our
static type system. Sect. 5 shows our tolerant seman-
tics and how it helps to precisely detect inconsisten-
cies. We address the issue of e�cient rule evaluation in
Sect. 6. Notes on our implementation and results from
our experiments can be found in Sect. 7. In Sect. 8 we

2Important parts of this report are published as [32] and [33].

access

distributions / replica

check in

instance of

generate

formalized

implemented

check out

consistency
check

type

use

use check

repository
(DMS)

Haskell

documents

choose / adapt

partly
derived

external libs
(XPath, heuristics ...)

external libs
(XPath, heuristics ...)

external libs
(XPath, heuristics ...)

language function sym.
predicate sym.types

author

manager
project

designer
rule

language
designer

consistency
report

rules
project

rules
consistency

templates
document

templates
project

temp. logic

typesystem

Figure 2: System overview (ovals mark �xed compo-
nents; rectangles mark customizable components)

discuss some related work. A summary and directions
for future research are given in Sect. 9.

2 Using Consistency Rules in
Document Engineering

We consider formalizing consistency rules a complex
process. In order to handle this additional complexity,
we divide formalization into di�erent tasks and supply
tools to every stakeholder (see Fig. 2).

From a repository, authors typically check out working
copies of documents, modify them, and �nally check
them in again. Among other things, a classic DMS
manages concurrent check-ins, author rights, version
control, and repository backup and distribution. We
design our consistency checker in a way that makes only
few assumptions about the DMS. We require only

1. a facility to access past and present document ver-
sions,

2. a locking mechanism that prevents check-ins during
a consistency check, and

3. that the DMS signals the documents added or
changed by an update.

3

Note that we make no assumptions about the document
model of the DMS, such that our extensions also apply
to revision control systems like CVS [6].

A rule designer formalizes consistency rules. Rules de-
�ne what it means for the repository to be consistent
� they re�ect wishes from the �administrator� perspec-
tive. We check the repository for consistency w.r.t. the
rules formalized at given events, e.g., document check-
in or the end of a development phase. Checking the
repository for consistency generates a consistency re-
port to which we can react in various ways. On violation
of a weak rule the system could inform those authors
who have checked out (now) inconsistent documents. If,
however, a strict rule is violated the system will reject
the check-in in question. In addition, the rule designer
creates templates for documents. These will be DTDs
or Schemas if XML is used as document format.

Consistency rules use function and predicate symbols
from a domain speci�c language. This makes the rules
completely independent of concrete document formats,
which can be changed without a�ecting rules. A static
type system ensures that rules are well-typed w.r.t. the
language used and that rules are well-formed �rst-order
formulae. If, e.g., a predicate symbol = requires two
arguments of the same type the careless application of
= to a number and a string must be rejected because
it is meaningless. Thus, without accessing repository
data, our static type system decides on the syntax level
whether a consistency rule can possibly make sense.

A language designer declares valid symbols and their
types in a signature, and implements symbol seman-
tics in the statically typed functional programming lan-
guage Haskell3 [26]. Haskell provides access to other
libraries via a foreign function interface [7]. Such li-
braries o�er sophisticated functionality, e.g., for pars-
ing documents or heuristics for semantic content analy-
sis [31]. Formal document types (usually corresponding
to document templates) can be expressed by record or
variant types. This makes our approach independent
of any particular document format and facilitates het-
erogeneous repositories. For our running example, a
record type ResD de�nes the formal structure of key
resolvers. If XML is used as document format, docu-
ment types and parser function implementations can be
derived from XML DTDs [42]. Note that complex pro-
gramming tasks are hidden from the rule designer who
only needs simple �rst-order logic.

3For example, the language designer would declare = to have
the polymorphic type ∀α.α × α (α denotes a type variable, ×
separates argument types). A Haskell function then de�nes the
meaning of =, e.g., via instances of the type class Eq.

For speci�c projects, the project manager chooses con-
sistency rules and document templates. In some cases
adaptions will be necessary, e.g., the document tem-
plates get another company logo or some rules are weak-
ened. Of course, major changes in the document tem-
plates cause adaptions to the corresponding formal doc-
ument types, which may involve further changes in the
language. But typically most projects require only lay-
out related adaptions.

In the rest of this paper we shall concentrate on the work
of the rule designer and the language designer, and on
the generation of comprehensive and precise consistency
reports in particular.

3 Formalizing Consistency Rules

Our examples show that we need a very expressive lan-
guage to formalize consistency rules. We require a tem-
poral component as well as complex functions and pred-
icates. Besides being precise rule design should be com-
fortable: Once de�ned, we want to reuse functions and
predicates as often as possible. This is why we have de-
cided to formalize consistency rules in a full �rst-order
temporal predicate logic.4 We allow polymorphic (even
higher-order) functions and predicate to facilitate com-
fort and reuse. The challenge is, therefore, to smoothly
combine a �rst-order logic with higher-order functions
and predicates. Our type checker, sketched in Sect. 4,
provides signi�cant support for this.

3.1 Overview

Consistency rules are statements about repository
states, which we call timestamps because they repre-
sent given points in time. Similar to our architecture,
our abstract syntax consists of two parts: (1) the rule
designer expresses consistency rules in a �rst-order tem-
poral logic; (2) the language designer declares symbols
(that can be used in rules) in a signature and imple-
ments symbol semantics in Haskell.

Rule designers formalize consistency rules in a variant
of two-sorted temporal �rst-order predicate logic with
linear time and equality [1, 15]. The two-sorts approach
to temporal logic introduces a new temporal sort Time.
To each non-temporal predicate or function symbol a
timestamp is added. We call these symbols partially
temporal. Fully temporal predicate or function symbols

4We employ a �rst-order logic only because based on our ex-
periments we have not seen the need for higher-order logic.

4

(1) At each time links must be valid:
�At any time t we have for all documents x at t that for all
their referenced keys k there exists a key de�nition d (in one
of the resolvers) for k and there exists a manual m with
name and kind as de�ned by d.�
φ1 = ∀ t ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •

∃ d ∈ concatMap(t, kDefs, repResDs(t)) • k = key(d) ∧(∃ m ∈ repManDs(t) •
id(m) = kId(d) ∧ kind(m) = kKind(d)

)

(2) Names and kinds of manuals are invariant over time:
�At all times t1 and t2 we have for manuals m1 at t1
that if t1 is smaller than or equal to t2 there exists a manual
m2 at t2 that has the same name and kind as m1.�
φ2 = ∀ t1 ∈ repStates • ∀ t2 ∈ repStates •

∀ m1 ∈ repManDs(t1) • t1 ≤ t2 ⇒(∃ m2 ∈ repManDs(t2) •
id(m1) = id(m2) ∧ kind(m1) = kind(m2)

)

Figure 3: Example consistency rules
(for function and predicate symbols see Fig. 4)

only have temporal arguments (and results). Quanti-
�ers iterate over variables of the sort Time, too. We
use the two-sorts approach because (1) timestamp vari-
ables make temporal logic more expressive, (2) rule de-
signers do not need to learn temporal connectives, and
(3) the introduction of types makes the two-sorts ap-
proach straightforward. In our setting Time is a type.

Example 2 The rule designer de�nes consistency rules
like those shown in Fig. 3. If a partially temporal sym-
bol does not depend on time we can omit its temporal
parameter (see, e.g., refs(x) in φ1). We call such ap-
plications �unsaturated.� Predicate symbols are written
in in�x notation for convenience.

We formalize rule φ1 by �rst quantifying over all states
in the repository, provided by repStates. Then, for
each state t we need the current documents x, ob-
tained from repDs(t), and the referenced keys k therein,
computed via refs(x). Since refs is independent of
time we omit its temporal parameter. For every k
there must exist a key de�nition d such that the key
de�ned by d (computed via key(d)) equals the refer-
enced key k. Furthermore, there must exist a man-
ual m whose name equals the identi�er mentioned by
d (we get the current manuals via repManDs(t)). In
addition, the kind of m must equal the kind men-
tioned by d. We get the current key de�nitions d via
concatMap(t, kDefs, repResDs(t)). This computes the
current resolver documents (repResDs(t)) and extracts
the key de�nitions from the resolver documents. So
�nally, d iterates over all key de�nitions inside all re-
solvers. Essentially, concatMap behaves like a univer-
sal quanti�er here. Assume we wanted to neglect case
when comparing manual kinds. Then we simply use a

Type de�nitions in T
String strings
[α] = {[], (:) :α× [α]} lists
Doc = Doc {id : String, time :Time}

documents
ManD <S {Doc} = Man {kind : String} manuals
ResD <S {Doc} = Res {kDefs : [KDef]} key resolvers
KDef = KDef {key, kId, kKind : String}

key de�nition
Predicate symbol de�nitions in P
=∗ : ∀α.Time× α× α equality
≤ : Time× Time timestamp ordering
Function symbol de�nitions in F
concatMap : ∀α, β.Time× (Time× α→ [β])× [α] → [β]

Haskell concatMap
repDs : Time → [Doc] get documents
repManDs : Time → [ManD] get manuals
repResDs : Time → [ResD] get resolvers
refs∗ : Time× Doc→ [String] referenced keys
repStates : [Time] all repository states

Figure 4: Example types and symbols

di�erent predicate symbol, say ≡. This is beyond the
possibilities of XLink.

In rule φ2 we quantify twice over time because we have
to relate di�erent versions of manuals, where one version
(at state t1) is �older� than the other (at state t2). ¤

The rules in Fig. 3 appear more complex than the vague
�ideas� in our introductory example. Formal rules are
much more precise than informal guidelines and give
no room for misinterpretations. We consider this an
important feature of formalization: When formalizing
consistency rules we have to decide what we really want.
In our experience this contributes to a common under-
standing of what consistency actually means. This is
vital for any collaborative work.

Example 3 For the rules formalized the language de-
signer de�nes symbols and types like those shown in
Fig. 4, where <S denotes an explicit subtype relation
(called subtype axiom) between two types. Partially
temporal symbols that do not really depend on time
are marked with ∗. They are subject to unsaturated
application.

The variant list type [α] is declared as usual in func-
tional programming � the variant constructors are []
(empty list) and (:) (cons). The record type Doc stands
for a formal document, holding a name (of type String)
and a check-in time (of type Time). That way we dis-
tinguish di�erent document versions. We require each
document type to be a subtype of Doc. The record type
ResD resembles the key resolver structure (see Fig. 7 in
Sect. 5 for an example). ResD inherits all record labels
from its supertype Doc. Our notion of subtyping resem-
bles XML Schema subtyping via extension and restric-

5

φ, ψ ::= p(e1, . . . , en) atomic formula
| φ · ψ junction, · ∈ {∨,∧,⇒}
| ¬φ negation
| Q x ∈ e • φ quanti�ed formula, Q∈{∀,∃}

e ::= x variable
| s symbol, s ∈ {f, l, k}
| s(e1, . . . , en) application
| KR{li = ei} record construction
| case(e0, e, {ki → si}) variant deconstruction
| case(e0, e, V, {ki→ si}) variant deconstruction for V
| e :: τ type annotation

Figure 5: Formal consistency rule syntax

tion. Record and variant type de�nitions induce new
symbols (labels and constructors, respectively), which
do not depend on time. For example, ResD induces
kDefs∗ : Time× ResD→ [Item].

Function symbols starting with rep provide access to
documents inside the repository at a given time. For
a document d, refs∗(d) returns all referenced keys. It
is independent of time since documents already con-
tain their check-in time. concatMap(t, f, xs) applies
f(t, .) to each member in xs and concatenates the result
lists. Due to their optional temporal parameter record
labels can serve as parameter for concatMap, e.g., in
concatMap(t, kDefs, repResDs(t)). ¤

Next, we shall introduce the formal means required for
the example above.

3.2 Abstract Syntax

Fig. 5 summarizes the abstract syntax of consistency
rules � the rule designer toolset. More often than not,
formulae are standard �rst-order formulae. A quanti-
�er Q introduces a bound variable x, restricted by a
term e that evaluates to the domain of x. We use terms
for quanti�er restrictions to easily identify variable do-
mains. We call closed formulae consistency rules and
non-empty �nite rule sets rule systems. Typically, a
rule contains additional metadata, e.g., weakness anno-
tations and its priority.

Our notion of terms corresponds to Nordlander's
Haskell extension O'Haskell [22], which extends the
Haskell type system with subtypes. Thus, we regard
function symbols f , record labels l, and variant con-
structors k as terms, too. In contrast to O'Haskell, we
let an explicit record constructor KR construct a record
of type R in order to guide type inference. Both case
constructs take an additional temporal argument e0, �x-
ing the time of evaluation. An optional variant type
constructor V uniquely identi�es the type of e, thus
avoiding ambiguities that may arise from subtyping.

In the logic used here it is undecidable whether a for-
mula is satis�able. This, however, is no issue in our set-
ting because rules are evaluated against concrete repos-
itories. What we are really interested in are concrete
inconsistency pointers generated from complex consis-
tency rules! We, therefore, sacri�ce decidability for ex-
pressivity. For some applications it might be interest-
ing to know whether the rules are satis�able or whether
some rules are implied by others. Both questions reduce
to the implication problem in predicate logic, which has
been proven to be undecidable (see, e.g., [19]).5 Thus,
we only perform analyses that detect some cases of rule
contradiction and implication [8], but not all of them.

The language designer declares valid symbols for rule
de�nition in a signature. Each symbol has a unique
name. Partially temporal predicate symbols in Ṗ have
a timestamp as �rst parameter; their meaning may
change over time. Fully temporal predicate symbols
in P̈ have only temporal parameters. A similar dis-
tinction holds for function symbols. We require a pred-
icate symbol ≤, interpreted by a total ordering rela-
tion to facilitate linear time logic. We further require
a function symbol ∗, which is �plugged� into unsatu-
rated applications prior to type checking. The type
structure Ω(T) contains all types properly constructed
from the type constructors in T (see below). In con-
trast, the temporal type structure Ω̈(T) ⊆ Ω(T) con-
tains only temporal types. These are constructed from
Time using non-atomic type constructors in T, e.g.,
[Time], [[Time]] ∈ Ω̈(T). The type constructor set T
also contains document type constructors, resembling
document templates in the repository. A subtype the-
ory S contains subtype axioms about record and vari-
ant types, respectively. Record type constructor def-
initions R induce a record constructor KR and a la-
bel environment

∏
R̂ containing record labels and their

types. For example, the label environment
∏

R̂esD
con-

tains kDefs∗ :Time×ResD→ [Item], id∗ : Time×ResD→
String, and time∗ : Time×ResD→ Time. Variant type
constructor de�nitions V induce a constructor environ-
ment

∑
V̂ containing variant constructors; e.g., the con-

structor environment
∑

[̂_]
contains []∗ :Time → [α] and

(:)∗ :Time× α× [α] → [α].

De�nition 1 A signature Σ = (T,S,
∏
,K,

∑
,P,F)

contains:6

� a type constructor set T (we require a unary list
type constructor [_] ∈ T);

� a subtype theory S holding subtype axioms
over Ω(T);

5There exist decidable subsets in temporal predicate logic [15].
A restriction to these subsets, however, would severely limit the
range of applications using our approach.

6] denotes disjoint union, : denotes a �has type� relation.

6

T ::= A0, Rn, Vn type constructors
(atomic, record, variant)

τg , ρg ::= α, β ground type variable
| Tn τg1 . . . τgn constructed type
| Time temporal type
| Top supertype of all types

τ, ρ ::= τg ground type
| ν type variable
| τ1 × . . .× τn → τg function type

τp ::= τ1 × . . .× τn predicate type
D,C ::= {τ̄ ≤ ρ̄} subtype constraints
σ ::= ∀ᾱ.(τ |C) function type scheme
σp ::= ∀ᾱ.(τp|C) predicate type scheme

Figure 6: Formal type syntax

� a record type label environment
∏

R̂ ∈ ∏
and a

record constructor KR ∈ K for each record type
constructor R ∈ T;

� a variant type constructor environment
∑

V̂ ∈ ∑
for each variant type constructor V ∈ T;

� predicate symbols p : τp ∈ P; where
P = Ṗ] P̈,
Ṗ =

⋃
ṖTime×τ1×...×τn (τi ∈ Ω(T)), and

P̈ =
⋃

P̈τ1×...×τn(τi ∈ Ω̈(T)), ≤ :Time×Time ∈ P̈;
� function symbols f : τ ∈ F; where

F = Ḟ] F̈,
Ḟ =

⋃
ḞTime×τ1×...×τn→τg (τi, τg ∈ Ω(T)), and

F̈=
⋃

F̈τ1×...×τn→τg (τi, τg ∈ Ω̈(T)), ∗:Time ∈ F̈.
¤

Our static type system is based on functional pro-
gramming languages. Many ideas carry over from [23].
Fig. 6 summarizes our type language. Type construc-
tors T ∈ T have a �xed arity. The type Time models
discrete repository states.

We apply some restrictions to ensure that (higher-
order) functions result only in ground types (τg) and
thus the type system supports �rst-order logic proper-
ties: we do not quantify over functions. In contrast
to most functional programming languages, we restrict
ourselves to full application of a type constructor to
argument types7 and full application of functions and
predicates to argument terms. To simplify notation, we
use uncurried syntax in function and predicate types.
Furthermore, we distinct between ground types τg and
general types τ to ensure that the result type of a func-
tion is not a function type.

As usual, function and predicate type schemes (σ and
σp) are quanti�ed over all their type variables. Note
the distinction between ground type variables α and
general type variables ν. General type variables ν are

7Partial type constructor application would require a kind sys-
tem similar to that of Haskell.

reserved for type inference only, whereas ground type
variables can be used by the language designer to de�ne
polymorphic functions. This restriction is necessary to
guarantee that polymorphic functions result in a ground
type.

As we already have seen, subtypes prove practical for
document management: we can easily model document
subsets from our example via subtypes. Subtyping rules
carry over from [23]. Below, the rule SubConst de�nes
a subtype relationship between instances θτ and θρ8

if there exists a subtype axiom τ <S ρ in the subtype
theory S. As usual, the subtype relation ≤ is transitive.
For other subtyping rules see [23].

SubConst
τ <S ρ

C `S θτ ≤ θρ

SubTrans
C `S τ ≤ ρ C `S ρ ≤ τ ′

C `S τ ≤ τ ′

We have seen that rule design is a complex task. Higher-
order functions can simplify this task. But if used with-
out caution they can result in subtle evaluation errors.
Thus we provide the rule designer with a type checker
that helps him to decide whether the rules formalized
can make sense.

4 Typing Consistency Rules

The motivation behind typing consistency rules is that
only for well-typed terms and formulae we can give
a reasonable semantics. Since we allow language de-
signers to de�ne complex domain speci�c functions and
predicates the rule designer's task of writing meaningful
consistency rules becomes more complicated and must
be supported. Our example rules in Fig. 3 are well-
typed. If, however, we erroneously omit the function
symbol key within k = key(d) then a type checker ought
to warn us that there is no subtype relationship between
k's type String and d's type KDef. The type checker
we have developed supports basic subtyping and higher-
order functions, and guarantees �rst-order properties on
the formula level.

Our combined type checking and type inference al-
gorithm assigns a monomorphic type to each term.
Monomorphism is important since it allows to treat
types like primitive sorts, which can be omitted. In
conjunction with the restrictions we put on function
types this retains compatibility with traditional �rst-
order logic and supports simple set theoretic semantics.
As usual, we separate well-typedness rules from the type
inference algorithm. Both are extensions to [23].

8θ denotes a type substitution.

7

Prior to type checking we run a preprocessor that aug-
ments each unsaturated application of a partially tem-
poral symbol with a temporal parameter ∗. Well-
typedness rule judgments for terms follow the pattern
C, Γ, ∆ `S e :σ and read: �In the subtype theory S,
under subtype constraints C, variable assumptions Γ,
and symbol assumptions ∆ the term e has the type
scheme σ.� Rule judgments for formulae C, Γ, ∆ `S φ
ensure that φ is well-typed. The context ∆ holds the
types of all symbols in a signature Σ. Γ holds the types
for variables introduced by quanti�ers.

Next, we introduce some of the typing rules to demon-
strate derivation of well-typedness.

TypSymApp
C, Γ, ∆ `S s : τ1 × . . .× τn → τg C, Γ, ∆ `S ei : τi

C, Γ, ∆ `S s(e1, . . . , en) : τg

The well-typedness rule TypSymApp models valid func-
tion symbol application. If a symbol s has the function
type τ1 × . . .× τn → τg and each term ei (i ∈ {1 . . . n})
has the type τi then we can apply s to e1 through en

and s(e1, . . . , en) has type τg. Above we use ei : τi to
abbreviate e1 : τ1 . . . en : τn.

TypSub
C, Γ, ∆ `S e : τ C `S τ ≤ τ ′

C, Γ, ∆ `S e : τ ′

The well-typedness rule TypSub covers subsumption
due to subtyping. If a term e has type τ and τ is a
subtype of τ ′ (inferred through subtyping rules) then e
also has type τ ′.

TypQuant
C, Γ, ∆ `S e : [τ] C, Γ ∪ {x : τ}, ∆ `S φ

C, Γ, ∆ `S Q x ∈ e • φ
Well-typedness rules for formulae are straightforward.
The rule TypQuant corresponds to TypLet in [23] ex-
cept that the term e, de�ning the domain for x, must
have a list type. Since we understand e as a domain, e
must have some kind of �container� type.9 If e has the
type [τ] and the formula φ is well-typed under Γ, ex-
tended by the new variable assumption x : τ , then the
quanti�ed formula Q x ∈ e • φ is well-typed. Without
loss of generality, we allow only recti�ed formulae, in
which each quanti�er binds a di�erent variable. Thus Γ
cannot already contain an assumption for x. Fig. 18 (in
App. B) shows all typing rules for terms and formulae,
where we adopt abbreviations from [23].

The following example illustrates the application of the
above rules. In rule φ1 we would like to derive the type
String for the term id(m).

Example 4 First, our preprocessor extends id(m) to
id(∗,m). To infer id(∗,m) : τg the rule TypSymApp re-
quires: id : τ1 × τ2 → τg, ∗ : τ1, and m : τ2. From our

9We use lists instead of sets because lists are more familiar to
Haskell programmers � our language designers.

example signature ∆ derives ∗ : Time and id : Time ×
Doc → String. Quanti�ers push the types of their
bound variables into Γ such that m : ManD ∈ Γ. Due
to subtyping we also obtain m : Doc (TypSub). Finally,
we have id(∗,m) : String. ¤

Our type inference algorithm detects whether a con-
sistency rule is well-typed. With each term the algo-
rithm tries to associate a monomorphic type. Although
Nordlander's type inference algorithm is incomplete [23]
we use it because it is fast and easy to comprehend.
The algorithm does not involve sophisticated constraint
solving, as proposed by many other authors (see, e.g.,
[37, 28]). Whereas complete subtype inference is NP-
hard [17], Nordlander's quasi-linear algorithm is almost
as fast as standard Hindley-Milner type inference. The
major source for the algorithm's incompleteness is par-
tial application of terms, which we exclude. Further-
more, we use explicit record constructors and an anno-
tated case construct, providing further guidance.

Applied to a formula φ, our type inference algorithm
returns a type substitution θ that should instantiate
all type variables in φ to monomorphic types, which is
not always possible for well-typed formulae (see below).
Fig. 19 (in App. B) shows our type inference algorithm.
Rule judgments for terms follow the pattern

↓
C,

↑
Γ,

↑
∆ °S

↑
e :

↓
θ (

↑
σ)

where an up-arrow denotes an input to the algorithm,
whereas a down-arrow denotes an output. The above
rule judgment reads: �Given variable assumptions Γ,
symbol assumptions ∆, a subtype theory S, an expres-
sion e, and an expected type scheme σ, return subtype
constraints C and a substitution θ, instantiating σ.�
Rule judgments for formulae omit σ. Type variables ν
are fresh, i.e., they do not occur in the derivation before.

Record constructors and case annotations determine the
type of a constructed record and deconstructed variant,
respectively. This is essential for subtypes that have
exactly the same components as their supertypes, re-
sulting in similar label and constructor environments,
respectively.

ChkQuant
C, Γ, ∆ °S e : θ([ν]) C′, Γ ∪ {x : θν}, ∆ °S φ, θ′

θ′′ °S C′ \ C′Γ
θ′′(C ∪ C′Γ), Γ, ∆ °S Q x ∈ e • φ, θ′′ ◦ θ′

Our monomorphic rule ChkQuant di�ers from the poly-
morphic ChkLet rule in [23]. A quanti�ed formula
is well-typed if its domain term e has a list type [ν]
and we can infer well-typedness of the body φ under
the assumption that the bound variable x has the type
θν. The type substitution θ (returned from inferencing

8

e's type) instantiates ν. Similar to [23] we solve new
subtype constraints that reference type variables free
in Γ.10 For solving subtype constraints we essentially
use the algorithm from [23]. Without generalizing the
type of the bound variable x we allow the body φ to
instantiate the type of x to a monomorphic type. This
is not possible in Nordlander's polymorphic ChkLet
rule. For example, in ∀ t ∈ [] • ∀ x ∈ [] • repDs(t) = x
the type of t is instantiated to Time and the type of x is
instantiated to [Doc] purely by the body repDs(t) = x.

A lot of background support is provided by our tools
to ensure that only well-typed rules are evaluated. We
consider type checking a key ingredient in our frame-
work because syntactical well-typedness of consistency
rules is a vital precondition for their evaluation, which
we discuss next.

5 Evaluating Consistency Rules

In this section we show a semantics that allows to pin-
point the trouble spots making a repository inconsistent
w.r.t. a rule system. We do not restrict ourselves to
�nding out whether a repository fails to satisfy certain
rules. Instead, we want to know when, where, and why
documents in the repository are inconsistent.

Classic set theoretic semantics provides a boolean result
only and is, therefore, not su�cient for our purposes.
Evaluation of a predicate logic formula, however, as-
signs concrete values to quanti�ed variables. The basic
idea behind our tolerant semantics is to exploit these as-
signments to indicate inconsistencies. We have designed
our evaluation algorithm to provide compact informa-
tion that precisely characterize inconsistencies. Our tol-
erant semantics follows xlinkit [21], which calculates a
set of links, each containing a consistency �ag and a
value set that makes the formula true and false, respec-
tively. A major di�erence is that we also return those
atomic formulae that make a rule true or false. Authors
need a more detailed report when consistency rules grow
large and only some of many predicates falsify a rule.

5.1 Overview

For each consistency rule we generate a consistency re-
port containing a boolean result (representing boolean
truth semantics) and a diagnosis set. A diagnosis
(C, as, pst, psf) reads: �The processed formula is satis-
�ed (Consistent) for variable assignments as due to true

10CΓ returns subtype constraints that do not reference type
variables free in Γ.

State 1 doc.txt ... as shown in manual kaA1c3 ...
keys.xml <kDef key="kaA1c3"

kId="man1.xml"
kKind="technical Manual"/>

man1.xml <man kind="technical Manual"> ...
State 2 man1.xml <man kind="field Manual"> ...

Figure 7: Example repository check-ins

Generated report for rule φ1 (RAJφ1K[]) :

False,








IC,{
t 7→ 2, x 7→ {id = doc1.txt, time = 1},
k 7→ kaA1c3

}
,

∅,
{kind(m) = kKind(d)}











Generated report for rule φ2 (RAJφ2K[]) :

False,








IC,


t1 7→ 1, t2 7→ 2,

m1 7→
{
id = man1.xml, time = 1,
kind = technical Manual

}


,

{t1 ≤ t2},
{kind(m1) = kind(m2)}











Figure 8: Example generated reports

atomic formulae pst and false atomic formulae psf .� A
diagnosis (IC, as, pst, psf) indicates that the processed
formula is violated (InConsistent). The assignment as
maps variables to concrete values, e.g., timestamps or
documents. Due to temporal quanti�cation the variable
assignment as tells when and where a rule is violated.
The sets pst and psf describe why a rule is violated.

Example 5 For brevity we omit Haskell sources of
function and predicate symbol implementations. Fig. 7
shows a small repository containing a documenta-
tion doc1.txt, a key resolver keys.xml, and a manual
man1.xml the kind of which changed during the transi-
tion from state 1 to state 2. This introduces two incon-
sistencies: State 2 is inconsistent w.r.t. rule φ1 because
the link kaA1c3 is invalid at state 2. States 1 and 2 are
inconsistent w.r.t. rule φ2 because the kind of man1.xml
has changed.

The automatically generated reports shown in Fig. 8 re-
�ect these inconsistencies. The report for rule φ1 lacks
assignments to d and m � the repository is inconsistent
w.r.t. φ1 for all possible assignments to d andm, respec-
tively. The report lacks the atomic formulae k = key(d)
and id(m) = kId(d) � the key resolver contains kaA1c3,
but its de�nition is inconsistent. This means that man-
uals m with the correct name were found but that they
have the wrong kind: The �rst step of the link is con-
sistent, the second step is inconsistent. The report for
rule φ2 shows that for the manual man1.xml at state
1 no manual at state 2 could be found with the same

9

kind. The report lacks id(m1) = id(m2) because there
exists a manual man1.xml at state 2 � only its kind is
wrong.

We can react in various plausible ways to the above
reports; e.g., we might change the key resolver to point
at a �eld manual or inform the author of man1.xml
about the inconsistencies. ¤

Next, we present our algorithm that generates consis-
tency reports.

5.2 Generating Reports Automatically

As usual, we interpret temporal formulae in �rst-order
temporal structures A = (TL, I), consisting of (1) a
timeline TL interpreting temporal types, fully temporal
predicate symbols, and fully temporal function symbols;
and (2) a function I associating a time w with a non-
temporal structure Ȧ = I(w) interpreting non-temporal
types, partially temporal predicate symbols, and par-
tially temporal function symbols. Neglecting their tem-
poral parameter, record labels and variant constructors
have the usual built-in semantics: A record label selects
a �eld from a record, a variant constructor builds a vari-
ant. The domain of Time is the set of natural numbers
N, representing repository states. We interpret ≤ via
the natural �less equal� ordering.

Formally, a consistency report is de�ned as follows:

De�nition 2 A consistency report (b,D) contains a
boolean value b (representing boolean truth semantics)
and a set of diagnoses D. A diagnosis (c, as,pst,psf) ∈
D contains a consistency �ag c ∈ {C, IC}, a variable as-
signment as, and sets of atomic formulae pst and psf .

¤

The function RAJφKη generates the consistency report
for a formula φ w.r.t. the temporal structure A and the
variable assignment η � see Fig. 9. Fig. 17 (in App. A)
shows auxiliary functions used by R. Initially, R is
applied to an empty variable assignment.

Depending on their truth value we push atomic formu-
lae into pst and psf , respectively. We store the com-
plete application to identify predicate symbols that oc-
cur more than once in a formula. For a conjunction φ∧ψ
we retain the report of subformulae that are responsible
for the �nal truth value � this shortens our reports. If φ
and ψ have the same truth value we compute the carte-
sian product of their reports via the auxiliary function
⊗. Otherwise, we retain the report of the false subfor-
mula, because the false subformula is already su�cient
for making the conjunction false. For disjunctions we
use a similar approach but join reports via ⊕.

R(TL,I)Jp(e0, e1, . . . , en)Kη (p ∈ Ṗ)
= (True, {(C, ∅, {p(e0, e1, . . . , en)}, ∅)})

if (VAJe1Kη, . . . ,VAJenKη) ∈ pȦ
(False, {(IC, ∅, ∅, {p(e0, e1, . . . , en)})})
otherwise

where Ȧ = I (VTLJe0Kη)

R(TL,I)Jp(e1, . . . , en)Kη (p ∈ P̈)
= (True, {(C, ∅, {p(e1, . . . , en)}, ∅)})

if (VTLJe1Kη, . . . ,VTLJenKη) ∈ pTL
(False, {(IC, ∅, ∅, {p(e1, . . . , en)})})
otherwise

RAJ¬φKη = flip(RAJφKη)

RAJφ ∧ ψKη = rφ ⊗ rψ if fst(rφ) = fst(rψ)
rφ if fst(rφ) = False
rψ if fst(rψ) = False

where rφ = RAJφKη; rψ = RAJψKη

RAJφ ∨ ψKη = rφ ⊕ rψ if fst(rφ) = fst(rψ)
rφ if fst(rφ) = True
rψ if fst(rψ) = True

where rφ = RAJφKη; rψ = RAJψKη

RAJφ⇒ψKη = RAJ¬φ ∨ ψKη

RAJ∀ x ∈ e • φKη = ⊕(F) if F 6= ∅
⊕(T) if T 6= ∅
(True, ∅) otherwise

where F = {push(x 7→ v,RAJφKη[x 7→ v]) |
v ∈ VAJeKη and
fst(RAJφKη[x 7→ v]) = False}

T = {RAJφKη[x 7→ v] |
v ∈ VAJeKη and
fst(RAJφKη[x 7→ v]) = True}

RAJ∃ x ∈ e • φKη = ⊕(T) if T 6= ∅
⊕(F) if F 6= ∅
(False, ∅) otherwise

where T = {push(x 7→ v,RAJφKη[x 7→ v]) |
v ∈ VAJeKη and
fst(RAJφKη[x 7→ v]) = True}

F = {RAJφKη[x 7→ v] |
v ∈ VAJeKη and
fst(RAJφKη[x 7→ v]) = False}

Figure 9: Rule evaluation algorithm
(for auxiliary functions see Fig. 17 in App. A)

For a formula ∀ x ∈ e • φ we �rst evaluate the domain
term e giving a list of values. For each value v in this
list we compute φ's reports w.r.t. the assignment ex-
tension η[x 7→ v]. If φ is violated for an assignment
extension then the boolean value of the corresponding
report is false. In this case we push the current variable
assignment x 7→ v into the variable assignments of each
diagnosis in φ's report. Finally, ⊕ joins the resulting
reports in F . If F is empty then φ is satis�ed for any
assignment extension. So we join the reports in T , con-
taining the reports of satis�ed φ without x 7→ v. The
new variable assignment is super�uous here because φ
is true for every η[x 7→ v]. In a consistency report, we
understand omitted variable assignments as universally
quanti�ed. For existentially quanti�ed formulae we use

10

state repository changes rules IC CPU time
1 txt: 1n, key: 1n, man: 9n φ1, φ2 0 5.23 sec.
2 txt: 1c, 4n φ1, φ2 4 13.48 sec.
3 man: 2c φ1, φ2 14 18.95 sec.
4 man: 2c φ1, φ2 19 26.38 sec.
5 txt: 1c φ1, φ2 21 33.40 sec.
6 txt: 1c φ1, φ2 26 41.15 sec.
7 key: 1n φ1, φ2 31 47.11 sec.
8 man: 1n φ1, φ2 35 57.34 sec.
9 key: 1c φ1, φ2 36 67.14 sec.

Figure 10: Brute force checking performance

a similar approach. The rôles of T and F are, however,
�reversed� because an existentially quanti�ed formula
is already satis�ed if its child formula is true for one
assignment extension.

Note that variable assignments inside diagnoses can
only contain quanti�ed variables. So we must be
careful when replacing quanti�ers by applications of
concatMap.

The evaluation function VAJeKη returns the value of a
term e w.r.t. a temporal structure A and a variable as-
signment η. We calculate values as usual in two-sorted
temporal logics; for brevity we omit a formal de�ni-
tion. Applications of partially temporal function sym-
bols f(e0, e1, . . . , en) �rst evaluate the temporal param-
eter e0, select its associated non-temporal structure Ȧ,
and apply the interpretation of f in Ȧ to the evaluations
of e1 through en.

We demonstrate the algorithm above by showing part
of the report generation for rule φ1.

Example 6 In the rule φ1 the topmost quanti-
�er ∀ t ∈ repStates • φ �rst evaluates repStates to
[1, 2] and calls R with two variable assignments,
RAJφK[t 7→ 1] and RAJφK[t 7→ 2]. The former results in
a true report (True, ∅). The latter reports the following
inconsistency:


False,








IC,{
x 7→ {id = doc1.txt, time = 1},
k 7→ kaA1c3

}
,

∅,
{kind(m) = kKind(d)}











We push the assignment t 7→ 2 into the above report via
push(t 7→ 2,RAJφK[t 7→ 2]). Since F contains exactly
one report ⊕(F) results in the �nal report, shown in
Fig. 8. ¤

We have implemented our consistency checker into the
revision control system darcs [30]. Evaluating our ex-
ample brute force is by far not satisfactory. Fig. 10
sketches the development of a �toy� repository, which
we shall use throughout.11 The second column shows

11Tests are performed on a Dell X200 laptop; 800 MHz PIII
CPU.

how many documents were added (n) or changed (c)
during a state transition. We use man for manuals, key
for key resolvers, and txt for other text documents. The
third column contains the rules evaluated. Inconsisten-
cies found are summarized in the fourth column. The
�nal column shows the CPU time needed for the consis-
tency check. To great extent CPU time depends on the
repository state because brute force checking evaluates
every repository state.

In order to make our approach viable it is absolutely
necessary to develop methods that decrease evaluation
time.

6 Speeding up
Consistency Checking

We have seen that it is infeasible to check consistency
rules brute force. In this section we consider static and
dynamic methods to decrease the computational com-
plexity of evaluating �rst-order consistency rules. For
simplicity we shall neglect the individual computational
complexity of functions and predicates. We designed
our methods to make as few as possible assumptions to
the underlying DMS. We only require (1) a repository
to access past documents, (2) a locking mechanism that
avoids updates during a consistency check, and (3) that
the DMS signals the documents added or changed by
an update. Since we do not require a speci�c document
model our techniques also apply to revision control sys-
tems, such as CVS or darcs.

6.1 Static Analysis

Static analysis tries to localize and simplify consistency
rules before they are evaluated against a repository. It is
performed almost exclusively on a syntactical level. Lo-
calizing a rule means to associate it with the set of those
documents that can possibly a�ect it � thus reducing
the number of rules to be re-evaluated at a repository
check-in. A rule is simpli�ed by minimizing its quanti-
�er nesting and thus reducing the static evaluation time
complexity. We shall only sketch our methods here be-
cause they are straightforward adaptions to techniques
known from databases [9, 14].

When the DMS signals that the repository has changed,
we want to re-evaluate only those consistency rules that
might be a�ected by these updates. With each rule
we associate a set of a�ected documents because we
also want to extend revision control systems, such as

11

CVS, that lack a formal document model.12 Rule lo-
calization depends on appropriate metadata for func-
tions and predicates. Static Haskell code analysis helps
the language designer to add these metadata. Then, a
straightforward algorithm associates a consistency rule
with a document set. For example, it associates the
rule φ1 with all text documents and all XML doc-
uments (*.txt|*.xml), and the rule φ2 with manu-
als only (man*.xml). That is because repDs accesses
text documents and XML documents (*.txt|*.xml),
repManDs accesses manuals only (man*.xml), repResDs
accesses key resolvers only (key*.xml), and refs ac-
cesses the documents of its second argument only.

The computational cost to evaluate a consistency rule
depends on the deepest quanti�er nesting, which is min-
imal if the scope of each quanti�er is minimal. Such for-
mulae are called miniscope [43]. Consider the following
rule φ′1:

φ′1 = ∀ t ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •
∃ d ∈ concatMap(t, kDefs, repResDs(t)) •
k = key(d) ∧(∃ m ∈ repManDs(t) • id(m) = kId(d) ∧

kind(m) = kKind(d)

)

Here, the existential quanti�er over m was moved into
the conjunction, which is sound because k = key(d)
does not contain m. Since the existential quanti�er has
a smaller scope now, φ′1 can be evaluated faster than
φ1. Let e.g., each domain have a cardinality of n and
each atomic formula evaluate in constant time t, then
evaluating φ1 costs n5 ·3t while evaluating φ′1 costs only
n4 · t+ n5 · 2t. Due to our simple example the speedup
is not very impressive. For more complex rules we ex-
perienced greater speedups.

We adapt the techniques in [8] to convert our rules
to miniscope. Miniscoping also removes implications,
pushes negations into formulae, and ��attens� nested
conjunctions and disjunctions. Our incremental evalu-
ation algorithm bene�ts from these simpli�cations.

Miniscoping the rule φ2 removes the implication by a
disjunction and pushes the universal quanti�er over m1

into the right hand side of this disjunction:

φ′2 = ∀ t1 ∈ repStates∗ • ∀ t2 ∈ repStates∗ •
¬(t1 ≤ t2) ∨(∀ m1 ∈ repManDs(t1) • ∃ m2 ∈ repManDs(t2) •
id(m1) = id(m2) ∧ kind(m1) = kind(m2)

)

Let us return to our toy repository: How does static
analysis improve evaluation time? Fig. 11 shows some
bene�ts, especially when the second rule is not re-
evaluated. Improvements achieved by miniscoping can

12In more sophisticated DMS we could also de�ne document
classes (so-called stereotypes) and associate these classes with
consistency rules.

state repository changes rules IC CPU time
1 txt: 1n, key: 1n, man: 9n φ1, φ2 0 4.44 sec.
2 txt: 1c, 4n φ1 4 9.55 sec.
3 man: 2c φ1, φ2 14 15.25 sec.
4 man: 2c φ1, φ2 19 20.40 sec.
5 txt: 1c φ1 21 23.46 sec.
6 txt: 1c φ1 26 27.98 sec.
7 key: 1n φ1 31 32.50 sec.
8 man: 1n φ1, φ2 35 44.66 sec.
9 key: 1c φ1 36 45.34 sec.

Figure 11: Improvements by static analysis

be seen in states where both rules are re-evaluated. The
results are, however, unsatisfactory: Still rule evalua-
tion time depends on the repository state. One of the
major reasons is that we access documents at previous
repository states. Usually, the DMS rebuilds these doc-
uments step by step using state transition descriptions,
e.g., di�s or patches. Next, we discuss dynamic meth-
ods, which attempt to avoid accessing past document
versions.

6.2 Incremental Evaluation

The major goals of incremental evaluation are: (1) ac-
cess only current document versions and (2) as far as
possible access changed or new documents only. A very
simple strategy would be the following: Static rules
quantify only once over all repository states and lack
calculations of time, e.g., φ1. Thus we can copy the re-
port from the previous evaluation and evaluate the rule
w.r.t. the new repository state only. This, of course,
breaks down for temporal rules (e.g., φ2), which relate
di�erent repository states.

We, therefore, developed a general technique that also
applies to temporal rules. As usual, it is most challeng-
ing to balance the speedup against the space needed for
storing auxiliary information. Our approach needs only
few additional information (see Sect. 6.4). Instead it
exploits previous reports to re-evaluate rules only w.r.t.
a part of the documents they a�ect. Our strategy is as
follows:

1. Keep the old report from the last evaluation.

2. If possible re-evaluate a rule only on new or
changed domain values. For old domain values
copy the relevant part from the old report.

A fundamental prerequisite to incremental evaluation is
that the consistency report of a rule remains constant
if its quanti�er domains remain constant. This requires
that the result of a function or predicate depends on
its parameters only � a feature called referential trans-
parency in functional programming. In general, Haskell

12

guarantees referential transparency. Since in our ap-
proach language designers use Haskell to de�ne symbol
semantics, the strategy above is sound.

A notable exception is the �unsafe� function repStates,
which is not referentially transparent because it reads
the number of already performed check-ins directly from
the repository (see Sect. 6.4).

In order to support incremental evaluation, the lan-
guage designer associates with each function symbol
and each predicate symbol those parameters it actu-
ally depends on. For example, the partially temporal
function symbol refs does not depend on its temporal
parameter. Within rules a straightforward algorithm
marks subformulae and quanti�er bounding terms with
the variables they actually depend on. Below, we have
marked our example rules φ′1 and φ′2 where variables
appear as superscripts. (∗ means that a subformula or
quanti�er bounding term contains repStates, i.e., it is
unsafe.)
φ′1 = ∀∗ t ∈ repStates∗ • ∀t x ∈ repDs(t)t •

∀t,x k ∈ refs(x)x •
∃t,k d ∈ concatMap(t, kDefs, repResDs(t))t •
k =k,d key(d) ∧t,k,d(∃t,d m ∈ repManDs(t)t • id(m) =d,m kId(d) ∧d,m

kind(m) =d,m kKind(d)

)

φ′2 = ∀∗ t1 ∈ repStates∗ • ∀∗ t2 ∈ repStates∗ •
¬(t1 ≤t1,t2 t2)t1,t2 ∨t1,t2

∀t1,t2 m1 ∈ repManDs(t1)t1 •
∃t2,m1 m2 ∈ repManDs(t2)t2 •
id(m1) =m1,m2 id(m2) ∧m1,m2

kind(m1) =m1,m2 kind(m2)




In order to narrow quanti�er domains we partition them
into four sets: new contains new values, chg contains
changed values, del contains values that have been
deleted, and old contains values that remained con-
stant. Finally, we extend variable assignments, which
map variables to values, to also mark variables as new
and old, respectively.

The central idea behind our incremental evaluation al-
gorithm is to re-evaluate a subformula only if it depends
on a variable marked as new in the current assignment
or if it contains an unsafe function or predicate. In case
a subformula depends only on old variables and contains
only referentially transparent functions and predicates,
we copy part of the old report and abort re-evaluation
of this subformula.

Before detailing the formalism we illustrate our incre-
mental strategy with an example:

Example 7 Consider a check-in of a new manual
man2.xml at state 3 also referencing the key kaA1c3:

<man kind="field M.">
... <see>kaA1c3</see> ... </man>

[] []

t:

k: k:k: k:

x:

[, , 3]1 2

kaA1c3 kaA1c3[] []

copy (,{t (1,o)})
copy (,{t (2,o)})

d: d:

m: m:

key = kaA1c3 key = kaA1c3
kId = man1.xml kId = man1.xml
kKind = technical M. kKind = technical M.

copy copy() () , , { {{ {t (2,n), x (...,o) t (2,n), x (...,o)
k (...,o), d (...,o) k (...,o), d (...,o)
m (...,o) m (...,o)

[]

[] []

[] []

id = doc1.txt id = man1.xml

id = man1.xml id = man1.xml

id = man2.xml

id = man2.xml id = man2.xml

id = keys.xml
time = 1 time = 2

time = 2 time = 2

time = 3

time = 3 time = 3

time = 1{

{ {{ {

{

{ {

{

{ {

{{ {

{ {

{

{ {

{

re−
evaluate

re−
evaluate

re−
evaluate

re−
evaluate

R

R

R R

Figure 12: Incremental evaluation of rule φ′1

We have to re-evaluate both rules. Fig. 12 shows how
our incremental algorithm evaluates rule φ′1. In the tree
vertices represent conjunctions, disjunctions, or quanti-
�er domains where old values are grey and new values
are black. A path from the root to a leaf represents an
assignment.

During evaluation of rule φ′1 we �rst calculate t's do-
main, which results in the sets new = {3}, chg = ∅,
old = {1, 2}, and del = ∅. Since t's subformula depends
only on t and is referentially transparent we can abort
re-evaluation for values in old. Instead, we copy rele-
vant states from the old report r, which results in a
true report (True, ∅) for t 7→ 1 and the following report
for t 7→ 2 (assignments in reports lack variable mark-
ers):

(
False,{(
IC, {x 7→ {id= doc1.txt, time= 1}, k 7→ kaA1c3},
∅, {kind(m)=kKind(d)}

)}
)

The report above lacks the binding t 7→ 2, which is
removed while copying. When we �nally evaluate t's
quanti�er the binding for t is �pushed� in again. Note
that the domain of k contains only old values when it
is evaluated for x 7→ {id = doc.txt, time = 1} because
the bounding term refs(x)x depends on the old vari-
able x only (see Sect. 6.4). Re-evaluating φ1 for t 7→ 3
results in:




False,



(
IC, {x 7→ {id= doc1.txt, time= 1}, k 7→ kaA1c3},
∅, {kind(m)=kKind(d)}

)
,

(
IC, {x 7→ {id=man2.xml, time= 3}, k 7→ kaA1c3},
∅, {kind(m)=kKind(d)}

)








Pushing the bindings t 7→ 2 and t 7→ 3 into the reports
above results in the �nal report:

13




False,




 IC,

{
t 7→ 2, x 7→ {id= doc1.txt, time= 1},
k 7→ kaA1c3

}
,

∅, {kind(m)=kKind(d)}


,


 IC,

{
t 7→ 3, x 7→ {id= doc1.txt, time= 1},
k 7→ kaA1c3

}
,

∅, {kind(m)=kKind(d)}


 ,


 IC,

{
t 7→ 3, x 7→ {id=man2.xml, time= 3},
k 7→ kaA1c3

}
,

∅, {kind(m)=kKind(d)}











Due to our strategy we copied some part of the old
report during evaluation of the new repository state
(t 7→ 3). Notice, however, that bindings to the current
state 3 are lifted to the previous state 2 because the old
report cannot contain a binding t 7→ 3.

Evaluation of rule φ′2 proceeds similar to the evaluation
of rule φ′1. Fig. 13 shows the e�ectiveness of our in-
cremental evaluation strategy for temporal consistency
rules. The �nal report for rule φ′2 at state 3 shows that
state 1 is inconsistent with the states 2 and 3:




False,






IC,




t1 7→ 1, t2 7→ 2,

m1 7→
{
id = man1.xml, time = 2,
kind = technical M.

}


 ,

{t1 ≤ t2}, {kind(m1) = kind(m2)}


 ,




IC,




t1 7→ 1, t2 7→ 3,

m1 7→
{
id = man1.xml, time = 2,
kind = technical M.

}


 ,

{t1 ≤ t2}, {kind(m1) = kind(m2)}











¤

6.3 An Incremental
Evaluation Algorithm

In this section we formalize our algorithm � an in-
cremental variant of brute force evaluation shown in
Sect. 5.2.

The function IVAJeKη calculates the domain e of a quan-
ti�ed formula w.r.t. a temporal structure A and an as-
signment η. It results in the four sets new, chg, old, and
del (see Sect. 6.4). In contrast, VAJeKη performs classic
value computation of terms outside domains.

Our incremental report generator IRb
AJφKη (see Fig. 14)

is initially applied to an empty assignment. The
boolean parameter b determines whether the evaluated
subformula is immediately below a quanti�er. Only
then it is sound to copy part of the old report be-
cause conjunctions and disjunctions combine reports
non-trivially. Since miniscoping �attens conjunctions
and disjunctions this restriction has only low impact.
Also due to miniscoping, we can neglect negations of
non-atomic formulae. This simpli�es our algorithm.

t :
[

,
,

]3
21

1

m
 :

m
 :

re
−e

va
lu

at
e

re
−e

va
lu

at
e

1

2

t : 2
[

,
,

] 3
2

1

[

 ,

]

{

{

id
 =

 m
an

1.
xm

l,
tim

e
=

2
kin

d
=

fie
ld

 M
.

{

{

id
 =

 m
an

2.
xm

l,
tim

e
=

3
kin

d
=

fie
ld

 M
.

[

]
{

{

id
 =

 m
an

1.
xm

l,
tim

e
=

1
kin

d
=

te
ch

ni
ca

l M
.

co
py

(

)

,

{

{t

(1
,o

),
t

(2

,n
)

m

 (
...

,o
),

m

 (
...

,o
)

11

2

2

2 2

co
py

 (
 ,{

t
 (

1,
o)

, t

 (1
,o

)})

co
py

 (
 ,{

t
 (

1,
o)

, t

 (2
,o

)})

m
 :

m
 :

re
−e

va
lu

at
e

re
−e

va
lu

at
e

1

2

t : 2
[

,
,

] 3
2

1

[

 ,

]

{

{

id
 =

 m
an

1.
xm

l,
tim

e
=

2
kin

d
=

fie
ld

 M
.

{

{

id
 =

 m
an

2.
xm

l,
tim

e
=

3
kin

d
=

fie
ld

 M
.

[

]
{

{

id
 =

 m
an

1.
xm

l,
tim

e
=

2
kin

d
=

fie
ld

 M
.

co
py

(

)

,

{

{t

(2
,o

),
t

(2

,n
)

m

 (
...

,o
),

m

 (
...

,o
)

11

2

2

[
,

,
] 3

2
1

t : 2

re
−e

va
lu

at
e

re
−e

va
lu

at
e

re
−e

va
lu

at
e

re
−e

va
lu

at
e

re
−e

va
lu

at
e

re
−e

va
lu

at
e

re
−e

va
lu

at
e

re
−e

va
lu

at
e

[

 ,

]

{

{

id
 =

 m
an

1.
xm

l,
tim

e
=

2
kin

d
=

fie
ld

 M
.

{

{

id
 =

 m
an

2.
xm

l,
tim

e
=

3
kin

d
=

fie
ld

 M
.

[

 ,

]

{

{

id
 =

 m
an

1.
xm

l,
tim

e
=

2
kin

d
=

fie
ld

 M
.

{

{

id
 =

 m
an

2.
xm

l,
tim

e
=

3
kin

d
=

fie
ld

 M
.

[

 ,

]

{

{

id
 =

 m
an

1.
xm

l,
tim

e
=

2
kin

d
=

fie
ld

 M
.

{

{

id
 =

 m
an

2.
xm

l,
tim

e
=

3
kin

d
=

fie
ld

 M
.

[

 ,

]

{

{

id
 =

 m
an

1.
xm

l,
tim

e
=

2
kin

d
=

fie
ld

 M
.

{

{

id
 =

 m
an

2.
xm

l,
tim

e
=

3
kin

d
=

fie
ld

 M
.

[

]

[

]

{

{

id
 =

 m
an

1.
xm

l,
tim

e
=

2
kin

d
=

fie
ld

 M
.

{

{

id
 =

 m
an

1.
xm

l,
tim

e
=

1
kin

d
=

te
ch

ni
ca

l M
.

[

 ,

]

{

{

id
 =

 m
an

1.
xm

l,
tim

e
=

2
kin

d
=

fie
ld

 M
.

{

{

id
 =

 m
an

2.
xm

l,
tim

e
=

3
kin

d
=

fie
ld

 M
.

m
 : 2

m
 : 2

m
 : 2

m
 : 1

m
 : 1

m
 : 1

co
py

(

)

,

{

{t

(2
,n

),
t

(2

,n
)

m

 (
...

,o
),

m

 (
...

,o
)

11

2

2

co
py

co
py

(

)

(

)

,

,

{

{

{

{

t

(2
,n

),
t

(2

,o
)

t

(2
,n

),
t

(1

,o
)

m

 (
...

,o
)

m

 (
...

,o
)

1

1

1

1

2

2

R

R

R

1 1

2 2

co
py

 (
 ,{

t
 (

2,
o)

, t

 (1
,o

)})

co
py

 (
 ,{

t
 (

2,
o)

, t

 (2
,o

)})

R R

R

R

R

R

1 1

Figure 13: Incremental evaluation of rule φ′2

14

IRb(TL,I)Jp(e0, e1, . . . , en)xsKη (p partially temporal)
= copy(r, η) if notEval(b, xs, η)

(True, {(C, ∅, {p(e0, e1, . . . , en)}, ∅)})
if (VAJe1Kη, . . . ,VAJenKη) ∈ pȦ

(False, {(IC, ∅, ∅, {p(e0, e1, . . . , en)})})
otherwise

where Ȧ = I (VTLJe0Kη) ;

IRb(TL,I)Jp(e1, . . . , en)xsKη (p temporal)
= copy(r, η) if notEval(b, xs, η)

(True, {(C, ∅, {p(e1, . . . , en)}, ∅)})
if (VTLJe1Kη, . . . ,VTLJenKη) ∈ pTL

(False, {(IC, ∅, ∅, {p(e1, . . . , en)})})
otherwise

IRbAJφ ∧xs ψKη = copy(r, η) if notEval(b, xs, η)
rφ ⊗ rψ if fst(rφ) = fst(rψ) = False

rφ if fst(rφ) = False

rψ if fst(rψ) = False

(True, ∅) otherwise
where rφ = IRFalse

A JφKη; rψ = IRFalse
A JψKη

IRbAJφ ∨xs ψKη = copy(r, η) if notEval(b, xs, η)
rφ ⊕ rψ if fst(rφ) = fst(rψ) = False

(True, ∅) otherwise
where rφ = IRFalse

A JφKη; rψ = IRFalse
A JψKη

IRbAJ(¬φ)xsKη = copy(r, η) if notEval(b, xs, η)
flip(IRbAJφKη) otherwise

IRbAJ∀xs x ∈ e • φKη
= copy(r, η) if notEval(b, xs, η)
⊕(F) if F 6= ∅
(True, ∅) otherwise

where (new, chg, old, del) = IVAJeKη
rs =

{(
v, IRTrue

A JφK η[x 7→ (v, o)]
) | v ∈ old

} ∪{(
v, IRTrue

A JφK η[x 7→ (v, n)]
) | v ∈ new∪chg}

F = {push(x 7→ (v, o), r)

| (v, r) ∈ rs and fst(r) = False}

IRbAJ∃xs x ∈ e • φKη
= copy(r, η) if notEval(b, xs, η)

(False, ∅) if T = F = ∅
(True, ∅) if T 6= ∅
⊕(F) otherwise

where (new0, chg, old0, del) = IVAJeKη
new = new0 ∪ old0 ∪ chg if del 6= ∅ or chg 6= ∅;

new0 otherwise
old = ∅ if del 6= ∅ or chg 6= ∅;

old0 otherwise
rs =

{IRTrue
A JφK η[x 7→ (v, o)] | v ∈ old

} ∪{IRTrue
A JφK η[x 7→ (v, n)] | v ∈ new

}

T = {r | r ∈ rs and fst(r) = True}
F = {r | r ∈ rs and fst(r) = False}

Figure 14: Incremental evaluation algorithm for an-
notated rules (for auxiliary functions see Fig. 17 in
App. A)

For readability we introduce a global variable r, which
represents the old report.

For every formula notEval(b, xs, η) determines whether it
appears immediately below a quanti�er, it depends only
on variables xs marked as old in the current assignment
η, and contains referentially transparent functions and
predicates only. In this case we copy the relevant states
from the old report r.13 (copy replaces bindings to the
current repository state with bindings to the previous
repository state.)

The most important case is an existentially quanti�ed
formula. Due to miniscoping all quanti�ers occur pos-
itively in a formula. So existential quanti�ers cannot
appear �disguised� as negated universal quanti�ers. We
�rst compute the domain, resulting in the four sets
new0, chg, old0, and del. The general idea is to mark the
values in new and chg as new (n) and the values in old
as old (o). Then the subformula is evaluated for possi-
ble assignment extensions to these values (η[x 7→ (v, n)]
and η[x 7→ (v, o)], respectively). Alas this is only sound
if no values were changed or deleted in the domain, i.e.,
chg = del = ∅. Naturally, an existentially quanti�ed for-
mula can become false just from deleting values in its
domain. Adding new values to the domain cannot fal-
sify an existentially quanti�ed formula. Consequently,
if either chg or del contains values we must mark every
domain value as new in the assignment extensions. So
the worst cases for incremental evaluation are changed
or deleted values in domains of existential quanti�ers.

We could overcome the restrictions above by adding ex-
plicit information to the reports, which values in the do-
main of an existential quanti�er made a rule consistent
or inconsistent. We would really like to do so but we
experienced that reports become extremely large when
we stored these additional values. Consequently, our
tradeo� is to avoid storing these additional information
and accept that evaluation of existential quanti�ers can
be slower than evaluation of universal quanti�ers. Uni-
versal quanti�ers do not su�er from changed or deleted
domain values because our reports already store the val-
ues that make a rule inconsistent � they pinpoint incon-
sistencies.

Let us return to our toy repository. What does incre-
mental evaluation buy? Fig. 15 shows the performance
of our consistency checker using both static analysis
and incremental evaluation. Now, evaluation time de-
pends rather on the changed content than on the repos-
itory state. Notice that except for states 3 and 4 every

13A state in the old report may contain an assignment more
detailed or more general than η. Therefore, we copy all states
containing assignments that subsume or are subsumed by η. An
assignment as1 subsumes an assignment as2 if each variable bind-
ing in as1 also occurs in as2, where we neglect variable markers.

15

state repository changes rules IC CPU time
1 txt: 1n, key: 1n, man: 9n φ1, φ2 0 4.47 sec.
2 txt: 1c, 4n φ1 4 2.33 sec.
3 man: 2c φ1, φ2 14 6.45 sec.
4 man: 2c φ1, φ2 19 6.58 sec.
5 txt: 1c φ1 21 2.68 sec.
6 txt: 1c φ1 26 2.53 sec.
7 key: 1n φ1 31 3.09 sec.
8 man: 1n φ1, φ2 35 4.01 sec.
9 key: 1c φ1 36 3.61 sec.

Figure 15: Overall performance using static analysis
and incremental evaluation

evaluation is faster than the initial evaluation although
the repository grows. The simple initial strategy from
Sect. 6.2 cannot achieve this.

6.4 Technical Notes

In this section, we discuss some of the rather techni-
cal details we came across while implementing our ap-
proach.

We interface the repository through some Haskell func-
tions (see Sect. 7.1) to get the timestamps of already
performed check-ins (repStates), get documents at a
given check-in time, and parse documents via a Haskell
function. The repository guarantees that, except for
repStates, interface functions are referentially trans-
parent, although they involve IO. The interface func-
tion repStates cannot be referentially transparent be-
cause it reads the timestamps of already performed
check-ins directly from the repository, and thus its re-
sult will change between (but not during) consistency
checks. Straightforward source code analysis deter-
mines whether a function or predicate de�ned by the
language designer is referentially transparent, i.e., it
does not call repStates.

A simple approach to incremental evaluation would re-
quire to store every quanti�er domain from the previous
evaluation. This is, however, not feasible because quan-
ti�er domains may become unexpectedly large as we do
not control their vocabulary. For example, a quanti�er
might iterate over the complete document content.

Instead of storing domains, we memoize certain func-
tions that occur in quanti�er bounding terms. This
reduces the space needed for storing intermediate data
while maximizing the bene�ts for incremental evalua-
tion. We distinguish functions w.r.t. their result type.
Storing timestamps needs only few space. We also con-
sider documents by exploiting a natural property of a
DMS: A document can be identi�ed by its name and
check-in time only. Since we only need to know whether
a document has been touched by a check-in we store the

�Doc-part� of each function the result type of which is
a subtype of [Doc]. Thus we neglect additional record
labels, such as kind in ManD. In summary, we memo-
ize each function that occurs in a quanti�er bounding
term and has either [Time] or a subtype of [Doc] as re-
sult type. In our example these are: repStates, repDs,
repResDs, and repManDs. Since we memoize functions
instead of storing domains the domain of d in φ1 is also
incrementally evaluated.

We calculate domains via IV. If IV encounters an ap-
plied function symbol returning a result of either type
[Time] or a subtype of [Doc] it calculates the four lists
new, chg, old, and del from the current result and the
stored result from the previous evaluation. These lists
are propagated up the term structure. Therefore, some
restrictions apply to quanti�er bounding terms. We
only permit functions that treat each list member sep-
arately, e.g., concatMap.

We apply IV also to bounding terms that lack memoized
functions, e.g., refs(x) in φ1. If such a term depends
on variables marked as new the current assignment or
it is unsafe the lists old, chg, and del are empty and
new contains the complete domain. If, otherwise, such
a term only depends on variables marked as old in the
current assignment and it is referentially transparent IV
returns all domain values in old while new, chg, and del
are empty. This is sound because the domain cannot
have changed due to referential transparency.

7 Implementing
Consistency Rules

This section sketches our implementation and presents
some lessons learned from our experiments.

7.1 Prototype Implementation

How do we perform a consistency check in practice?
Our consistency checker is implemented in Haskell.
Currently, we interface the revision control system darcs
[30]. Assume an author checks in a document. Then,
darcs �rst performs some tests to ensure that the
changes submitted may be applied to the repository.
If this test succeeds darcs calls our consistency checker
via a system call. We use a system call because of its
simplicity. During the run of our consistency checker
the repository is locked, i.e., no check-ins can be per-
formed. In case all strict rules are satis�ed our consis-
tency checker �nishes normally and darcs acknowledges
the check-in. Otherwise, the check-in is rejected.

16

Our consistency checker reads the rules to check from
the project description supplied by the project manager.
The next step is to type-check the rules against the func-
tions and predicates they use. Usually, the language
used is not changed between consistency checks. In this
case we dynamically link auxiliary Haskell modules to
the running consistency checker (the modules have been
compiled during a previous consistency check). These
Haskell modules contain implementations of functions,
predicates, and types. Haskell lacks subtyping. We,
therefore, resolve subtype relationships through (1) co-
ercion functions, which coerce a subtype to its super-
type, and (2) marshalling functions, which convert a
Haskell value into a value as required by our consis-
tency checker. Now, we can call the functions supplied
by the language designer in order to check the reposi-
tory for consistency. Consistency checking uses the al-
gorithm from Sect. 5.2. If, however, the language used
has changed since the last consistency check we gen-
erate the above Haskell modules and compile them by
the Haskell compiler GHC. The GHC also type-checks
functions and predicates implemented by the language
designer. All this is performed in the background.

As already mentioned we make only few assumptions
about the underlying DMS or revision control system.
We have developed a simple repository interface, which
must be instantiated for a speci�c repository type, e.g.,
darcs or CVS. The interface consists of �ve Haskell
functions (Rep denotes a Haskell type representing the
repository):14

� repStates :: Rep -> [Time] returns all states
of a given repository.

� repHeadState :: Rep -> Time returns the repos-
itory head, i.e., the current state.

� repDocs :: Rep -> Time -> String -> [Doc]
returns the documents in the repository that are
current at a given time and match a regular ex-
pression. For example, repDocs repo 2 "*.xml"
returns all XML documents current at state 2.

� repFolders :: Rep -> Time -> String ->
[Folder] behaves similarly to repDocs but
returns directories instead.

� parseDoc :: Rep -> Doc -> (String -> a)
-> Maybe a accesses a given document in the
repository. The third parameter is a function
that parses the document content and converts it
into an appropriate Haskell data structure. For

14Due to dynamic linking we cannot use a Haskell type class
here. Instead we provide an abstract data type Rep.

XML documents these parser functions can be
generated.

� repChanges :: ClockTime -> Rep -> [String]
returns a list of document names and folder names
that have been changed since the last evaluation,
determined by the �rst parameter.

Except for repChanges the interface functions above
can be used by the language designer. Our tools gener-
ate the repository argument and provide it as a top-
level Haskell function repo. The interface function
repChanges is essential for �ltering consistency rules.

7.2 Lessons Learned

In order to test the feasibility and the practical rele-
vance of our approach, we currently run a project to-
gether with sd&m15 � a well established software com-
pany in Munich, Germany. We formalize consistency
rules for sd&m's analysis modules [38, 34] � a docu-
ment-based approach to software speci�cation. Applied
to an example speci�cation our consistency checker pre-
cisely identi�es inconsistencies such that developers can
concentrate on their real work: the speci�cation should
re�ect the requirements of the system speci�ed. Due
to incremental consistency checking our prototype per-
forms at reasonable speed.

Prior to formalization consistency rules were described
in natural language only and were distributed over all
analysis modules. Rules were imprecise, thus imposing
misinterpretations and contradictions. Worse, software
engineers had to spend a lot of time just to ensure for-
mal consistency between the documents of a speci�ca-
tion.

Formalizing the rules and collecting them into a rule
system resulted in a much better and precise under-
standing of what consistency means. Furthermore, we
learned to understand the consistency rules themselves
better. Some rules were dropped because they failed to
re�ect what was actually required from a software en-
gineering point of view. Subtypes played an important
rôle: they signi�cantly decreased the number of types
and functions declared. This simpli�ed formalization.
We also learned to appreciate our type checker, which
has pinpointed a lot of formalization errors especially
when polymorphic higher-order functions were used.

There is also some bad news. We had to spend much
time in formalizing the rules and in de�ning appropriate
types, functions, and predicates. Still, formalization is

15see www.sdm.de

17

a complex task. We are, however, convinced that the
bene�ts of our approach outweigh the costs.

We have as yet not tested our consistency checker �in
the wild.� This will be certainly one of the next steps.

8 Related Work

Because managing consistency is a fundamental prob-
lem a huge body of related work exists; here we iden-
tify research areas that are closely related to our ap-
proach. In contrast to our approach, most of the other
approaches enforce consistency.

Programming language environments [29] evaluate se-
mantic rules of the underlying programming language
on abstract syntax trees of source code documents.
Later work on software engineering environments [39]
provides consistency checks across di�erent documents.
Rules are, however, limited to a subset of a (non-
temporal) �rst-order logic.

Various database systems [9] employ integrity con-
straints. Our approach shares some ideas with Thémis
[4]: Higher-order complexity is encapsulated in func-
tions and thus hidden from �rst-order rules. Recent
works on semistructured databases [5] and integrity
constraints for web sites [11] use decidable subsets of
�rst-order logic. We need more expressive power as our
examples have shown.

At �rst sight, we might use the DMS metadata database
and allow violations of database integrity constraints.
The database �corset� is, however, too strict and lim-
ited to document metadata only. Complex rules, e.g.,
�referenced sections should keep similar over time,� re-
quire to inspect document content via information re-
trieval techniques [44]. Metadata impinging consistency
may change, which would require to adapt the database
schema. For smaller projects the database approach
appears too heavy weight. Of course, our database-
independent approach can still use databases for fast
metadata access.

In software engineering [12, 24] tolerating inconsistency
is considered more pro�table than enforcing consistency.
Many-valued logics help to model inconsistencies and
their consequences [10]. We argue, however, that classic
logic is easier to understand for users and that our ap-
proach is powerful enough to manage consistency. Our
priority levels for rules can be considered as a coarse
grained approach to many-valued logic.

The idea to compute inconsistency diagnoses rather
than just detecting that an inconsistency has occurred

is not new. It has been explored in the context of
knowledge bases [41] and for analyzing consistency be-
tween documents [21]. While for knowledge bases de-
cidability of the implication problem is crucial, we �nd
closer relationships in the context of distributed doc-
uments. xlinkit [21] statically checks distributed doc-
uments against user-de�ned consistency rules and im-
plements tolerant consistency. Rules are formalized in
an untyped non-temporal �rst-order logic employing
user-de�ned predicates the semantics of which is im-
plemented in a Javascript �blackbox.� This hinders the
reuse of already available algorithms. We share many
ideas with xlinkit but use a repository, which has a lot of
advantages: (1) DMS and repositories are widely used
and provide useful management mechanisms, e.g., doc-
ument locking; (2) Internet access to a repository al-
ready supports distribution; and (3) history information
(already stored by DMS) is a precondition for tempo-
ral consistency rules and incremental evaluation. Fur-
thermore, we employ a sophisticated type system that
helps to de�ne meaningful consistency rules. We ar-
gue that DMS-managed repositories support collabora-
tive distributed work and should be extended to provide
consistency management.

As far as document types are concerned, we might also
have used �nite tree automata [40]. We decided not
to do so because our type system is closer to the type
system of Haskell � the programming language used by
language designers.

Incremental programming languages [18, 46] provide a
uniform approach to incremental computation. They
attempt to minimize redundant computation provided
that a program runs repeatedly on slightly di�erent in-
puts. To produce the current results of a program run,
incremental computation uses previous results, di�er-
ences between previous inputs and current inputs, and
auxiliary information. We can regard quanti�ed formu-
lae as �functions� having the quanti�er domain as input,
which is reduced during incremental evaluation.

From its origin, the database community has been striv-
ing for e�cient algorithms that check integrity con-
straints [27, 9, 35, 14], maintain views [13], and op-
timize queries [2]. Usually, these approaches employ
the following techniques: Compile-time analysis sim-
pli�es integrity constraints and identi�es update types
that might violate constraints. Run-time approaches
use previous results to avoid re-computation. In the
context of �rst-order logic they reduce quanti�er do-
mains.

In general, we follow the database community approach
but lack a formal database schema, formalized updates,

18

and consistency prior to updates. This makes our ap-
proach to incremental evaluation more complicated. We
cannot bene�t from constraint subsumption because
this is undecidable in our rule language; miniscoping
performs only some very simple subsumption analysis.
Localizing rules roughly corresponds to using update
information in [14]. In order to gain the �ne granu-
larity needed for database approaches we parse doc-
uments. Consequently, our approach would lack e�-
ciency if we implemented only strict rules. Tolerating
inconsistencies, however, allows to defer evaluation of
weak rules and to acknowledge or prohibit a check-in af-
ter the strict consistency rules have been evaluated. In
(temporal) databases the problem of e�ciently storing
and managing historical database states arises. In our
setting, historical repository states are already stored
and managed by the DMS.

Recently, incremental evaluation techniques were used
by the XML community to maintain consistency w.r.t.
user de�ned rules [3, 16]. The consistency checking
toolkit xlinkit [25] uses static analysis to �lter consis-
tency rules relevant to document changes and a treed-
i� algorithm to determine document parts that have
to be re-checked. Its tolerant view of consistency dis-
tinguishes xlinkit from other approaches and makes it
closer to our approach. By allowing distribution and
avoiding a history-aware repository, xlinkit cannot im-
plement temporal consistency rules and lacks several
incremental techniques we can bene�t from.

The incremental approaches above show that incremen-
tal computation comes with a cost, which is in general
hard to analyze: storage for previous results and history
information, lookup costs, computing di�erences of in-
puts. The notion that incremental evaluation is �often�
cheaper than computation from scratch can, therefore,
only be regarded as a heuristic. This leaves open the
question when to use or avoid incremental computa-
tion, which highly depends on the actual application. In
general, database performance analyses show that the
smaller the changes through updates are and the less
expressive the constraint language is, the better per-
forms incremental computation. Our experiments have
shown that we achieved a reasonable tradeo� between
the costs for incremental evaluation and the speedup
gained.

9 Conclusion and Outlook

We have presented an approach to �exible consistency
management in heterogeneous repositories by explicit
formal consistency rules. Formalization provides a com-

mon understanding of consistency, which is vital for
any collaborative document engineering process. We
have sketched how our approach can be integrated into
existing DMS. A rule designer de�nes domain speci�c
rules in a full �rst-order temporal logic with linear time.
In contrast to decidable subsets, full temporal �rst-
order logic provides an expressive rule designer toolset
and supports formalizing practically relevant consis-
tency rules. Higher-order complexity is hidden from the
rule designer; it is encapsulated in functions and predi-
cates de�ned by the language designer. Our type system
signi�cantly supports the formalization process. In the
presence of subtyping records and variants provide ex-
pressiveness to describe document structures, compara-
ble to the XML Schema standard. Automatically gen-
erated consistency reports precisely pinpoint inconsis-
tencies within documents w.r.t. the rules de�ned. This
allows for �exible inconsistency handling strategies. We
have implemented our consistency checker interfacing
the revision control system darcs [30].

We also have shown how �rst-order consistency rules
can be evaluated e�ciently by employing incremental
techniques. Exploiting domain knowledge supplied by
the language designer, we statically analyze consistency
rules to (1) associate with each rule a document set the
rule depends on, and (2) miniscope rules to reduce their
static evaluation time complexity. At run-time we re-
evaluate a rule only on new and changed documents if
possible. It turned out that Haskell's referential trans-
parency provides fundamental support for the sound-
ness of our techniques. We provided concrete perfor-
mance measurements proving that static analysis com-
bined with incremental evaluation provides signi�cant
speedup compared to brute force evaluation. We con-
jecture that our incremental evaluation algorithm could
be of value in other research areas as well.

We omit our concrete rule syntax, which is XML-based.
Currently, a graphical user interface is developed (see
Fig. 16) that greatly simpli�es formalizing and main-
taining consistency rules. We consider this an impor-
tant ingredient for ensuring user acceptance. The cor-
rectness of rules covers another aspect, not yet dealt
with in this paper: Do the rules formalized re�ect the
rule designer's intentions? For this purpose we plan to
re-translate formal consistency rules into natural lan-
guage. The translation can be compared to the initial
intentions. Finally, just pinpointing inconsistencies is
only a �rst step towards �exible consistency manage-
ment. We are developing strategies to suggest compact
and reasonable repair actions, in order to resolve incon-
sistencies. These repair actions will be generated from
enriched consistency reports.

19

Figure 16: Graphical User Interface showing the formalization of rule φ1 from Fig. 3

We are con�dent that using formal consistency rules in
conjunction with a semantics that pinpoints inconsis-
tencies can signi�cantly improve consistency manage-
ment in document engineering processes. Early tests in
the �eld of software engineering con�rm this assump-
tion.

Acknowledgements

We would like to thank Christiane Stutz from sd&m
for many fruitful discussions and practical examples,
Wolfram Kahl for valuable suggestions concerning the
formal basics, and Tobias Uwe Kuhn for developing the
GUI.

References
[1] S. Abiteboul, L. Herr, and J. van den Bussche.

Temporal versus �rst-order logic to query tempo-
ral databases. In ACM Symp. on Principles of
Database Systems, pages 49�57, Montreal, Canada,
1996. ACM.

[2] L. Baekgaard and L. Mark. Incremental computa-
tion of nested relational query expressions. ACM

Trans. on Database Systems (TODS), 20(2):111�
148, 1995.

[3] M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and
A. Ng. Automated update management for XML
integrity constraints. In Proc. of PLAN-X: Pro-
gramming Language Technologies for XML, 2002.

[4] V. Benzaken and A. Doucet. Thémis: A database
programming language handling integrity con-
straints. VLDB Journal, 4(3):493�518, 1995.

[5] P. Buneman, W. Fan, and S. Weinstein. Path con-
sistency rules in semistructured databases. Journal
of Computer and System Sciences, 61(2):146�193,
2000.

[6] P. Cederqvist et al. Version management with
CVS, 2002. see www.cvshome.org/docs/manual/.

[7] M. Chakravarty. The Haskell foreign function in-
terface 1.0, addendum to the Haskell 98 report,
2003. see www.cse.unsw.edu.au/�chak/haskell/�/.

[8] D. de Champeaux. Subproblem �nder and in-
stance checker, two cooperating modules for the-
orem provers. Journal of the ACM, 33(4):633�657,
1986.

[9] M. e Silva. Dynamic integrity constraints de�ni-
tion and enforcement in databases: a classi�cation

20

framework. In Proc. of the IFIP TC-11 Working
Group 11.5 1st Working Conf. on Integrity and In-
ternalControl in Information Systems, pages 65�87,
1997.

[10] S. Easterbrook and M. Chechik. A framework
for multi-valued reasoning over inconsistent view-
points. In 23rd Int. Conf. on Software Engineering
(ICSE-01), Toronto, Canada, 2001. IEEE.

[11] M. Fernández, D. Florescu, A. Levy, and D. Su-
ciu. Verifying integrity constraints on web sites. In
IJCAI, pages 614�619, 1999.

[12] A. Finkelstein. A foolish consistency: technical
challenges in consistency management. In Proc.
of the 11th Int. Conf. on Database and Expert Sys-
tems Applications (DEXA), pages 1�5, London,
UK, 2000. Springer.

[13] A. Gupta, I. Mumick, and V. Subrahmanian.
Maintaining views incrementally. In Proc. of the
1993 ACM SIGMOD Int. Conf. on Management
of data, pages 157�166. ACM Press, 1993.

[14] A. Gupta, Y. Sagiv, J. Ullman, and J. Widom.
Constraint checking with partial information.
In Proc. of the 13th ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Sys-
tems, pages 45�55, Minneapolis, MS, 1994. ACM.

[15] I. Hodkinson, F. Wolter, and M. Zakharyaschev.
Decidable fragments of �rst-order temporal logics.
Annals of Pure and Applied Logic, 2000.

[16] B. Kane, H. Su, and E. Rundensteiner. Consis-
tently updating XML documents using incremen-
tal constraint check queries. In Proc. of the 4th Int.
Workshop on Web Information and Data Manage-
ment, pages 1�8. ACM Press, 2002.

[17] P. Lincoln and J. Mitchell. Algorithmic aspects
of type inference with subtypes. In Proc. of the
19th ACM SIGPLAN-SIGACT Symp. on Princi-
ples of Programming Languages, pages 293�304.
ACM, 1992.

[18] Y. Liu. E�cient computation via incremental com-
putation. In Paci�c-Asia Conf. on Knowledge Dis-
covery and Data Mining, pages 194�203, 1999.

[19] E. Mendelson. Introduction to Mathematical Logic.
Wadsworth & Brooks/Cole Advanced Books &
Software, 3rd edition, 1987.

[20] Minister of Defence. ZDv 90/1 � Dienstvorschriften
der Bundeswehr. Department of Defence, 1983.
(English: Service Manual Rules for the Federal
Armed Forces).

[21] C. Nentwich, L. Capra, W. Emmerich, and
A. Finkelstein. xlinkit: a consistency checking and
smart link generation service. In ACM Trans. on
Internet Technology, 2001.

[22] J. Nordlander. Reactive Objects and Functional
Programming. Chalmers Tekniska, Högskola, 1999.

[23] J. Nordlander. Polymorphic subtyping in
O'Haskell. In APPSEM Workshop on Subtyping
and Dependent Types in Programming, 2000.

[24] B. Nuseibeh, S. Easterbrook, and A. Russo. Lever-
aging inconsistency in software development. Com-
puter, 33(4):24�29, 2000.

[25] C. Perez-Arroyo, C. Nentwich, W. Emmerich, and
A. Finkelstein. Scaling consistency checking. sub-
mitted, 2003. see www.cs.ucl.ac.uk/sta�/nent-
wich/publications/scalingchecking.html.

[26] S. Peyton Jones. Haskell 98Language andLibraries:
The Revised Report. Cambridge Univ. Press, 2003.
see also haskell.org/onlinereport/.

[27] D. Plexousakis. On the E�cient Maintenance of
Temporal Integrity in Knowledge Bases. PhD the-
sis, 1996.

[28] F. Pottier. Simplifying subtyping constraints: a
theory. Information and Computation, 170(2):153�
183, 2001.

[29] T. Reps. Generating language-based Environments.
MIT, 1984.

[30] D. Roundy. Darcs: David's advanced revision con-
trol system, 2003. see www.abridgegame.org/darcs/.

[31] G. Salton. Automatic indexing and abstracting.
pages 42�80, 1988.

[32] J. Sche�czyk, U. Borgho�, P. Rödig, and
L. Schmitz. Consistent document engineering. In
Proc. of the 2003 ACM Symp. on Document Engi-
neering, Grenoble, France, 2003. to appear.

[33] J. Sche�czyk, U. Borgho�, P. Rödig, and
L. Schmitz. E�cient (in-)consistency management
for heterogeneous repositories. In 4th Int. Conf.
on Software Engineering, Arti�cial Intelligence,
Networking, and Parallel/Distributed Computing
(SNPD'03), Lübeck, Germany, 2003. to appear.

[34] J. Sche�czyk, C. Stutz, U. Borgho�, and J. Sieder-
sleben. Konsistente Software-Spezi�kationen. sub-
mitted, 2003. (English: Consistent software speci-
�cations).

21

[35] R. Seljée and H. de Swart. Three types of redun-
dancy in integrity checking; an optimal solution. In
Proc. of Data and Knowledge Engineering, pages
135�151, 1999.

[36] K. Shafer, S. Weibel, E. Jul, and J. Fausey. In-
troduction to persistent uniform resource locators,
1996. see purl.oclc.org/OCLC/PURL/INET96.

[37] G. Smith. Principal type schemes for functional
programs with overloading and subtyping. Science
of Computer Programming, 23(2-3):197�226, 1994.

[38] C. Stutz, J. Siedersleben, D. Kretschmer, and
W. Krug. Analysis beyond UML. In Proc. of
RE'02: IEEE Joint Int. Requirements Engineering
Conf. 2002, pages 215�222, Essen, 2002. IEEE.

[39] The GOODSTEP Team. The GOODSTEP
project: general object-oriented database for soft-
ware engineering processes. In Proc. of the 2nd Int.
Workshop on Databaseand Software Engineering�
16th Int. Conf. on Software Engineering (ICSE'94),
1994.

[40] A. Tozawa. Towards static type checking for XSLT.
In Proc. of the 2001 ACM Symp. on Document en-
gineering, pages 18�27. ACM, 2001.

[41] A. Vermesan and F. Coenen, editors. Validation
and Veri�cation of Knowledge Based Systems - The-
ory, Tools and Practice, Papers from EUROVAV
'99, 5th European Symp. on Validation and Veri�-
cation of Knowledge Based Systems, Oslo, Norway.
Kluwer, 1999.

[42] M. Wallace and C. Runciman. Haskell and XML:
Generic combinators or type-based translation? In
Proc. of the 4th ACM SIGPLAN Int. Conf. on
Functional Programming (ICFP`99), volume 34�9,
pages 148�159, N.Y., 1999. ACM.

[43] H. Wang. Toward mechanical mathematics. 4(1):2�
22, 1960.

[44] R. Wilkinson and A. Smeaton. Automatic link gen-
eration. ACM Computing Surveys, 31(4es), 1999.

[45] R. Wong and N. Lam. Managing and querying
multi-version XML data with update logging. In
Proc. of the 2002 ACM Symp. on Document engi-
neering, pages 74�81. ACM, 2002.

[46] D. Yellin and R. Strom. Inc: a language for incre-
mental computations. ACM Trans. on Prog. Lang.
and Systems (TOPLAS), 13(2):211�236, 1991.

A Auxiliary Functions for
Rule Evaluation

℘(s) = power set of the set s
V = set of all variables
D = set of all diagnoses
A = set of all assignments
B = {True,False}
decompose pairs
fst((x, y)) = x
snd((x, y)) = y

�ip a diagnosis
flip : D→ D
flip

(
(C, as, pst, psf)

)
= (IC, as, pst, psf)

flip
(
(IC, as, pst, psf)

)
= (C, as, pst, psf)

�ip a consistency report
flip : (B× ℘(D)) → (B× ℘(D))

flip ((b, ds)) = (¬b, {flip(d) | d ∈ ds})
join diagnoses
join : D× D→ D
join

(
(c, as, pst, psf), (c′, as′, ps′t, ps′f)

)

= (c, as ∪ as′, pst ∪ ps′t, psf ∪ ps′f)

push an assignment into a report
push : A× (B× ℘(D)) → B× ℘(D)

push (x 7→ v, (b, ds)) =

(
b,

{
(c, {x 7→ v} ∪ as, pst, psf)
| (c, as, pst, psf) ∈ ds

})

cartesian product of reports
⊗ : (B×℘(D))×(B×℘(D))→ (B×℘(D))
(b, ds)⊗ (b′, ds′) = (b ∧ b′, {join(d, d′) | d ∈ ds, d′ ∈ ds′})
join reports
⊕ : (B×℘(D))×(B×℘(D))→ (B×℘(D))
(b, ds)⊕ (b′, ds′) = (b ∨ b′, ds ∪ ds′)

join a report set via folding (S 6= ∅)
⊕ : ℘(B× ℘(D)) → (B× ℘(D))
⊕(S) = fold(⊕, s,S′), where S′ = S] {s}
fold a set (f symmetric and associative)
fold : ∀α.(α× α→ α)× α× ℘(α) → α
fold(f, x, ∅) = x
fold(f, x, ({x′}] xs)) = fold(f, f(x, x′), xs)

copy relevant part of a report
copy : (B× ℘(D))× A→ (B× ℘(D))
copy((b, ds), η) = (True, ∅) if ss = ∅

(False, ss) otherwise
where ss = {(c, as′, pst, psf) | (c, as, pst, psf) ∈ ds and

(ηv as ∨ asv η)}
as′ = {x 7→ (v,m) |x 7→ (v,m) ∈ as and x 7→ _ /∈ η′}
η′ = {x 7→ (v′,m) |x 7→ (v,m) ∈ η}
v′ = v − 1 if v = current State

v otherwise
determine whether to re-evaluate a subformula
notEval : (B× ℘(V)× A) → B
notEval(b, xs, η) = True if b = True and news = ∅

and xs 6= {∗}
False otherwise

where news = {x | x ∈ xs and x 7→ (_, n) ∈ η}
�rst assignment subsumes second assignment (preorder)
v : (A× A) → B
asv as′ = x 7→ (v,_)∈ as ⇒ x 7→ (v,_)∈ as′

Figure 17: Auxiliary functions for rule evaluation

22

B Typing Consistency Rules

TypVar

C, Γ ∪ {x :σg}, ∆ `S x :σg

TypSym

C, Γ, ∆ ∪ {s :σ} `S s :σ

TypSymApp
C, Γ, ∆ `S s : τ1 × . . .× τn → τg C, Γ, ∆ `S ei : τi

C, Γ, ∆ `S s(e1, . . . , en) : τg

TypStruct∏
R̂

= {li :∀ᾱ.Time×R ᾱ→ τgi}
C, Γ, ∆ `S ei : [ρ̄/ᾱ]τgi

C, Γ, ∆ `S KR{li = ei} : [ρ̄/ᾱ](R ᾱ)
TypCase
C, Γ, ∆ `S e0 :Time C, Γ, ∆ `S e : [ρ̄/ᾱ](V ᾱ)∑

V̂
= {ki :∀ᾱ.τg1 × . . .× τgni

→ V ᾱ}
C, Γ, ∆ `S si : [ρ̄/ᾱ](τg1 × . . .× τgni

) → τg

C, Γ, ∆ `S case(e0, e, {ki → si}) : τg

TypCaseV
C, Γ, ∆ `S e0 :Time C, Γ, ∆ `S e : [ρ̄/ᾱ](V ᾱ)∑

V̂
= {ki :∀ᾱ.τg1 × . . .× τgni

→ V ᾱ}
C, Γ, ∆ `S si : [ρ̄/ᾱ](τg1 × . . .× τgni

) → τg

C, Γ, ∆ `S case(e0, e, V, {ki → si}) : τg

TypAnno
C, Γ, ∆ `S e : τ tv(τ) = ∅

C, Γ, ∆ `S (e :: τ) : τ

TypGen
C ∪D, Γ, ∆ `S e : τ ᾱ /∈ tv(C) ∪ tv(Γ)

C, Γ, ∆ `S e : ∀ᾱ.τ |D
TypInst
C, Γ, ∆ `S e :∀ᾱ.τ |D C `S [τ̄/ᾱ]D

C, Γ, ∆ `S e : [τ̄/ᾱ]τ

TypSub
C, Γ, ∆ `S e : τ C `S τ ≤ τ ′

C, Γ, ∆ `S e : τ ′

TypPred

C, Γ, ∆ ∪ {p :σp} `S p :σp

TypPredApp
C, Γ, ∆ `S p : τ1 × . . .× τn C, Γ, ∆ `S ei : τi

C, Γ, ∆ `S p(e1, . . . , en)

TypNot
C, Γ, ∆ `S φ

C, Γ, ∆ `S ¬φ
TypBin
C, Γ, ∆ `S φ C, Γ, ∆ `S ψ

C, Γ, ∆ `S φ · ψ
TypQuant
C, Γ, ∆ `S e : [τ] C, Γ ∪ {x : τ}, ∆ `S φ

C, Γ, ∆ `S Q x ∈ e • φ

Figure 18: Well-typedness rules for terms and formulae

ChkVar
β̄ = tv(τ) C = {βi ≤ νi}βi∈(tv(τ)\ᾱ)

θ °S {[ν̄/β̄]τ ≤ τ ′}
θC, Γ ∪ {x : ∀ᾱ.τ}, ∆ °S x : θ(τ ′)

ChkSym
θ °S {[ν̄/ᾱ]τ ≤ τ ′}

∅, Γ, ∆ ∪ {s :∀ᾱ.τ} °S s : θ(τ ′)

ChkSymApp
Ci, Γ, ∆ °S ei : θi(νi)

C, Γ, ∆ °S s : θ(θ1ν1 × . . .× θnνn → τ)

C ∪⋃
θCi, Γ, ∆ °S s(e1, . . . , en) : θ(τ)

ChkStruct∏
R̂

= {li :∀ᾱ.Time×R ᾱ→ τgi}
θ °S {[ν̄/ᾱ](R ᾱ) ≤ ρg} ρgi = θ[ν̄/ᾱ]τgi

Ci, Γ, ∆ °S ei : θi(ρgi) θ′ °S {θiρgi ≤ ρgi}⋃
θ′Ci, Γ, ∆ °S KR{li = ei} : θ′θ(ρg)

ChkCase∑
V̂j

= {kj,i : ∀ᾱ.τgj,i,1 × . . .× τgj,i,nj,i
→ Vj ᾱ}

C0, Γ, ∆ °S e0 : θ0(Time)
C, Γ, ∆ °S e : θ(ν)

θ′ °S {θν ≤ [ν̄/ᾱ](Vj ᾱ)} for exactly one j
θi °S {νi ≤ [ν̄/ᾱ](τgi,1 × . . .× τgi,ni

) → ρg}
ρi = θiνi

Ci, Γ, ∆ °S si : θ
′
i(ρi) θ′′ °S {θ′iρi ≤ ρi}

θ′θ0(C0 ∪ C ∪
⋃
Ci), Γ, ∆ °S

case(e0, e, {ki → si}) : θ′′θ′θ0(ρg)

ChkCaseV∑
V̂

= {ki :∀ᾱ.τgi,1 × . . .× τgi,ni
→ V ᾱ}

C0, Γ, ∆ °S e0 : θ0(Time)
C, Γ, ∆ °S e : θ(ν) θ′ °S {θν ≤ [ν̄/ᾱ](V ᾱ)}
θi °S {νi ≤ [ν̄/ᾱ](τgi,1 × . . .× τgi,ni

) → ρg}
ρi = θiνi

Ci, Γ, ∆ °S si : θ
′
i(ρi) θ′′ °S {θ′iρi ≤ ρi}

θ′θ0(C0 ∪ C ∪
⋃
Ci), Γ, ∆ °S

case(e0, e, V, {ki → si}) : θ′′θ′θ0(ρg)

ChkAnno
tv(τ) = ∅ C, Γ, ∆ °S e : θ(τ) θ′ °S τ ≤ τ ′

θC, Γ, ∆ °S (e :: τ) : θ′(τ ′)

ChkPred
θ °S {[ν̄/ᾱ]τp ≤ τp′}

θC, Γ, ∆ ∪ {p :∀ᾱ.τp} °S p : θ(τp′)

ChkPredApp
Ci, Γ, ∆ °S ei : θi(νi)

C, Γ, ∆ °S p : θ(θ1ν1 × . . .× θnνn)

C ∪⋃
θCi, Γ, ∆ °S p(e1, . . . , en), θ

ChkNot
C, Γ, ∆ °S φ, θ

C, Γ, ∆ °S ¬φ, θ
ChkBin
C1, Γ, ∆ °S φ, θ1 C2, Γ, ∆ °S ψ, θ2

θ1θ2(C1 ∪ C2), Γ, ∆ °S φ · ψ, θ1 ◦ θ2
ChkQuant
C, Γ, ∆ °S e : θ([ν]) C′, Γ ∪ {x : θν}, ∆ °S φ, θ′

θ′′ °S C′ \ C′Γ
θ′′(C ∪ C′Γ), Γ, ∆ °S Q x ∈ e • φ, θ′′ ◦ θ′

Figure 19: Combined type inference and type checking
algorithm

23

