
� ������� � ��	�

��� � ���
����
�����	

�������� �!"�$#&%('�)*',+.-
/10"!2)*354"-
',687$9�:;7(7$#*-
�$!=<>���?9@)A/B-
'

CEDGFIHGJ"KML=NPO�QSR�TVUXW

Y[Z=\^]`_^acb^dfegYihjYkYlY*ZmY&\YZ\] _a bdeYihYnYY&ZYi\Yo]Y&_YiaY&b





















































p=pfp=pfp q p=pfp=pfp=pfpp=pfp q p=pfp=pfp=pfp=pfpq pfp=pfp=pfp q p=pfp=pfpp=pfp=p q pfp=pfp q p=pfpp=pfp=pfp=pfp=pfp=pfp=pfpq pfp=pfp=pfp q p=pfp=pfpp=pfp q p=pfp q p=pfp=pfpp=pfp=pfp=pfp=pfp=pfp=pfpp=p q pfp q p=pfp=pfp=pfpp=pfp=pfp=pfp=pfp=pfp=pfpp=pfp=pfp qfq pfp=pfp=pfpp=pfp=pfp=pfp=pfp=pfp=pfpp=pfp=p q pfp=p q pfp=pfpp q p=pfp=pfp=pfp q p=pfpp=pfp=pfp=p q pfp=pfp=p qp=p q pfp=pfp=pfp=pfp=p qp=pfp=pfp q p=pfp=pfp=pfp





















































\=afbgY&\�Yr]fdcZ=_=egYihjYkYlY*ZYeYnYY&_YiaY&bZ\a b]Yi\Yo] _dYihY&Z





















































p q pfp pfp=p p=pfp=p p=pq=q pfp pfp=p p=pfp=p p=pp q=q p pfp=p p=pfp=p p=pp=p qfq pfp=p p=pfp=p p=pq p=p q pfp=p p=pfp=p p=pp q pfp pfp=p p=pfp=p p=pp=p=pfp p q p p=pfp=p p=pp=p=pfp q p q p=pfp=p p=pp=p=pfp q p q p=pfp=p p=pp=p=pfp p q=q p=pfp=p p=pp=p=pfp pfp=p p q p q p=pp=p=pfp pfp=p p qfq p p=pp=p=pfp pfp=p q pfp q p=pp=p=pfp pfp=p p=pfp=p p=pp=p=pfp pfp=p p=pfp=p p=pp=p=pfp pfp=p p=pfp=p p=pp=p=pfp pfp=p p=pfp=p p=p





















































s KPL2t*uvJIHcwxLly{z
|}|~z��V|}�
UxK��}KP���5KML=z
|�|�z

�����������o�����������������"��������� �l��¡���¢¤£���¥�¡����

¦B§�¨���©ª������«¬£��
­@® ¯S° ±³² ´rµ ­1¶

·¸���k�����º¹�»G�1�¼������½B���o¾�¹¿·¸��¾SÀÂÁ
• Ã ¹¬Ä�ÅÂÅ�ÆÂÆÈÇ"����½B�É½Â���o¾

Decomposing Relations
Data Analysis Techniques for Boolean Matrices

Gunther Schmidt

Institute for Software Technology
Department of Computing Science

Federal Armed Forces University Munich

e-Mail: Schmidt@Informatik.UniBw-Muenchen.DE

February 23, 2003

2

Abstract

Known and new methods of decomposing a boolean relation are presented
together with methods of making the decomposition visible. Homogeneous
and heterogeneous relations are handled with non-iterative as well as iterative
methods.

Such aspects as reducibility, cyclicity, primitivity, difunctionality, Ferrer’s re-
lations, Moore-Penrose inverses, independence and line-covering, chainability,
game decompositions, matchings, Hall conditions, term rank, chainability, full
indecomposability, and others are handled under one common roof.

We have also tried to collect several concepts for nonnegative real-valued matri-
ces and to treat them as concepts for boolean matrices. An additional impetus
for this study was to give all this a relation algebraic basis avoiding counting
arguments. Several proofs of already known facts are, therefore, quite different
from the classical ones.

Cooperation and communication around this research was partly sponsored by the

European COST Action 274: TARSKI (Theory and Application of Relational Struc-

tures as Knowledge Instruments), which is gratefully acknowledged.

Contents

1 Introduction 5

2 Prerequisites and Tools 8
2.1 Haskell as Underlying Language . 8
2.2 Handling Permutations . 8
2.3 Permutations Determined by Partitions . 10

3 Relation-Algebraic Preliminaries 14
3.1 Relation Algebra . 14
3.2 Basic Relational Operators in Haskell . 16
3.3 Congruences and Coverings . 17
3.4 Properties of Idempotent Relations . 19

4 Heterogeneous Decompositions 21
4.1 Difunctional Relations . 21
4.2 Relations of Ferrer’s Type . 26
4.3 Line-Covering and Independence . 27

5 Homogeneous Decompositions 32
5.1 Decomposing into Strongly Connected Components . 32
5.2 Reducible Relations . 33
5.3 Difunctionality and Irreducibility . 37

6 Galois-Decompositions 42
6.1 Galois-Iterations in General . 42
6.2 Termination . 43
6.3 Games . 44
6.4 Matching and Assignment . 47
6.5 König’s Theorems . 51
6.6 Full Indecomposability . 53

7 Theory Extraction 56
7.1 Language . 56
7.2 Models . 62
7.3 Interpretation . 64
7.4 Example Extraction . 67

8 Conclusion and Outlook 72

3

4 Contents

9 Appendix 73
9.1 Pretty-printing Matrices . 73
9.2 Generating Random Matrices . 74
9.3 Formula Translation . 76
9.4 Translation into TEX . 78

1 Introduction

This paper deals with several techniques to decompose matrices according to certain criteria. In small
examples this can easily be done, while for bigger ones some of the techniques to be mentioned are
asymptotically inefficient. We don’t really care here for asymptotical efficiency as the applications
we have in mind are limited in size. Rather, we consider this text as a support for teaching and for
getting insight, as it gives visual help in many cases.

One area of applications is multicriteria decision making. There, relations are given beforehand and
one asks for dichotomies generated by the relation [Kit93, DL01] following certain rational ideas. One
may call this theorem extraction or theorem formulation — as opposed to theorem proving. Once
formulated, theorem provers would certainly establish the theorem. But in practical situations it is
more important to find the theorem on which one is willing to base decisions.

The key concept in these cases is the notion of a decision procedure on binary relations. So-called
rationality concepts are defined. Then from given relations the “most rational” subsets on the domain
side shall be evaluated. In decision analysis a diversity of choice rules is investigated, all of them
leading to a partition of the set on which the preference relation holds.

Much of the basic approach can be demonstrated by the example of rearranging a matrix which is
endowed with a specific property. Consider the following relation A. It is not impossible to convince
oneself that it obeys A; AT ; A = A, but one will not immediately grasp what this algebraic condition
really means.

A =

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12




1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1




rs =




1 0 0 1 0 1 0 0 0 1 0 1
0 1 0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0




cs =

(
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0

)

A relation and the occurrences of its row and column types

In many cases results of some investigation automatically bring information that might be used for a
partition of the set of rows and the set of columns, respectively. In this case, a partition into groups
of identical rows and columns is easily obtained. It is a good idea to permute rows and columns so as
to have the identical rows of the groups side aside. This means to independently permute rows and
columns. The result then makes the essence of the algebraic condition A; AT ; A = A directly visible.
Also the permutations are given in the result.

5

6 1 Introduction

Arearranged =

1 3 5 8 9 11 12 14 2 4 7 10 6 13

1

4

6

10

12

2

5

7

3

9

11

8




1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0




The relation rearranged according to its row and column types

After this initial example, one basic task to solve is as follows. Let a relation A be given, together
with an indication rs which rows as well as an indication cs which columns are equal1. From this, a
rearranged matrix resembling these partitions shall be computed as well as the permutation matrix
necessary to achieve this.

The current report strives to provide the methodological basis together with a toolkit for the task
of decomposing relations in various application disciplines. It is devoted to methods and techniques,
starting from which it should be possible to build customised tools. So applications here play the
role that the tools are expected to be applicable to a subset of them. We do not go into detail on
applications; rather, we look for an in some way coherent presentation of techniques.

This report is organized as follows. Chapter 2 presents the prerequisites and tools used in this work,
namely Haskell as a programming language, some techniques to handle permutations, and to derive
them from partitions. We cannot avoid to recall some theory on relations in Chapter 3. Only the
section on congruences contains novel approaches. As far as relational theory is involved, the book
[SS89, SS93] may be taken as the standard reference.

Heterogeneous decompositions are handled in Chapter 4, i.e. relations between possibly different sets,
and we permute rows and columns independently. Contrasting hereto, we restrict in Chapter 5 to
homogeneous relations on a set as well as to simultaneous permutations for visualization of rearranged
relations. The same holds for Chapter 6, which is characterized by the fact that the decomposition
is obtained by an iteration leading to some fixedpoint of a Galois correspondence. Termination and
initial part, games, and assignments are studied. We also return to the homogeneous case of n × n-
relations on a set, however, with the attitude that the concepts of the preceding chapters are all
available. This leads to difficult combinatorial situations to satisfy them. These are the well-known
Frobenius-König and König-Egervary Theorems, here reformulated from the relation-algebraic side,
not just in counting and cardinality style, thus giving deeper insight.

Chapter 7 shows the schema how theories may be extracted with these techniques from given relations.
There is a relation given in the first place, which means that we have a theory (fragment) where we
may talk on the domain and the range set and may formulate that R relates i and j. Every technique
presented in Chapters 4 to 6 has as its result a decomposition of the row as well as the column set,
that is unary predicates. It has in addition some problem-specific algebraic properties (an “ontology”)
between these subsets to be seen as theorems. We show schematically how the respective new and
richer theory emerges therefrom, and may be used for querying, e.g.

1Be aware, that the first row of rs indicates that rows 1, 4, 6, 10, 12 are equal; it does not indicate — what one could
easily misinterprete it to — that it gives example columns. Row 4 of rs shows the difference.

7

In an appendix further material is collected, e.g. how to pretty-print relations, and how to generate
random relations for testing purposes. Help is also given for translating formulae into TEX, or for
transferring a formula in component-free relational form to classical predicate-logic style.

Acknowledgement
Discussions with friends and colleagues from the inspiring TARSKI-environment during several COST
management committee meetings are gratefully acknowledged. From the Institute for Software Tech-
nology and from the Informatics Faculty of the University of the German Armed Forces, Michael
Ebert, Eric Offermann, and Michael Winter contributed to this study and discussed relational topics
with me, thus providing considerable help.

2 Prerequisites and Tools

We prepare some tools. First we introduce Haskell as the programming language to be used. For
this paper it is important to rearrange matrices according to some permutations so as to make their
decomposition visible; so we present some programs to handle permutations. See also in the Appendix
how to pretty-print relations or to generate relations randomly for testing purposes.

2.1 Haskell as Underlying Language

We use Haskell [HJW+92] as the programming language for this endeavour in explorative program-
ming. It is a purely functional programming language, and it is widely accepted in research and
university teaching. As Haskell is a referentially transparent programming language, it is well-suited
for dealing with mathematical structures and to handle also logic-oriented and transformational tasks.

Some notations are self-explanatory — at least to all those versed in functional programming. For
more information about Haskell see the Haskell WWW site at

URL: http://www.haskell.org/

(there you also find links to implementations), or the Journal of Functional Programming.

The present report is written in literate style as recommended mainly by Donald Knuth. This means
that the ASCII source text of this TEX-document is at the same time an executable Haskell program.
Working this way, one completely merges and integrates the written program with its documentation
in TEX-style. The programs are strictly conformant to the Haskell 98 standard, and can therefore be
expected to also be usable on future Haskell systems.

Certain graph-theoretic algorithms are expected to already exist, i.e., the Warshall algorithm and a
shortest path algorithm.

2.2 Handling Permutations

In the example presented in the introduction, the resulting permutation has only been shown via
the permuted row and column entries. The permutations, however, should be fully available in the
program. There, they may be given as a function, decomposed into cycles, or as a permutation matrix:

1 �→ 4
2 �→ 6
3 �→ 5
4 �→ 7
5 �→ 3
6 �→ 2
7 �→ 1 or

[4,6,5,7,3,2,1]

[[1,4,7],[3,5],[6,2]]




0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0




Representing a permutation as a function, using cycles, or as a permutation matrix

8

2.2 Handling Permutations 9

Either form has its specific merits. Sometimes also the inverted permutation is useful. We therefore
provide for types and functions to switch from one form to the other, and to apply a permutation to
some list.

type PermMat = [[Bool]]
type PermFct = [Int]
type PermCyc = [[Int]]

applyPermFct :: Ord b => PermFct -> [b] -> [b]
applyPermFct p = map snd . sort . zip p

permFctToMat :: PermFct -> PermMat
permFctToMat p = map mkRow p where mkRow i = take (length p) (map (i==) [1..])

It is possible to go back from a permutation matrix to the list form:

permMatToFct m =
let zipWithNumbersRow r = zip r [1..]

firstTruePosInRow r = snd $ head (dropWhile (\(a,b) -> not a)
(zipWithNumbersRow r))

in map firstTruePosInRow m

Let us now convert back and forth to the cycle representation.

permFctToCyc :: PermFct -> PermCyc
permFctToCyc p =

let len = length p
iteratePermFct = iterate (applyPermFct p) [1..len]
allCycles = transpose $ take len $ iteratePermFct
normalizeCycle = cycleMinFst . nub
cycleMinFst xs = take (length xs) $ dropWhile (/= minimum xs) (cycle xs)

in map reverse $ nub $ map normalizeCycle $ allCycles

permCycToFct :: PermCyc -> PermFct
permCycToFct =
let cycleToPairs xs = take (length xs) $ zip (tail cycXs) cycXs

where cycXs = cycle xs
cyclesToPairs = concatMap cycleToPairs

in map snd . sort . cyclesToPairs . (map reverse)

Using permFct as the intermediate status, we manage to achieve other transitions.

permMatToCyc :: PermMat -> PermCyc
permMatToCyc = permFctToCyc . permMatToFct

permCycToMat :: PermCyc -> PermMat
permCycToMat = permFctToMat . permCycToFct

The following operations deliver the inverses of the preceding permutations in their respective form.

invPermFct :: PermFct -> PermFct
invPermFct = flip applyPermFct [1..]

invPermCyc :: PermCyc -> PermCyc
invPermCyc = map reverse

invPermMat :: PermMat -> PermMat
invPermMat = transpose

10 2 Prerequisites and Tools

2.3 Permutations Determined by Partitions

Now permutations shall be determined from partitions. Let for example a list of partitioning subsets
be given as rs:

[[False,True, False,True, False,False],
[False,False,True, False,False,True],
[True, False,False,False,True, False]]

We are interested to obtain a permutation like [5,1,3,2,6,4], which puts True-entries of the first
row before True-entries of the second row, etc. One may, according to an idea of Michael Ebert, rather
easily obtain the inverted permutation function from a partition as follows: Annotate every element
of the partition matrix with its column number and catenate all the rows thus annotated. This is then
filtered according to whether the element is True or False and then stripped from its boolean value.

invsFctFromPart :: [[Bool]] -> PermFct
invsFctFromPart = let annotateColNum = map (zip [1..])

getAnnotation = map fst
onlyTrueFields = filter snd

in getAnnotation . onlyTrueFields . concat . annotateColNum
permFctFromPart :: [[Bool]] -> PermFct
permFctFromPart = invPermFct . invsFctFromPart

We may now also get the permutation from a partition together with its inverse as a matrix.

permMatFromPart rs = permFctToMat (permFctFromPart rs)
invsMatFromPart rs = permFctToMat (invsFctFromPart rs)

Using all these prerequisites, the rearrangement task is now easy.

rearrangeMatWithLines m rs cs =
let rFT = invsFctFromPart rs

rI = permFctToMat rFT
rM = invPermMat rI
cFT = invsFctFromPart cs
cI = permFctToMat cFT
cM = invPermMat cI

in (rI *** (m *** cM), rFT, cFT,
linesPosition (rs *** rM),
linesPosition (cs *** cM))

In rearrangeMatWithLines the rearranged matrix is returned together with additional structure,
namely, the border lines separating zones of the matrix, and the row and column permutations in
matrix form.

We provide in addition a version that brings better results for univalent and injective relations. Leaving
rows fixed (except for sending null rows to the end) columns are arranged independently, also with
null columns at the end. The aim is to make the 1:1-structure visible for a heterogeneous relation.

rearrangeDiagonal m =
let nonemptyPartCol = filter or m

nonemptyCol = foldr1 (zipWith (||)) nonemptyPartCol
emptyCol = map not nonemptyCol
nonemptyPartRow = filter or (transpMat m)
nonemptyRow = foldr1 (zipWith (||)) nonemptyPartRow
emptyRow = map not nonemptyRow

2.3 Permutations Determined by Partitions 11

rs = [nonemptyRow, emptyRow]
cs = (nonemptyPartCol) ++ [emptyCol]
(a,b,c,d,e) = rearrangeMatWithLines m rs cs

in stringForNamedMatrixLines (a,b,c,replicate (rows m) False, replicate (cols m) False)




0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0




8 2 5 4 3 6 9 7 1 10

1

2

4

5

7

8

9

11

3

6

10




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




A univalent and injective relation brought to diagonal style with zero rows and columns at the end

Such a result cannot be achieved for a homogeneous relation with the requirement to permute rows and
columns simultaneously. This situation needs another treatment. The following permutes a univalent
and injective relation to successor form. By this we mean: cycles to the front, then terminating
linear strings, and finally null rows. Arrangement is such that the upper co-diagonal appears wherever
possible.

permToSuccMatrix m =
let trueFilter = \(a,b) -> a == [True]

trueNumbers = \iv -> map snd (filter trueFilter (zip iv [1..]))
initialVect = negaMat (transpMat m *** (allMatNM (cols m) 1))
initialNumb = trueNumbers initialVect
cyclVect = negaMat $ transpMat (reflTranClosure m) *** initialVect
cyclNumb = trueNumbers cyclVect
terminalVect = negaMat (m *** (allMatNM (cols m) 1))
terminalNumb = trueNumbers terminalVect
unRelated = filter (‘elem‘ terminalNumb) initialNumb
trulyInitial = filter (‘notElem‘ terminalNumb) initialNumb
followSequ p = snd (head (filter fst (zip (m !! (p-1)) [1..])))
followCycle p ps q =

let next = followSequ p
in if next == q then ps

else followCycle next (ps ++ [next]) q
followString p ps =

if p ‘elem‘ terminalNumb then (ps ++ [p])
else followString (followSequ p) (ps ++ [p])

allCycles1 [] = []
allCycles1 (h:t) =

let fs = followCycle h [h] h
rest = filter (\e -> e ‘notElem‘ fs) t

in fs : (allCycles1 rest)
allCycles = allCycles1 cyclNumb
allStrings1 [] = []
allStrings1 (h:t) = [followString h []] ++ (allStrings1 t)
allStrings = allStrings1 trulyInitial
occurringCyc = concat allCycles
occurringStr = concat allStrings
function = occurringCyc ++ occurringStr ++ unRelated

in permFctToMat $ function

12 2 Prerequisites and Tools

permToSuccForm m = p *** (m *** (transpMat p)) where p = permToSuccMatrix m
printSuccForm m =

let permutation = permToSuccMatrix m
permuted = permToSuccForm m
difuClo = difunctionalClosure (transpMat wI ||| wI)

where w = warshall permuted
wI = w ||| (ident (rows w) &&& (w *** allMatFor w))

rsH = nub (transpMat difuClo)
rs = if and (map or (transpMat rsH))

then reverse $ sort $ rsH
else (reverse $ sort $ rsH) ++ [map not (map or (transpMat rsH))]

original = stringForNamedMatrixLines $
rearrangeMatWithLines (permutation *** (m *** (transpMat permutation)))

[replicate (rows m) True] [replicate (rows m) True]
origRearr = stringForNamedMatrixLines $ rearrangeMatWithLines permuted rs rs

in original ++ origRearr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19




0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




13 15 2 4 3 10 1 11 14 6 17 5 16 12 8 7 19 9 18

13

15

2

4

3

10

1

11

14

6

17

5

16

12

8

7

19

9

18




0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




A homogeneous univalent, and injective relation rearranged simultaneously

As an example we rearrange a permutation such that it decomposes into diagonal blocks of cyclic
permutations.

permToBlockSuccessorForm f =
let cs = permFctToCyc f

p = permFctToMat f
cycPart z = foldr1 (\ c d -> zipWith (||) c d)

(map fst (filter (\(a,b) -> elem b z) (zip p [1..])))
cycPartM = map cycPart cs
p2 = p *** p
p3 = p *** p2
rearr = stringForNamedMatrixLines $ rearrangeMatWithLines p cycPartM cycPartM
pow2 = stringForNamedMatrixLines $ rearrangeMatWithLines p2 cycPartM cycPartM
pow3 = stringForNamedMatrixLines $ rearrangeMatWithLines p3 cycPartM cycPartM

in (stringForOriginalNamedMatrix p ++ rearr ++ pow2 ++ pow3)

2.3 Permutations Determined by Partitions 13

1 2 3 4 5 6 7

1

2

3

4

5

6

7




0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0




1 4 7 2 3 5 6

1

4

7

2

3

5

6




0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0




1 4 7 2 3 5 6

1

4

7

2

3

5

6




0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0




1 4 7 2 3 5 6

1

4

7

2

3

5

6




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0




Permutation and permutation rearranged to cycle form, and the latter raised to powers 2 and 3

From this form it is particularly easy to conclude that some power will be the identity, namely the
least common multiple m of the block lengths. In addition, the transpose equals power m − 1.

3 Relation-Algebraic Preliminaries

Here we collect some well-known and often recalled material in order to make this report more or less
self-contained. This time, we may restrict to relations as boolean matrices; therefore, some abstract
concepts reduce to quite familiar ones.

3.1 Relation Algebra

When relations are studied on a moderately abstract level, they are conceived as subsets R ⊆ X ×Y
of the Cartesian product of the sets X, Y between which they are defined to hold. It is wise, however,
to raise relational considerations to a more abstract level whenever possible. The formal definition of
an abstract heterogeneous relation algebra — now widely agreed upon — is presented below.

3.1.1 Definition. A heterogeneous relation algebra is defined as a mathematical structure that

• is a category wrt. composition ; and identities ,

• has complete atomic boolean lattices with ∪, ∩, , , , ⊆ as morphism sets,

• obeys rules for transposition in connection with the latter two that may be stated in either one
of the following two ways:

Dedekind: R;S ∩ Q ⊆ (R ∩ Q;ST); (S ∩ RT;Q) or
Schröder: A;B ⊆ C ⇐⇒ AT;C ⊆ B ⇐⇒ C ;BT ⊆ A

In order to avoid clumsy presentation, we shall adhere to the following policy in a heterogeneous
algebra with its only partially defined operations: Whenever we say “For every X . . . ”, we mean “For
every X for which the construct in question is defined . . . ”. We denote universal relations, e.g., with

which is imprecise, as we should also mention the objects between which the relation is meant to
hold, A,B.

The following is mainly recalled from [SS89, SS93], where also proofs may be found. In basic definitions,
several equivalent variants are mentioned.

3.1.2 Proposition (Row and column masks). The following formulas hold for arbitrary relations
Q, R, S, provided the constructs are defined.

i) (Q ∩ R;);S = Q;S ∩ R; ;
ii) (Q ∩ (R;)T);S = Q; (S ∩ R;).

14

3.1 Relation Algebra 15

3.1.3 Definition (Defining properties of functions). If R is a relation, we call

R total :⇐⇒ = R; ⇐⇒ ⊆ R;RT ⇐⇒ R ⊆ R;

⇐⇒ For all S, from S ;R = follows S = ;

R univalent :⇐⇒ RT;R ⊆ ⇐⇒ R; ⊆ R;

R surjective :⇐⇒ RT total
⇐⇒ = ;R ⇐⇒ ⊆ RT;R ⇐⇒ R ⊆ ;R

⇐⇒ For all S, from R;S = follows S = ;

R injective :⇐⇒ RT univalent
⇐⇒ R;RT ⊆ ⇐⇒ ;R ⊆ R;

R mapping :⇐⇒ R total and univalent ⇐⇒ R; = R.

The following laws hold for mappings and, more generally, for univalent relations.

3.1.4 Proposition (Elementary rules for functions).

i) Q, R univalent =⇒ Q;R univalent;
ii) Q univalent ⇐⇒ Q; (R ∩ S) = Q;R ∩ Q;S for all R, S;
iii) Q univalent ⇐⇒ R;Q ∩ S = (R ∩ S ;QT);Q for all R, S;

iv) R ⊆ Q, Q univalent
R; ⊇ Q;

}
=⇒ R = Q;

v) Q univalent ⇐⇒ Q;R = Q; ∩ Q;R for all R.
vi) Q mapping ⇐⇒ Q;R = Q;R for all R.

While Schröder’s rule always allows to transform a product on the smaller side of an inequality, very
stringent conditions are necessary if the product occurs on the larger side.

3.1.5 Proposition. If F is a mapping, then arbitrary relations R, S, for which the constructs exist
satisfy

R ⊆ S ;F T ⇐⇒ R;F ⊆ S.

Proof: Using F T ;F ⊆ we have immediately “=⇒”. For the other direction, we show R = R; ⊆
R;F ;F T ⊆ S ;F T.

Another very basic fact is the so-called Tarski rule:

;R; = ⇐⇒ R =/ ;

for theoretical reasons, however, we will avoid using it as long as possible. Once used, the deduction
will only be acceptable for a smaller class of relation algebras.

One sometimes asks, whether there exists the quotient of one relation with respect to another. The
following concept of a symmetric quotient has very successfully been used in various application
fields, not least in [BSZ86, BSZ90, BGS94]. We recall its definition

syq(A, B) := AT;B ∩ A
T
;B.

and the basic algebraic rules:

16 3 Relation-Algebraic Preliminaries

3.1.6 Proposition (Properties of the symmetric quotient).

i) syq(A,B) = syq(A, B);
ii) syq(B, A) = [syq(A, B)]T;
iii) A;syq(A, A) = A;
iv) ⊆ syq(A, A);
v) syq(A, B) ⊆ syq(C ;A, C ;B) for every C;
vi) F ;syq(A, B) = syq(A;F T, B) for every mapping F ;
vii) syq(A, B);F = syq(A, B;F) for every mapping F .

Always holds A ; syq(A, B) ⊆ B and we analyze in which way A ; syq(A, B) can differ from B. A
column of A;syq(A, B) is either equal to the corresponding column of B or it is zero. Having asked
when A;syq(A, B) = B, a property characteristic of quotients, we now ask whether a cancellation rule
holds for these quotients.

3.1.7 Proposition (Cancelling of symmetric quotients). i) For arbitrary relations A, B, C we have
syq(A, B);syq(B, C) = syq(A, C) ∩ syq(A, B); = syq(A, C) ∩ ;syq(B, C).

ii) If syq(A, B) is total, or if syq(B, C) is surjective, then
syq(A, B);syq(B, C) = syq(A, C).

In addition to these concepts, we will often use transitivity. A relation R is transitive if R;R ⊆ R. It
is well-known that every relation R has a transitive closure R+ which is the least transitive relation
containing it. With R∗ we denote the reflexive-transitive closure of R. As is well-known, transitive
relations are central for defining an ordering and an equivalence.

In graph theory, one is not restricted to study homogeneous relations, i.e., graphs on a point set. Often
directed graphs or hypergraphs are investigated. In these cases, one has heterogeneous relations saying
which arc or hyperedge is incident with which point or vertex of the graph. Then one is accustomed
to use the concept of an edge-adjacency K := ∩M;MT. Two distinct arcs or hyperedges are called
adjacent if there is a vertex that is incident with both. So adjacency can be expressed by the product
of the incidence and its transpose.

3.2 Basic Relational Operators in Haskell

We will here handle relations as rectangular boolean matrices. Often we represent their entries True by
1 and False by 0 when showing matrices in the text. The following basic relational operators |||,
&&&, ***, <== for union, intersection, composition and containment of relations are all formulated
in Haskell. The functions allMatNM and nullMatNM need row and column numbers as arguments first
and will then generate universal and null matrices in the same way as ident will provide an identity
relation after giving it a row number. There is a way of generating boolean null matrices of a given
size by nullMatFor if the shape is provided by some other matrix, analogously for allMatFor and
lidentFor, rIdentFor. Relations will be transposed by transpMat and negated by negaMat.

There is also the effect, that denoting a row, e.g., can be done by giving its number, a boolean vector
indicating the position, or a 1-column boolean matrix. At least in the course of work, these forms occur.
There are some basic functions switching from one version to the other, namely pointNumToVec,
pointNumToMat, pointVecToNum, etc.

3.3 Congruences and Coverings 17

3.3 Congruences and Coverings

We recall the concept of homomorphism for relational structures explaining it for unary ones. Structure
and mappings shall commmute, however, not as equality but just as containment.

B B

Φ

Ψ

Relational homomorphism

3.3.1 Definition. Given two relations B, B′, we call the pair (Φ,Ψ) of relations a homomorphism
from B to B′, if

ΦT
;Φ ⊆ , ⊆ Φ;ΦT, ΨT

;Ψ ⊆ , ⊆ Ψ;ΨT, B;Ψ ⊆ Φ;B′

i.e. if Φ,Ψ are mappings satisfying B;Ψ ⊆ Φ;B′.

The homomorphism condition proper has four variants which may be used interchangeably:

3.3.2 Proposition. If Φ,Ψ are mappings, then
B;Ψ ⊆ Φ;B′ ⇐⇒ B ⊆ Φ;B′;ΨT ⇐⇒ ΦT;B ⊆ B′;ΨT ⇐⇒ ΦT;B;Ψ ⊆ B′

As usual, also isomorphisms are introduced.

3.3.3 Definition. We call (Φ,Ψ) an isomorphism between the two relations B, B′, if it is a homo-
morphism from B to B′ and (ΦT,ΨT) is a homomorphism from B′ to B.

We should mention a bit of theory to end this paragraph. Whenever some equivalence behaves well
with regard to some other structure, we are accustomed to call it a congruence. This is well-known
for algebraic structures, i.e., those defined by mappings on some set. We define it correspondingly for
the non-algebraic case, including heterogeneous relations. While the basic idea is known from many
application fields, the following general concepts may be a new abstraction.

3.3.4 Definition. Let B be a relation and Ξ,Θ equivalences. The pair (Ξ,Θ) is called a B-
congruence if Ξ;B ⊆ B;Θ.

If B were a binary operation on a given set and we had Ξ = Θ, we would say that B “has the
substitution property with regard to Ξ”. The concept of congruence is related to the concept of a
multi-covering.

3.3.5 Definition. A homomorphism (Φ,Ψ) from B to B′ is called a multi-covering, provided the
functions are surjective and satisfy Φ;B′ ⊆ B;Ψ in addition to being a homomorphism.

The relationship between congruences and multi-coverings is very close.

18 3 Relation-Algebraic Preliminaries

3.3.6 Theorem.

i) If (Φ,Ψ) is a multi-covering from B to B′, then (Ξ,Θ) := (Φ;ΦT,Ψ;ΨT) is a B-congruence.

ii) If the pair (Ξ,Θ) is a B-congruence, then there exists up to isomorphism at most one multi-
covering (Φ,Ψ) satisfying Ξ = Φ;ΦT and Θ = Ψ;ΨT.

Proof : i) Ξ is certainly reflexive and transitive, as Φ is total and univalent. In the same way, Θ is
reflexive and transitive. The relation Ξ = Φ; ΦT is symmetric by construction and so is Θ. Now we
prove Ξ;B = Φ;ΦT;B ⊆ Φ;B′;ΨT ⊆ B;Ψ;ΨT = B;Θ applying one after the other the definition of Ξ,
one of the homomorphism definitions, the multi-covering condition, and the definition of Θ.

ii) Let (Φi,Ψi) be a multi-covering from B to Bi, i = 1, 2. Then Bi ⊆ ΦT
i
;Φi;Bi ⊆ ΦT

i
;B ;Ψi ⊆ Bi,

and therefore “=”, applying surjectivity, the multi-covering property and one of the homomorphism
conditions.
Now we show that (ξ, θ) := (ΦT

1;Φ2,ΨT

1;Ψ2) is a homomorphism from B1 onto B2 — which is then of
course also an isomorphism.

ξT;ξ = ΦT

2;Φ1;ΦT

1;Φ2 = ΦT

2;Ξ;Φ2 = ΦT

2;Φ2;ΦT

2;Φ2 = ; =
B1;θ = ΦT

1;B;Ψ1;ΨT

1;Ψ2 = ΦT

1;B;Θ;Ψ2 = ΦT

1;B;Ψ2;ΨT

2;Ψ2 ⊆ ΦT

1;Φ2;B2; = ξ;B2

Having these results in mind, we are in a position to prove generalisations of Birkhoffs famous theorem
on the lattice of congruences for algebraic structures extending it to relational structures. Remember,
that RT;R ⊆ (univalency) will always hold for algebraic structures.

3.3.7 Theorem. Let some finite heterogeneous relation R be given. Then all R-congruences (P, Q)
satisfying RT;R ⊆ Q form a complete lattice with least element (,Θ), where Θ := (RT;R)∗.

Proof : Intersections of equivalences are equivalences again and the congruences considered behave
∩-hereditary:

(P1 ∩ P2);R ⊆ P1;R ∩ P2;R ⊆ R;Q1 ∩ R;Q2 ⊆ (R ∩ R;Q2;QT
1); (Q1 ∩ RT;R;Q2)

⊆ R; (Q1 ∩ Q2;Q2) = R; (Q1 ∩ Q2)

Unions of equivalences usually fail to be equivalences, but the transitive closure of a union is an
equivalence. For this, we use the well-known formula (P1 ∪ P2)∗ = (P1 ; P2)∗P ∗

1 from regular algebra
to show

(P1 ∪ P2)∗;R = (P1;P2)∗;P1;R ⊆ (P1;P2)∗;R;Q1 ⊆ R; (Q1;Q2)∗;Q1 ⊆ R; (Q1 ∪ Q2)∗

So a complete lattice is established for the finite case handled here, and we consider its least element.
Obviously, and Θ := (RT ; R)∗, are R-congruences as they are both equivalences, and ; R = R ⊆
R; (RT;R)∗ = R;Θ. A smaller congruence satisfying RT;R ⊆ Q can obviously not be found.

The multi-covering (Φ,Ψ) for some given congruences P, Q need not exist in the given relation alge-
bra. It may, however, be constructed by setting Φ,Ψ to be the quotient mappings according to the
equivalences P, Q together with R′ := ΦT;R;Ψ, in which case we get R′ univalent.

3.3.8 Theorem. Let some finite heterogeneous relation R be given. Then all R-congruences (P, Q)
which satisfy both, R;RT ⊆ P and RT;R ⊆ Q, form a complete lattice, the least element of which is
(Ξ,Θ) := ((R;RT)∗, (RT;R)∗).

3.4 Properties of Idempotent Relations 19

Proof : The proof follows the same schema as the previous one. Again the set
{(P, Q) | (P, Q) are R-congruences satisfying R;RT ⊆ P and RT;R ⊆ Q}

is ∩-hereditary and smaller congruences cannot be found.

The multi-covering (Φ,Ψ) onto R′ will this time result in a univalent and also injective relation R′.
Should R happen to be total and surjective, R′ would be a bijective mapping between two sets; see
also the forthcoming Def. 4.1.6.

There is another point to mention here which has gained considerable interest in an algebraic or
topological context, not least for Riemann surfaces.

3.3.9 Proposition (Lifting property). Let a homogeneous relation B be given together with a multi-
covering Φ on the relation B′. Let furthermore some rooted graph B0, i.e., satisfying B0;BT

0 ⊆ and
BT

0
∗

; a0 = , be given together with a homomorphism Φ0 that sends the root a0 to a′ := ΦT
0

; a0. If
a ⊆ ΦT ; a′ is some point mapped by the multi-covering Φ to a′, there exists always a relation Ψ —
not necessarily a mapping — satisfying the properties

ΨT;a0 = a and B0;Ψ ⊆ Ψ;B.

Proof : Define recursively Ψ := inf{X | a0;aT ∪ (BT
0

;X ;B ∩ Φ0;ΦT) ⊆ X}

The relation enjoys the homomorphism property but fails to be a mapping in general. In order to
make it a mapping, one has to choose one of the following two possibilities:

• Firstly, one might follow the recursive definition starting from a0 and at every stage make an
arbitrary choice among the relational images offered, thus choosing a fiber.

• Secondly, one may further restrict the multi-covering condition to “locally univalent” fans in Φ,
requiring BT

0
;Ψ;B ∩ Φ0;ΦT ⊆ to hold for it, which leads to a well-developed theory.

In both cases, one will find a homomorphism from B0 to B.

3.4 Properties of Idempotent Relations

We insert here some remarks applying to idempotent relations.

3.4.1 Proposition. For an idempotent boolean matrix A, akk = 0 implies that column k may be
represented as a union of the other columns. This holds correspondingly for rows. Furthermore, the
minor corresponding row akk is again idempotent.

Proof: Without loss of generality, we may assume k = 1 confronting us with A =
(

0 uT

v W

)
, where

u, v are vectors and W is a boolean matrix. From A2 = A one deduces easily that

uT
;v = 0 , uT

;W = uT, W ;v = v, v;uT ∪ W 2 = W.

Therefore, the first row — resp. the first column — may be represented as(
0
v

)
=

(
uT

W

)
;v, (0 uT) = uT

; (v W) .

20 3 Relation-Algebraic Preliminaries

We show W 2 = W observing that W ;v = v implies W 2 = W ; (v;uT ∪ W 2) ⊇ W ;v;uT = v;uT.

3.4.2 Proposition. For an idempotent boolean matrix A with ⊆ A, column k may be represented
as a union of the other columns precisely when this holds correspondingly for row k. Furthermore,
the minor corresponding row akk is always idempotent.

Proof: Without loss of generality, we may assume k = 1 confronting us with A =
(

1 uT

v W

)
, where

u, v are vectors and W is a boolean matrix. From A2 = A one deduces easily that

uT ∪ uT
;W = uT, v ∪ W ;v = W ;v = v, v;uT ∪ W 2 = W.

The middle equation has already been sharpened a bit observing that ⊆ W .
Assume that (1 uT) is representable as a union of some other rows, which means that with

some vector x
(1 uT) = xT

; (v W) .

Then xT;v = 1 and xT;W = uT. Now, uT;v = xT;W ;v = xT;v = 1 , so that(
1
v

)
=

(
uT

W

)
;v.

We show W 2 = W observing W 2 ⊆ W from above and W ⊇ as assumed.

4 Heterogeneous Decompositions

Two different cases will be distinguished:

• Heterogeneous relations between two sets, for which we will permute rows and columns indepen-
dently — be it that the sets have equal cardinality.

• Homogeneous relations in which rows and columns have to be rearranged simultaneously.

We begin with the more general case of heterogeneous relations and handle decomposition of matrices,
either to some sort of block diagonal decomposition (the difunctional case) or to upper block triangular
form (the Ferrer’s case). Covering all 1 -entries of a boolean matrix by as few lines (i.e., rows or
columns) as possible will be shown to correspond to the task of finding as many lines (again rows or
columns) possible independent from one another.

4.1 Difunctional Relations

Difunctionality leads to quite an important decomposition. It groups rows as well as columns so
as to obtain a partial 1:1-correspondence of classes. After rearranging, this means that a “partial
block diagonal” is obtained. Some of this material has already been presented as an example in the
introduction.

4.1.1 Definition. i) A relation R is called difunctional1 if R;RT;R = R.

ii) For every relation R, the least difunctional relation containing it is well-defined and we define
(according to J. Riguet) the difunctional closure as

hdifu(R) := inf{H | R ⊆ H with H difunctional}

We recall the proof that besides the descriptive version just given there is also a constructive definition
of this closure, which we will afterwards use for computing it.

4.1.2 Proposition. hdifu(R) = R; (RT;R)+ = (R;RT)+;R = (R;RT)+;R; (RT;R)+ = R; (RT;R)∗.

Proof : hdifu is a closure operation because the property of being difunctional is easily shown to be
∩-hereditary. Difunctionality of R; (RT ; R)+ is rather trivial, so that D := hdifu(R) ⊆ R; (RT ; R)+.
Conversely with R ⊆ D also D ; RT ; R ⊆ D ; DT ; D ⊆ D hold, since D is difunctional. Therefore,
iteratively applied, R; (RT;R)+ ⊆ D.

1Demanding “ ⊆ ” to hold would suffice, as “ ⊇ ” is satisfied for all relations.

21

22 4 Heterogeneous Decompositions

difunctionalClosure r = r *** (warshall (transpMat r *** r))
difunctionalTest r = difunctionalClosure r <== r

In our example from the introduction we have presented a difunctional matrix in its original and in
its rearranged form. The effect was rather obvious. In the next example, we rearrange a non-closed
matrix according to its difunctional closure.

printResDifuClosure m =
let difuClo = difunctionalClosure m

rsH = nub (transpMat difuClo)
rs = if and (map or (transpMat rsH))

then reverse $ sort $ rsH
else (reverse $ sort $ rsH) ++ [map not (map or (transpMat rsH))]

csH = nub difuClo
cs = if and (map or (transpMat csH))

then csH
else csH ++ [map not (map or (transpMat csH))]

origRearr = stringForNamedMatrixLines $ rearrangeMatWithLines m rs cs
closRearr = stringForNamedMatrixLines $ rearrangeMatWithLines difuClo rs cs

in ((stringForOriginalNamedMatrix m) ++ closRearr ++ origRearr)

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17




0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0




3 6 7 13 1 4 8 2 5 9 10 11 12

1

9

11

15

16

17

2

3

6

7

4

13

14

5

8

10

12




1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0




3 6 7 13 1 4 8 2 5 9 10 11 12

1

9

11

15

16

17

2

3

6

7

4

13

14

5

8

10

12




0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0




A relation with its difunctional closure and in an accordingly rearranged form

Related questions sometimes come up in cluster analysis. Much of the information a difunctional
relation gives us, is already present in its reduced form. One should, however, know how the rows and
columns relate to the reduced matrix. This is what difuFactorization provides.

difuFactorization r =
let rowWork (f, r) z =

let compare = map (\s -> z == s) r
in case (or compare) of

True -> (f ++ [compare], r)
False -> (transpMat ((transpMat f)

++ [take (rows f) (repeat False)])
++ [compare ++ [True]], r ++ [z])

difuWork (f, r) [] = (f, r)
difuWork (f, r) (z : rest) = difuWork (rowWork (f, r) z) rest
rRowReduced = difuWork ([], []) r
f = fst rRowReduced

4.1 Difunctional Relations 23

rColReduced = difuWork ([], []) (transpMat (snd rRowReduced))
g = fst rColReduced
rRed = transpMat (snd rColReduced)

in (f, rRed, g)

The resulting relation has, however, a much more economic way of representing it. The result gives
the difunctional toy argument matrix factorized R = F ;Rcondensed;GT into the product of a mapping,
the reduced matrix, and a transposed mapping.




1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0




=




1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

0 1 0 0
0 1 0 0
0 1 0 0

0 0 1 0
0 0 1 0
0 0 1 0

0 0 0 1




;




1 0 0
0 1 0
0 0 1
0 0 0


;




1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0

0 1 0
0 1 0
0 1 0
0 1 0

0 0 1
0 0 1




T

Representing a difunctional relation by two functions and a smaller relation

Meanwhile, we have some feeling how a difunctional matrix looks like. We also know the algebraic
characterization from the definition. Now we ask for the practical aspects of this definition, which has
long been discussed and is known among numerical analysts as chainability.

4.1.3 Definition. Let a relation R be given that is conceived as a chessboard with dark squares
or white according to whether Rik is True or False. A rook shall operate on the chessboard in
horizontal or vertical direction; however, it is only allowed to change direction on dark squares. Using
this interpretation, a relation R is called chainable if the non-vanishing entries (i.e., the dark squares)
can all be reached from one another by a sequence of “rook moves”, or else if hdifu(R) = .

chainableTest r = difunctionalClosure r === allMatFor r

We illustrate this definition mentioning a related concept. The relation R shall for the moment
be conceived as a hypergraph-incidence between hyperedges (rows) and vertices (columns). Then
K := ∩ R;RT is the so-called edge-adjacency, see e.g. [SS89, SS93].

4.1.4 Proposition. A total and surjective relation R is chainable precisely when its edge-adjacency
K is strongly connected.

Proof : First we show that K∗ = (R;RT)∗, using the formula (A∪B)∗ = (A∗;B)∗;A∗, well-known from
regular algebra. Then

(R;RT)∗ = ((∩ R;RT) ∪ (∩ R;RT))∗ = ((∩ R;RT)∗; (∩ R;RT))∗; (∩ R;RT)∗ = (;K)∗; = K∗

From chainability, hdifu(R) = (R ; RT)∗ ; R = we get immediately K∗ = (R ; RT)∗ ⊇ (R ; RT)+ =
(R; RT)∗ ; R; RT = ; RT. Totality of R gives the first direction; it is necessary, since there might exist
an empty hyperedge completely unrelated to the vertices.

24 4 Heterogeneous Decompositions

The other direction is hdifu(R) = (R;RT)∗;R = K∗;R = ;R, where R must be surjective, as otherwise
there might exist an isolated vertex unrelated to all the edges.

At this point, we resume our investigation of congruences from Props. 3.3.7 and 3.3.8, relating them
to difunctionality.

4.1.5 Proposition. Let some possibly heterogeneous relation R be given and consider the constructs
Ξ := (R;RT)∗ and Ξ′ := (RT;R)∗.

i) Ξ and Ξ′ are equivalences.

ii) The pair (Ξ,Ξ′) forms an R-congruence, i.e. Ξ;R ⊆ R;Ξ′; in addition Ξ;R = R;Ξ′.

iii) The pair (Ξ′,Ξ) forms an RT-congruence, i.e. Ξ′;RT ⊆ RT;Ξ; in addition Ξ′;RT = RT;Ξ.

iv) “Considered modulo Ξ,Ξ′”, the relation R is univalent RT;Ξ;R ⊆ Ξ′ and injective R;Ξ′;RT ⊆ Ξ.

v) hdifu(R) = Ξ;R;Ξ′.

Proof : The proofs follow easily from regular algebra.

As a result, there is a partial 1:1-correspondence between the classes according to the two equivalence
relations Ξ,Ξ′ on the domain and on the range side, respectively. One might wish to call it the natural
congruence of R. The following function gives the “arbitrary” relation in the middle and the two
congruences accordingly on the left and on the right.

printResCongrMatrix m =
let mT = transpMat m

mmT = reflTranClosure (m *** mT)
mTm = reflTranClosure (mT *** m)
difuClo = difunctionalClosure m
rsH = nub (transpMat difuClo)
rs = if and (map or (transpMat rsH))

then reverse $ sort $ rsH
else (reverse $ sort $ rsH) ++ [map not (map or (transpMat rsH))]

csH = nub difuClo
cs = if and (map or (transpMat csH))

then csH
else csH ++ [map not (map or (transpMat csH))]

origRearr = stringForNamedMatrixLines $ rearrangeMatWithLines m rs cs
leftCongr = stringForNamedMatrixLines $ rearrangeMatWithLines mmT rs rs
rightCongr = stringForNamedMatrixLines $ rearrangeMatWithLines mTm cs cs

in ((stringForOriginalNamedMatrix m) ++ (stringForOriginalNamedMatrix mmT) ++
(stringForOriginalNamedMatrix mTm) ++ leftCongr ++ origRearr ++ rightCongr)

4.1 Difunctional Relations 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14




1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 1 0 0
0 0 0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 1
0 1 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 1 0 0 1




1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

12

13

14




0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0




1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11




1 0 0 0 1 0 0 1 0 0 0
0 1 0 1 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 1 0 1 0 0
1 0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 1 0 1 0 0
1 0 0 0 1 0 0 1 0 0 0
0 1 0 1 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1




1 6 13 2 10 11 14 4 5 8 12 3 7 9

1

6

13

2

10

11

14

4

5

8

12

3

7

9




1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1




2 4 7 9 3 6 10 1 5 8 11

1

6

13

2

10

11

14

4

5

8

12

3

7

9




1 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0




2 4 7 9 3 6 10 1 5 8 11

2

4

7

9

3

6

10

1

5

8

11




1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 1




Relation decomposed according to its natural congruence and the same in rearranged form

The following concepts of inverses are known in the context of linear algebra for numerical problems.

4.1.6 Definition. Let some relation A be given. The relation G is called

i) a generalized inverse of A if A;G;A = A.

ii) a Moore-Penrose inverse of A if the following four conditions hold
A;G;A = A, G;A;G = G, (A;G)T = A;G, (G;A)T = G;A.

We recall a well-known result on these Moore-Penrose inverses.

4.1.7 Theorem. Moore-Penrose inverses are uniquely determined provided they exist.

Proof : Assume two Moore-Penrose inverses G, H of A to be given. Then we may proceed as follows
G = G;A;G = G;GT;AT = G;GT;AT;HT;AT = G;GT;AT;A;H = G;A;G;A;H = G;A;H = G;A;H ;A;H =
G;A;AT;HT;H = AT;GT;AT;HT;H = AT;HT;H = H ;A;H = H.

We now relate these concepts with permutations and difunctionality.

4.1.8 Theorem. For a relation A, the following are equivalent:

i) A has a Moore-Penrose inverse.

26 4 Heterogeneous Decompositions

ii) A has AT as its Moore-Penrose inverse.

iii) A is difunctional.

iv) Any two rows (or columns) of A are either disjoint or identical.

v) There exist permutation matrices P, Q such that P ;A;Q has block-diagonal form, i.e.

P ;A;Q =




B1

B2

B3

B4

B5




with not necessarily square diagonal entries Bi = .

4.2 Relations of Ferrer’s Type

The following decomposition is applicable only in rather rare cases. It may be handled similarly and
groups rows as well as columns so as to obtain a “linear ordering” of classes. After rearranging, the
resulting matrix will have upper triangular form — up to the fact that this is meant blockwisely.

4.2.1 Definition. We say that a relation

A is of Ferrer’s type :⇐⇒
⇐⇒

A;A
T
;A ⊆ A ⇐⇒ A;AT;A ⊆ A ⇐⇒ AT;A;AT ⊆ AT

A can be written in staircase block form
by suitably rearranging rows and columns.

ferrerOperator r = r *** (negaMat (transpMat r)) *** r
ferrersTest r = ferrerOperator r <== r
ferrerInterior r = transpMat (negaMat (ferrerOperator r))
ferrerTransTest r = r *** (ferrerInterior r *** r)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18




0 1 0 0 0 1 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
1 1 0 0 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 1 0 1
0 1 0 0 0 1 0 0 0 1 0 0 1 0 1
0 1 0 0 0 1 0 0 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
1 1 0 0 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 1 0 1
0 1 0 0 0 1 1 0 1 1 0 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 1 1 0 1 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 1 1 0 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 1 0 1
0 1 0 0 0 1 1 0 1 1 0 1 1 0 1




3 4 1 5 8 11 14 7 9 12 2 10 15 6 13

4

9

11

13

15

18

1

5

6

7

10

17

3

8

12

16

2

14




0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




Original relation of Ferrer’s type and rearranged version

4.3 Line-Covering and Independence 27

printResFerrMatrix m =
let exstinguish [] = []

exstinguish (h:t) = h : (map (\z -> zipWith (&&) (map not h) z) (exstinguish t))
rsH = nub (transpMat m)
rsH1 = exstinguish $ sort rsH
rs = if and (map or (transpMat rsH1))

then rsH1
else (tail rsH1) ++

[map not (map or (transpMat rsH1))]
csH = sort $ nub m
csH1 = reverse (exstinguish csH)
cs = if and (map or (transpMat csH1))

then csH1
else [map not (map or (transpMat csH1))] ++ csH1

ferrRearr = stringForNamedMatrixLines $ rearrangeMatWithLines m rs cs
in putStr ((stringForOriginalNamedMatrix m) ++ ferrRearr)

ferrerFactorization r =
let rowWork (f, r) z =

let compare = map (\s -> z == s) r
in case (or compare) of

True -> (f ++ [compare], r)
False -> (transpMat ((transpMat f)

++ [take (rows f) (repeat False)])
++ [compare ++ [True]], r ++ [z])

ferrerWork (f, r) [] = (f, r)
ferrerWork (f, r) (z : rest) = ferrerWork (rowWork (f, r) z) rest
rRowReduced = ferrerWork ([], []) r
f = fst rRowReduced
rColReduced = ferrerWork ([], []) (transpMat (snd rRowReduced))
g = fst rColReduced
rRed = transpMat (snd rColReduced)

in (f, rRed, g)

printFerrerDecomposition r =
let (a,b,c) = ferrerFactorization r
in putStr ((stringForOriginalNamedMatrix a) ++

(stringForOriginalNamedMatrix b) ++
(stringForOriginalNamedMatrix c))

Having this in mind, one will most likely investigate, whether decompositions are also possible if not
a linear (strict)ordering but other orderings occur. Michael Winter solved this question positively in
his so far unpublished paper Decomposiing relations into orderings.

4.3 Line-Covering and Independence

Some relations may be decomposed in such a way, that there is a subset of row entries that is completely
unrelated to a subset of column entries. In this context, a relation A may admit vectors x and y (with

=/ x=/ or =/ y =/ to avoid degeneration), such that A; y ⊆ x or else A ⊆ x;yT. Given appro-
priate permutations P of the rows, and Q of the columns, respectively, we then have

P ;A;QT =
(∗
∗ ∗

)
P ;x =

()
Q;y =

()
.

28 4 Heterogeneous Decompositions

Given A;y ⊆ x, to enlarge the -zone is not so easy a task, which may be seen at the identity relation
: All shapes from 1× (n− 1), 2× (n− 2), . . . (n− 1)× 1 may be chosen. There is no easily acceptable

extremality criterion. Therefore, one usually studies this effect with one of the sets negated.

4.3.1 Definition. Let a relation A be given and consider pairs of subsets (s, t) taken from the domain
and from the range side, respectively:
i) (s, t) is a line-covering :⇐⇒ A; t ⊆ s.
ii) (s, t) is a pair of independent sets :⇐⇒ A; t ⊆ s.

An easy consequence of the definition is the following statement.

4.3.2 Proposition. For a given relation A together with a pair (s, t) we have
(s, t) line-covering ⇐⇒ (s, t) is independent.

Both concepts allow for enlarging the pair, or reducing it, corresponding to the respective ordering,
so as to arrive at an equation. We prove this for a line-covering.

4.3.3 Proposition. i) Let (s, t) be a line-covering of the relation A, i.e., A; t ⊆ s. Precisely when
both, A; t = s and AT ; s = t, are satisfied there will be no smaller (i.e. satisfying both, x ⊆ s and
y ⊆ t) pair (x, y) =/ (s, t) line-covering A.
ii) Let (s, t) be a pair of independent sets of the relation A, i.e., A;t ⊆ s. Precisely when both, A;t = s
and ATs = t, are satisfied there will be no greater (i.e. satisfying both, x ⊇ s and y ⊇ t) pair of
independent sets (x, y) =/ (s, t) for A.

Proof : i) Assume A; t ⊂=/ s. Then there will exist a point p ⊆ s ∩ A; t (at least in the case of finite
representable relations handled here). Then x := s ∩ p =/ s and y := t will obviously constitute a
strictly smaller line-covering.

If on the other hand side (x, y) is line-covering A with x ⊆ s and y ⊆ t and the two equations are
satisfied, then t = AT;s ⊆ AT;x ⊆ y.

Note that we need both of the two equations as A; y = x is not via Schröder’s rule equivalent with
AT;x = y.

We provide functions that may — at least for small examples — be used to compute line-coverings
and independent sets, respectively. In addition, the inclusion maxi-/minimal and the maxi-/minimal
ones by cardinality may be obtained.

allInclMinCoverings q =
let antitoneFctlCovering b x = b *** (negaMat x)

filterFunction t = t == antitoneFctlCovering (transpMat q)
(antitoneFctlCovering q t)

allColVects = allNByM (cols q) 1
in map (\b -> (head $ transpMat $ antitoneFctlCovering q b,

head $ transpMat $ b))
(filter filterFunction allColVects)

allCardMinCoverings q =

4.3 Line-Covering and Independence 29

let lengthTogether (u,v) = length (filter (== True) (u ++ v))
minCard = foldl min 100000 (map lengthTogether (allInclMinCoverings q))

in filter (\(x,y) -> minCard == lengthTogether (x,y)) (allInclMinCoverings q)

printResMatrixCovering q =
let pairToSubdivision (u,v) = ([map not u, u], [v, map not v])

allMinCardCov = map pairToSubdivision (allCardMinCoverings q)
oneToString (rs, cs) = stringForNamedMatrixLines $ rearrangeMatWithLines q rs cs

in putStr ((stringForOriginalNamedMatrix q) ++
(concat (map oneToString allMinCardCov)))

The diversity of reductions shown suggests to look for the following line-covering possibility. For the
moment, call rows and columns, respectively, lines. Then together with the |x| by |y| zone of 0 ’s,
we are able to cover all entries 1 by |x| vertical plus |y| horizontal lines. It is standard, to try to
minimize the number of lines to cover all 1 ’s of the relation.

4.3.4 Definition. Given a relation A, the term rank is defined as the minimum number of lines
necessary to cover all entries 1 in A, i.e.

min{|s| + |t| | A; t ⊆ s}.

Consider
(

A11

A21 A22

)
;

()
=

()
. Hoping to arrive at fewer lines than the columns of A11 and

the rows of A22 to cover, one might start a first naive attempt and try to cover with s and t but row
i, e.g., omitted. If (s, t) has already been minimal, there will be an entry in row i of A22 containing a
1 . Therefore, A22 is a total relation. In the same way, A11 turns out to be surjective.

But we may also try to get rid of a set x ⊆ s of rows and accept that a set of columns be added
instead. It follows from minimality that regardless of how we choose x ⊆ s, there will be at least as
many columns necessary to cover what has been left out. This leads to the following famous definition.

4.3.5 Definition. Given a relation A and a set x, we say that x satisfies the Hall condition

⇐⇒ |z| ≤ |AT;z| for every subset z ⊆ x.

Summarized, if we have a line-covering with |s| + |t| minimal, then AT
11 as well as A22 will satisfy the

Hall-condition. We will later learn how to find minimum line-coverings and maximum independent
sets without just checking them all exhaustively. Then also a better visualization will become possible;
see Page 51. Additional structure will be extracted employing assignment mechanisms. We postpone
this, however, until other prerequisites are at hand and concentrate on the following aspect.

30 4 Heterogeneous Decompositions

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

10

11




0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 1 1 0 1 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0




2 4 1 3 5 6 7

2

3

4

5

6

10

1

7

8

9

11




0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

0 0 0 0 1 0 0
1 0 0 1 1 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 0 0 1 0




2 4 7 1 3 5 6

2

3

4

5

6

8

10

1

7

9

11




0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0

0 0 0 0 0 1 0
1 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 0 0 0 0 1




2 4 6 1 3 5 7

2

3

4

5

6

10

11

1

7

8

9




0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 0 0 1 0
1 0 1 0 1 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0




2 4 6 7 1 3 5

2

3

4

5

6

8

10

11

1

7

9




0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 0 0 0 1
1 0 1 0 0 1 1
0 0 0 0 1 0 0




2 4 5 1 3 6 7

1

2

3

4

5

6

10

7

8

9

11




0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

1 0 1 0 1 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 1 0




2 4 5 7 1 3 6

1

2

3

4

5

6

8

10

7

9

11




0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0

1 0 1 0 0 1 1
0 0 0 0 1 0 0
0 0 0 0 0 0 1




2 4 5 6 1 3 7

1

2

3

4

5

6

10

11

7

8

9




0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0

1 0 1 1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0




2 4 5 6 7 1 3

1

2

3

4

5

6

8

10

11

7

9




0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0

1 0 1 1 0 0 1
0 0 0 0 0 1 0




2 3 4 5 6 1 7

1

2

3

4

5

6

7

10

11

8

9




0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
1 1 0 1 1 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0

0 0 0 0 0 0 1
0 0 0 0 0 1 0




2 3 4 5 6 7 1

1

2

3

4

5

6

7

8

10

11

9




0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
1 1 0 1 1 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0

0 0 0 0 0 0 1




1 2 4 3 5 6 7

2

3

4

5

6

9

10

1

7

8

11




0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 0 0 1 0 0
0 1 0 1 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0




1 2 4 7 3 5 6

2

3

4

5

6

8

9

10

1

7

11




0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 0 0 0 1 0
0 1 0 0 1 1 1
0 0 0 0 0 0 1




1 2 4 6 3 5 7

2

3

4

5

6

9

10

11

1

7

8




0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 0 1 0
0 1 0 1 1 1 0
0 0 0 0 0 0 1




1 2 4 6 7 3 5

2

3

4

5

6

8

9

10

11

1

7




0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 0 0 1
0 1 0 1 0 1 1




1 2 4 5 3 6 7

1

2

3

4

5

6

9

10

7

8

11




0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 1 0 1 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0




1 2 4 5 7 3 6

1

2

3

4

5

6

8

9

10

7

11




0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 1 0 1 0 1 1
0 0 0 0 0 0 1




1 2 4 5 6 3 7

1

2

3

4

5

6

9

10

11

7

8




0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0

0 1 0 1 1 1 0
0 0 0 0 0 0 1




1 2 4 5 6 7 3

1

2

3

4

5

6

8

9

10

11

7




0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0

0 1 0 1 1 0 1




1 2 3 4 5 6 7

1

2

3

4

5

6

7

9

10

11

8




0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 1 1 0 1 1 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0

0 0 0 0 0 0 1




A relation of term rank 7 together with all its cardinality maximum reductions

4.3 Line-Covering and Independence 31

4.3.6 Proposition. Let a finite relation A be given. Then A is either chainable or it admits a
pair (s, t) which is nontrivial, i.e., (s, t) =/ (,) and (s, t) =/ (,), such that both, s, t as well as s, t,
constitute at the same time a pair of independent sets and a line-covering.

Proof : Consider the difunctional closure G := hdifu(A). The dichotomy is as to whether G =/ or
G = , in which case A is chainable by definition. Assume the former. We have for arbitrary X
always G; GT ; G;X ⊆ G;X due to difunctionality. Therefore, every pair s = G; X and t = GT ; G;X
forms a pair of independent sets of G and all the more of A. However, this holds for s = G;X and
t = GT;G;X as well, since G;GT;G;X ⊆ G;X using Schröder’s rule.

It remains to show that always a nontrivial choice of X may be made, i.e., satisfying both =/
and =/ . If G = , we are done as then an arbitrary pair of vectors may be taken. What remains is
G difunctional with G =/ and G =/ . Necessary is some case analysis starting from a point outside
G, i.e., with x;yT ⊆ G.

Difunctionality and line-coverings are related basically in the following way.

4.3.7 Proposition. If and only if a relation A admits a pair (x, y) such that (x, y) and (x, y) are
line-coverings, its difunctional closure will admit these line-coverings.

Proof : Let H := hdifu(A). It is trivial to conclude from H to A as A ⊆ H.

From A; y ⊆ x and A; y ⊆ x, or equivalently, AT ; x ⊆ y, we derive that A ⊆ syq(xT, yT). As the
symmetric quotient is some difunctional relation above A, it is above H, resulting in H ; y ⊆ x and
H ;y ⊆ x.

5 Homogeneous Decompositions

While so far heterogeneous relations have been treated permuting their rows and columns indepen-
dently, we now specialize to the homogeneous case and apply the permutations simultaneously.

From numerical mathematics we know that square matrices may be reducible, in which case numerical

algorithms may perform more efficient. If a reduction of A as A =
(

B 0
C D

)
is known, it becomes

easier to solve the linear equation Ax = b which is then
(

B 0
C D

) (
y
z

)
=

(
c
d

)
. One will solve By = c

first and then Dz = d − Cy. We shortly investigate irreducible, primitive, and cyclic relations with
our techniques.

If a relation is not reducible, it is irreducible or — considering it as a graph — strongly connected.
Looking for strongly connected components leads to rather simple decompositions. There are two
types of irreducible relations to be investigated, primitive and cyclic ones.

5.1 Decomposing into Strongly Connected Components

Here, the theory behind is more or less well-known. It shall therefore serve as the introduction.
Let some relation R be given. Then one may look for its reflexive transitive closure R∗ and for the
equivalence R∗ ∩ R∗T generated by this closure, the equivalence classes of which give the strongly
connected components.

reflTranClosure r = lIdent r ||| (warshall r)
equivGenerated r = let reflTranClos = reflTranClosure r

in transpMat reflTranClos &&& reflTranClos
isStrongConn r = reflTranClosure r === allMatFor r

We now try to find an appropriate decomposition. A good idea is to take the rows of the reflexive
transitive closure without their duplicates. When having ordered them lexicographically, we start
from the first and eliminate the occurences of True in all further rows. This gives the partition to
which we rearrange the original matrix. We show the original first, then the preorder generated from
it in rearranged form and the rearranged original relation together with the permutation obtained.

strongConnCompDecompose r =
let reflTransClos = reflTranClosure r

equiClosure = transpMat reflTransClos &&& reflTransClos
rowTypesH = sort $ nub reflTransClos
rowTypesH1 [] = []
rowTypesH1 (hh:tt) = hh : (rowTypesH1

(map (\ pp -> zipWith (&&) (map not hh) pp) tt))
rowTypes = reverse $ rowTypesH1 rowTypesH
grouped r = rearrangeMatWithLines r rowTypes rowTypes
closRearr = stringForNamedMatrixLines $ grouped reflTransClos
origRearr = stringForNamedMatrixLines $ grouped r

in ((stringForOriginalNamedMatrix r) ++ closRearr ++ origRearr)

32

5.2 Reducible Relations 33

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13




1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0




8 2 1 3 6 12 13 4 7 10 5 9 11

8

2

1

3

6

12

13

4

7

10

5

9

11




1 1 1 1 1 1 1 0 0 1 1 1 1

0 1 1 1 1 1 1 0 0 1 1 1 1

0 0 1 1 1 1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 1

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1




8 2 1 3 6 12 13 4 7 10 5 9 11

8

2

1

3

6

12

13

4

7

10

5

9

11




0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0




A relation, the preorder generated from it in rearranged form, and the rearranged original relation

Once a relation is decomposed, one may easily formulate predicate logic theorems capturing what has
been achieved. Instead of doing so in full detail already here, we present the following

5.1.1 Proposition (Decomposing according to strongly connected components). Any given homoge-
neous relation R can by simultaneously permuting rows and columns be transformed into a matrix of
the following form: It has upper triangular pattern with square diagonal blocks


∗ ∗ ∗

∗ ∗
∗




where ∗ = unless the generated permuted preorder R∗ allows entries =/ . The reflexive-transitive
closure of every diagonal block is the universal relation .

5.2 Reducible Relations

A relation A on a set X is called reducible if there exists a relation =/ x=/ , which is contracted by
A, i.e. A;x ⊆ x. One may say that a relation is reducible, precisely when it contracts (i.e. A;x ⊆ x)
some non-trivial (i.e. =/ x=/) relation. Usually one is interested in contracted vectors. Arrows of
the graph according to A ending in the subset x will always start in x. It is easy to see that the
reducing vectors x, in this case including the trivial ones x = and x = , form a lattice.

Using Schröder’s rule, a relation A contracts a set x precisely when its tranpose AT contracts x as
well: A;x ⊆ x ⇐⇒ AT;x ⊆ x. Therefore, a relation is reducible precisely when its tranpose is.

The essence of the reducibility condition is much better visible after determining some permutation
P that sends the 1 -entries of x to the end. Applying this simultaneously on rows and columns we

obtain the shape P ; A; P T =
(

B
C D

)
as well as P ; x =

()
mentioned in the introduction to this

chapter.

The contraction condition can also be expressed as A ⊆ x;xT. If such a relation x does not exist, A
is called irreducible. Irreducible means that precisely two vectors are contracted, namely x = and
x = . As already discussed, a relation is irreducible precisely when its tranpose is. In particular, we
have for an irreducible A that A;A∗ ⊆ A∗, so that A∗ = , as obviously A∗ =/ . Therefore, one can
translate this into the language of graph theory:

A irreducible ⇐⇒ The graph of A is strongly connected.

34 5 Homogeneous Decompositions

isIrreducible = isStrongConn

An irreducible relation A is necessarily total. A certainly contracts A; as A; A; ⊆ A; . From
irreducibility we obtain that A; = or A; = . The former would mean A = , so that A would
contract every relation x, and, thus, violate irreducibility. Therefore, only the latter is possible, i.e., A
is total.

For a reducible relation A and arbitrary k, also Ak is reducible as Ak;x ⊆ Ak−1;x ⊆ . . . ⊆ A;x ⊆ x.
However, the following is an example of an irreducible relation A with A2 reducible. Therefore, the
property of being irreducible is not multiplicative.

A =




0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0







1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1


 = A2

Irreducible relation with reducible square

It is interesting to look for irreducibility of permutations P . We observe P ;x = x for x := (P k ∩);

and arbitrary k as due to the doublesided mapping properties of P obviously P ;x = P ; (P k ∩); =
P ; (P k ∩); = (P ;P k ∩ P); = (P k ∩);P ; = (P k ∩); = x. For k = 0, e.g., this means x =
and is rather trivial. Also cases with P k ∩ = resulting in x = are trivial.




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0







0 1 0 0 0
1 0 0 0 0

0 0 0 1 0
0 0 0 0 1
0 0 1 0 0




Irreducible and reducible permutation

The permutation P is reducible, namely reduced by x, when neither P k ∩ = nor P k ∩ = . In
recalling permutations, every cycle of P of length c will lead to P c ∩ =/ . If k is the least common
multiple of all cycle lengths occurring in P , obviously P k = . If there is just one cycle — as for the
cyclic successor relation for n > 1 — the permutation P is irreducible. Other permutations with more
than one cycle are reducible.

cyclSuccessor n = unite [[replicate (n-1) [False], ident (n-1)],
[[[True]], [replicate (n-1) False]]]

--for a bijective mapping simultaneously:
arrangeCyclic m = transpMat m *** (cyclSuccessor (rows m))
--for a bijective mapping permuting columns:
arrangeDiagonal m = transpMat m

5.2.1 Proposition. A finite =⇒ An ⊆ (∪ A)n−1 and (∪ A)n−1 = A∗.

Proof : It is trivial that Ai ⊆ A∗ for all i ≥ 0. By the pigeon hole principle always An ⊆ (∪ A)n−1

as otherwise n + 1 vertices would be needed to delimit a non-selfcrossing path of length n while only
n distinct vertices are available. (See Exercise 3.2.6 of [SS89, SS93])

5.2 Reducible Relations 35

5.2.2 Theorem (See, e.g., [BR96] 1.1.2). For any boolean n × n-relation A

i) A irreducible ⇐⇒ (∪ A)n−1 = ⇐⇒ A; (∪ A)n−1 =
ii) A irreducible =⇒ There exists an exponent k such that ⊆ Ak.

Proof : i) We start proving the first equivalence. By definition, A is irreducible, if we have for all
vectors x=/ that A;x ⊆ x implies x = . Now, by the preceding proposition A;(∪A)n−1 ⊆ (∪A)n−1

so that indeed (∪ A)n−1 = .

For the other direction assume A to be reducible, so that =/ x=/ exists with A;x ⊆ x. Then also
Ak ; x ⊆ x for arbitrary k. This is a contradiction, as it would follow that also (∪ A)n−1 ; x ⊆ x
resulting in ;x ⊆ x and, in the case of boolean matrices, i.e., with Tarski’s rule satisfied, in x = ,
a contradiction.

Now we prove the second equivalence. Using Prop. 5.2.1, (∪ A)n−1 ⊇ A; (∪ A)n−1, so that also
A; (∪ A)n−1 ⊇ A;A; (∪ A)n−1. Since A is irreducible, this leads to A; (∪ A)n−1 being equal to
or , from which only the latter is possible.

ii) Consider the irreducible n × n-relation A and its powers. According to (i), there exists for every
row number j a least power 1 ≤ pj ≤ n with position (j, j) ∈ Apj . For the least common multiple p
of all these pj we have ⊆ Ap, and p is the smallest positive number with this property.




0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 1
0 1 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 1 0 0 0







0 0 0 0 1 1 0 1 0 1 0 0 0
1 1 0 1 1 1 1 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 1 0 0 0
1 1 0 0 1 1 0 1 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0
1 1 0 1 0 1 1 0 1 0 1 1 1
1 0 0 1 0 1 1 0 1 0 1 1 1
0 0 0 1 0 0 1 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 1 0 0 0
0 0 0 1 0 1 1 0 1 0 1 1 1







1 1 0 1 1 1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 0 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 0
0 0 0 0 1 1 0 1 0 1 0 0 0
0 0 0 0 1 1 0 1 0 1 0 0 0
1 1 0 0 1 1 0 1 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 0 1 1 1 1 1
1 0 0 1 0 1 1 0 1 0 1 1 1
1 1 0 1 1 1 1 0 1 0 0 1 0
1 1 0 1 0 1 1 0 1 1 1 1 1







1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 1 0 1 0 0 0
1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 0 1 0
1 1 0 1 1 1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1







1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1







1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1




Powers R1, . . . , R6 of a primitive relation R

We now classify irreducible relations a bit further and consider two important classes.

5.2.3 Definition (See, e.g., [Var62] 2.5). An irreducible relation A is called primitive if there exists
some integer k ≥ 1 such that Ak = . If this is not the case, the irreducible relation may be called
cyclic of order k, indicating that the (infinitely many) powers A, A2, A3 . . . reproduce cyclically and
k is the greatest common divisor of all the occurring periods.

36 5 Homogeneous Decompositions

We observe first powers of primitive relations.

primResult iR = let powers = [powerOf iR i | i <- [0..]]
newPowers = nub (take (cols iR) powers)
printPower = map druckTeXMatH newPowers
stringPower = foldl (\ x y -> x ++ "$\n\n\n$" ++ y) "" printPower

in putStr stringPower

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9




0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0




5 6 8 9 1 7 2 3 4

5

6

8

9

1

7

2

3

4




0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0




A cyclic relation and its rearranged version

5.2.4 Proposition (See, e.g., [BR96] 1.8.2). A relation R is primitive precisely when its powers Rk

are irreducible for all k ≥ 1.

Proof : “=⇒”: Assume Rk ; x ⊆ x with x=/ and x=/ for some k ≥ 1. Then we have also
Rnk ; x ⊆ R(n−1)k ; x . . . ⊆ Rk ; x ⊆ x for all n ≥ 1. This contradicts primitivity of R as from some
index on all powers of a primitive R will be .

“⇐=”: Assume R were not primitive, i.e. Rk =/ for all k. It is impossible for any Rk to have a
column as this would directly show reducibility of Rk. It follows from finiteness that there will exist
identical powers Rl = Rk =/ with l > k, e.g. This results in Rl−k ; Rk = Rk. Power Rl−k, therefore,
contracts all columns of Rk — and at least one column which is unequal .

Now we observe how powers of a cyclic relation behave.



0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0







0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0







1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1







0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0







0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0







1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1







0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0







0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0




Rearranged powers R1, . . . R8 of a cyclic relation R

5.3 Difunctionality and Irreducibility 37

The behaviour of irreducible relations just presented may be summarized as follows. In both cases,
rectangular blocks are gradually filled. If this is completed, one will find a difunctional matrix. In the
primitive case, it is the universal matrix, while for a cyclic relation it is a permutation of these blocks
with just one long period. We will only later be able to look for algebraic reasons for this behaviour.

5.3 Difunctionality and Irreducibility

We now specialize our investigations concerning difunctional relations to homogeneous and, later,
irreducible ones.

5.3.5 Proposition. Let an arbitrary finite homogeneous relation R be given. Then in addition to
the constructs Ξ,Ξ′ of Prop. 4.1.4 also Θ := (Ξ ∪ Ξ′)∗, G := Θ;R, and G′ := R;Θ may be formed.

i) Θ is an equivalence.

ii) G;GT ⊆ Θ and G′T;G′ ⊆ Θ

iii) G as well as G′ are difunctional.

Proof : (i) is trivial. From the other statements, we prove the G-variants.
(ii) G;GT = Θ;R; (Θ;R)T = Θ;R;RT;Θ ⊆ Θ;Ξ;Θ ⊆ Θ;Θ;Θ = Θ
(iii) G;GT;G ⊆ Θ;G = Θ;Θ;R = Θ;R = G, using (ii).

It need not be that GT;G ⊆ Θ; see the example R =

(
0 0 0
0 1 1
1 0 0

)
with G =

(
0 0 0
1 1 1
1 1 1

)
. Nor need the pair

(Θ,Θ) be an R-congruence as this example shows, where also G =/ G′.

difuSymmClosure r =
let transpR = transpMat r

xi = reflTranClosure $ r *** transpR
xi’ = reflTranClosure $ transpR *** r

in reflTranClosure $ xi ||| xi’

With the following function we visualize what happens.

printResDifuSymm r =
let theta = difuSymmClosure r

gggggg = theta *** r
gPrime = r *** theta
rsH = nub (transpMat theta)
rs = if and (map or (transpMat rsH))

then reverse $ sort $ rsH
else (reverse $ sort $ rsH) ++ [map not (map or (transpMat rsH))]

origRearr = stringForNamedMatrixLines $ rearrangeMatWithLines r rs rs
symDifuClosRearr = stringForNamedMatrixLines $ rearrangeMatWithLines theta rs rs
ggggggRearr = stringForNamedMatrixLines $ rearrangeMatWithLines gggggg rs rs
gPrimeRearr = stringForNamedMatrixLines $ rearrangeMatWithLines gPrime rs rs

in ((stringForOriginalNamedMatrix r) ++ symDifuClosRearr ++
origRearr ++ ggggggRearr ++ gPrimeRearr)

38 5 Homogeneous Decompositions

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13




0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0




1 11 13 2 3 6 9 12 4 5 7 8 10

1

11

13

2

3

6

9

12

4

5

7

8

10




1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1




1 11 13 2 3 6 9 12 4 5 7 8 10

1

11

13

2

3

6

9

12

4

5

7

8

10




0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0




1 11 13 2 3 6 9 12 4 5 7 8 10

1

11

13

2

3

6

9

12

4

5

7

8

10




0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0

0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0




1 11 13 2 3 6 9 12 4 5 7 8 10

1

11

13

2

3

6

9

12

4

5

7

8

10




0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0

1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0




A relation, its symmetrized difunctional closure, rearranged according to it, and G, G′

One easily observes, that the relation is not yet block-wisely injective, nor need it be block-wisely
univalent. The blocks of G, G′ are not yet completely filled, but only filled row- or columnwise,
respectively. So by applying the permutations simultaneously, we have lost some of the properties the
relations enjoyed when permuting independently in the heterogeneous case. In the next theorem, we
define a bigger congruence where we get back what has just been lost.

5.3.6 Proposition. Let a finite and homogeneous relation R be given, and consider the constructs
Ξ,Ξ′ of Prop. 4.1.4 and Θ := (Ξ ∪ Ξ′)∗ as in Prop. 5.3.5. Define Ω as the stationary value of the
iteration

X �→ τ(X) := (X ∪ R;X ;RT ∪ RT;X ;R)∗

started with X0 := .

i) Ω is an equivalence containing Ξ,Ξ′, and Θ.

ii) “Considered modulo Ω”, the relation R is

univalent RT;Ω;R ⊆ Ω, and

injective R;Ω;RT ⊆ Ω.

iii) H := Ω; R; Ω is difunctional and commutes with Ω, i.e., Ω; H = H ; Ω, so that the pair (Ω,Ω)
constitutes an H-congruence.

Proof : i) The isotone iteration X �→ τ(X) will end after a finite number of steps with a relation Ω
satisfying ⊆ Ω = τ(Ω) = (Ω ∪ R;Ω;RT ∪ RT;Ω;R)∗. Thus, Ω is reflexive, symmetric, and transitive

5.3 Difunctionality and Irreducibility 39

by construction, i.e., it is an equivalence. This equivalence certainly contains R;RT, and therefore, Ξ.
Also Ξ′ ⊆ Ω in an analogous way, so that it also contains Θ.
ii) is trivial.
iii) H ;HT;H = Ω;R;Ω; (Ω;R;Ω)T;Ω;R;Ω = Ω;R;Ω;RT;Ω;R;Ω ⊆ Ω;R;Ω;;Ω;Ω = Ω;R;Ω = H
Ω;H = Ω;Ω;R;Ω = Ω;R;Ω = Ω;R;Ω;Ω = H ;Ω

Another characterization is
Ω = inf{Q | Q equivalence, Q; R ⊆ R; Q, RT ; R ⊆ Q, R; RT ⊆ Q, }. So (Ω,Ω) is the smallest

R-congruence above (Ξ,Ξ′).

The following function allows to compute this closure.

difuClosLeftRightIterated r =
let transpR = transpMat r

tauR x = reflTranClosure $ (x |||
(transpR *** (x *** r))) ||| (r *** (x *** transpR))

untilT f x = let fx = f x
in if (x == fx) then x

else untilT f fx
in untilT tauR (ident (rows r))

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11




0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0




3 4 8 10 2 5 9 1 7 6 11

3

4

8

10

2

5

9

1

7

6

11




0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0




3 4 8 10 2 5 9 1 7 6 11

3

4

8

10

2

5

9

1

7

6

11




0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0




3 4 8 10 2 5 9 1 7 6 11

3

4

8

10

2

5

9

1

7

6

11




1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1




A relation with its rearranged and block-filled form according to Ω

One will observe the block-successor form of Page 12 with a 2-cycle first and then a terminating strand
of 4.

printLeftRightIterated r =
let omega = difuClosLeftRightIterated r

hhhhh = omega *** (r *** omega)
rs = nub omega
rno = rows rs
(aaa,_,_,_,_) = rearrangeMatWithLines hhhhh rs rs

40 5 Homogeneous Decompositions

aaanub = nub aaa
aaanubnub = transpMat (nub (transpMat aaanub)) -- this is now injective and univalent
ran = rows aaanubnub
can = cols aaanubnub
fullagain = unite [[aaanubnub, nulMatNM ran (rno - ran)],

[nulMatNM (rno - ran) can, nullMatFor $ ident (rno - ran)]]
succForm = permToSuccMatrix fullagain -- of the groups
rsCyc = succForm *** rs
omegaRearr = stringForNamedMatrixLines $ rearrangeMatWithLines omega rsCyc rsCyc
origRearr = stringForNamedMatrixLines $ rearrangeMatWithLines r rsCyc rsCyc
omegaClosRearr = stringForNamedMatrixLines $ rearrangeMatWithLines hhhhh rsCyc rsCyc

in ((stringForOriginalNamedMatrix r) ++ origRearr ++ omegaClosRearr ++ omegaRearr)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21




0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0




1 8 9 11 20 2 3 13 14 18 4 6 7 12 16 10 15 19 5 17 21

1

8

9

11

20

2

3

13

14

18

4

6

7

12

16

10

15

19

5

17

21




0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




An irreducible and cyclic relation in original and rearranged form

Very often Ω will be much too big an equivalence, close to , to be interesting. There are special
cases, however, where we encounter the well-known Moore-Penrose configuration again.

5.3.7 Proposition. Assume the settings of Prop. 5.3.6, and assume that R in addition be irreducible.
Then the following hold:

i) H is irreducible.

ii) H is total and surjective making it a 1:1-correspondence of the classes according to Ω.

iii) HT acts as an “inverse” of H in as far as HT;H = Ω, as well as HT;H2 = H, etc.

iv) There exists a power k such that Rk = Ω and Rk+1 = H.

Proof : (i) Assumed H;x ⊆ x to hold, then all the more R;x ⊆ x. If it were the case that =/ x=/ ,
we would obtain that R were reducible, i.e., a contradiction.
(ii) As proved on page 34 directly after the definition of irreducibility, an irreducible relation R is
total. This holds for Ω;R;Ω as well. Surjectivity is shown analogously.

5.3 Difunctionality and Irreducibility 41

(iii) We now easily deduce that HT;H = Ω, since with surjectivity and definition of Ω
HT;H = Ω;RT;Ω;Ω;R;Ω = Ω;RT;Ω;R;Ω = Ω;Ω;Ω = Ω.

Then also by induction
HT;Hk+1 = HT;H ;Hk = Ω;Hk = Hk.

(iv) We may prove a property we had already on page 34 for permutations proper, i.e., with all
block-widths 1: The construct x := (Hk ∩ Ω); satisfies H ;x ⊆ x for all powers k.

H ;x = H ; (Hk ∩ Ω); = H ; (Hk ∩ Ω); = (Hk+1 ∩ H); = (Hk ∩ Ω);H ; = (Hk ∩ Ω); = x

To this end, we convince ourselves that HT;X = HT;X proving the second equality, and H;(Hk ∩Ω) =
Hk+1 ∩ H = (Hk ∩ Ω);H proving the others.

From totality of HT we have = HT; = HT;X ∪HT;X so that always HT;X ⊆ HT;X. The opposite
inclusion is satisfied for arbitrary X with Ω;X = X, since H ;HT;X ⊆ Ω;X = X.

Furthermore, we have
H ; (Hk ∩ Ω) ⊆ H ;Hk ∩ H ⊆ (H ∩ H ;HkT); (Hk ∩ HT;H) ⊆ H ; (Hk ∩ HT;H) = H ; (Hk ∩ Ω)

giving equality everywhere in between.

We have, after all, that R; x ⊆ H ; x = x, regardless of how we choose k. However, R is irreducible,
which means that no x unequal to , is allowed to occur. This restricts Hk to be either Ω or to be
disjoint therefrom.

6 Galois-Decompositions

There is a well-developed theory of standard iterations for boolean matrices in order to solve a diversity
of application problems, such as matching, line-covering, assignment, games, etc. We will present a
general framework for executing these iterations.

When studying, e.g., reducibility, we found that there may exist many reductions. In order to not
take an arbitrary one, we should know additional properties we demand for them. One such property
is provided by the termination condition. Another one arises in combination with the well-known
matching/assignment situation.

6.1 Galois-Iterations in General

In all of these cases, we need two antitone mappings, which we call σ : P(V) → P(W) and π :
P(W) → P(V), according to [SS89, SS93]. These mappings are usually determined by an obviously
antitone relational construct based on some relations, e.g., w �→ π(w) := B;w based on the relation
B : V ↔ W . Many other pairs of such antitone mappings are conceivable.

Nested iterations will then start with the empty subset of V on the left and the full subset of W on
the right1. While there is a lot of theory necessary for the infinite case, the finite case is rather simple.
Consider the starting configuration with its trivial containments ⊆ π() and σ() ⊆ which
are perpetuated by the antitone mappings to ⊆ π() ⊆ π(σ()) ⊆ . . . and . . . ⊆ σ(π()) ⊆
σ() ⊆ . In the finite case, these two sequences will eventually become stationary. The effect of the
iteration is that the least fixedpoint a of v �→ π(σ(v)) on the side started with the empty set is related
to the greatest fixedpoint b of w �→ σ(π(w)) on the side started from the full set. The final situation
obtained will be characterised by a = π(b) and σ(a) = b.

Of course, there exist fixedpoints of v �→ π(σ(v)) and w �→ σ(π(w)), as these are isotone mappings
in a complete powerset lattice. These fixedpoints are reached since the iteration starts with trivial
containments ⊆ x and y ⊆ for arbitrary fixedpoints x = π(σ(x)) and y = σ(π(y)), which are
again perpetuated by the iteration to ⊆ π() ⊆ π(y) and σ(x) ⊆ σ() ⊆ , and furthermore to

⊆ π() ⊆ π(σ()) ⊆ π(σ(x)) = x and y = σ(π(y)) ⊆ σ(π()) ⊆ σ() ⊆ , etc.

We formulate the basic iteration along the well-known until-construct of Haskell with lr for σ and
rl for π.

untilGS lr rl (v, w)
= let lrv = lr v

rlw = rl w
in if (w == lrv) && (v == rlw) then (v, w)

else untilGS lr rl (rlw, lrv)

For detailed proofs concerning this iteration see A.3.11 of [SS89, SS93]. The start may be determined
from the row and column number of the given basic relations inserting True, False as appropriate.

1Of course, the iteration may also be started the other way round, i.e., with the full subset of V on the left and with
the empty subset of W on the right. Then corresponding results are obtained for BT.

42

6.2 Termination 43

startVector tf b = map (\x -> [tf]) b

We will in the sections to come use this general scheme in several application fields.

6.2 Termination

The set of all points of a graph, from which only paths of finite length emerge,

J(R) := inf{x | x = R;x }

is called the initial part J(R) of R. We will now determine the initial part of a relation along the lines
of 6.3.4 of [SS89, SS93]. A relation is progressively finite if J(R) = . A slightly different property is
being progressively bounded, suph≥0 Bh; = . A difference between the two exists only for non-finite
relations; it may, thus, be neglected here.

Two antitone functionals v �→ σ(v) := v and w �→ π(w) := R;w are given as follows:

antitoneFctlCorr1 r v = negaMat v -- independent of r!
antitoneFctlCorr2 r w = r *** (negaMat w)

Applying the general scheme from the last section, we obtain the initial part as

initialPart r = untilGS (antitoneFctlCorr2 r)
(antitoneFctlCorr1 r)
(startVector False r, startVector True r)

The algorithm applied to the relation R will result in the pair (a, b) of vectors. The relational formulae
valid for the final pair (a, b) of the iteration are a = π(b) = R; b and b = σ(a) = a. (In this case, it is
uninteresting to start with the empty set and the full set exchanged from left to right.)

R =




0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1
1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




a =




1
0
0
0
0
1
0
1
0




b =




0
1
1
1
1
0
1
0
1




A relation together with the results of the termination iteration

Here, b is the initial part belonging to R: There are no paths of infinite length from the vertices of
b, which, however, do exist starting from vertices of a. This offers the possibility of rearranging as
follows:

6.2.1 Proposition (Rearranging relations with respect to termination). Any finite homogeneous
relation may by simultaneously permuting rows and columns be transformed into a matrix satisfying
the following basic structure with square diagonal entries:(

progressively bounded
∗ total

)

This subdivision into groups “initial part/infinite path exists” is uniquely determined, and indeed

a =
()

=
(

progressively bounded
∗ total

)
;

()
b =

()
=

()

44 6 Galois-Decompositions

In as far as R ; a = R ; b = a, we got that R is reducible. Among the many possible ones we have
distinguished a reduction with very specific properties. We look for yet another example of rearranging
and subdividing a relation according to termination properties.

printResTermination m =
let terminationResult = initialPart m

aa = map head (fst terminationResult)
bb = map head (snd terminationResult)
rowCols = [aa, bb]
origRearr = stringForNamedMatrixLines $ rearrangeMatWithLines m rowCols rowCols

in stringForOriginalNamedMatrix m ++ origRearr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17




0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




3 7 12 17 1 2 4 5 6 8 9 10 11 13 14 15 16

3

7

12

17

1

2

4

5

6

8

9

10

11

13

14

15

16




0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0




A relation, original and rearranged according to its initial part

The termination-oriented decomposition may prove useful in the following case: Assume a preference
relation to be given where it is not clear from the beginning that this preference is circuit-free. There
is a tendency of ranking all those equal who belong to a circuit. The initial part collects all items that
are not related to a circuit at all, so that they are properly ranked by the given relation.

6.3 Games

For a second application, we look at solutions of relational games. Let an arbitrary homogeneous
relation B : V ↔ V be given. Two players are supposed to make moves alternatingly according to B
in choosing a consecutive arrow to follow. The player who has no further move, i.e., who is about to
move and finds an empty row in the relation B, or a terminal vertex in the graph, has lost.

Such a game is easily visualized taking a relation B represented by a graph, on which players have to
determine a path in an alternating way. We study it for the Nim-type game starting with 6 matches
from which we are allowed to take 1 or 2.

036

1245 0 1 2 3 4 5 6

0

1

2

3

4

5

6




0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0




A NIM-type game in graph- and in matrix-form

6.3 Games 45

The antitone functionals based on this relation are formed in a manner quite similar to termination.

antitonFctlGame b x = negaMat (b *** x)

The solution of the game is then again determined following the general scheme.

gameSolution b = untilGS (antitonFctlGame b) (antitonFctlGame b)
(startVector False b, startVector True b)

There is one further point to mention concerning the result. This time, we have a homogeneous
relation, and we easily observe, that the two sequences from page 42 reduce using monotony to just
one

⊆ π() ⊆ π(σ()) ⊆ π(σ(π())) ⊆ . . . ⊆ . . . ⊆ σ(π(σ())) ⊆ σ(π()) ⊆ σ() ⊆ .
It is explicitly given here, and we observe equalities in an alternating pattern:

⊆ B; = B;B; ⊆ B;B;B; = . . . ⊆ . . . ⊆ B;B;B; = B;B; ⊆ B; = .

Again, the final situation is characterised by the formulae a = π(b) and σ(a) = b, which this time turn
out to be a = B; b and B;a = b. In addition, we will always have a ⊆ b. The smaller set a gives loss
positions, while the larger one then indicates win positions as b and draw positions as b ∩ a. This is
visualized by the following diagram for sets of win, loss, and draw, the arrows of which indicate moves
that must exist, may exist, or are not allowed to exist.

Win Loss

Draw

no further move
 possible

result a of iteration

result b of iteration

Schema of a game solution

A result will be found for all homogeneous relations. Often, however, all vertices will be qualified as
draw. The set of draw positions may also be empty as in the solution of our initial game example.

0 1 2 3 4 5 6

0

1

2

3

4

5

6




0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0




0 3 6 1 2 4 5

0

3

6

1

2

4

5




0 0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1

1 0 0 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 0 0 1 0




Solution of the NIM-type game

The full power of this approach, however, will only be seen when we assign the two players different
and heterogeneous relations B : V ↔ W and B′ : W ↔ V to follow.

We now try to visualize the results of this game analysis by concentrating on the subdivision of the
matrix B and the vectors a, b, respectively.

46 6 Galois-Decompositions

printResMatrixGame m =
let (aa, bb) = gameSolution m

lossVector = (head (transpMat aa))
lossPlusDraw = (head (transpMat bb))
drawVector = zipWith (\ x y -> y && (not x)) lossVector lossPlusDraw
winVector = map not lossPlusDraw
subdivision = [lossVector, drawVector, winVector]
gameRearr = stringForNamedMatrixLines $

rearrangeMatWithLines m subdivision subdivision
in stringForOriginalNamedMatrix m ++ gameRearr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21




0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0
0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




2 6 10 11 15 19 14 20 1 3 4 5 7 8 9 12 13 16 17 18 21

2

6

10

11

15

19

14

20

1

3

4

5

7

8

9

12

13

16

17

18

21




0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0




A random relation and its game solution rearranged

6.3.1 Proposition (Rearranging relations with respect to a game). Every finite homogeneous rela-
tion may by simultaneously permuting rows and columns be transformed into a matrix satisfying the
following basic structure with square diagonal entries:

 ∗
total ∗

total ∗ ∗




The subdivision into groups loss/draw/win is uniquely determined, and indeed

a =





 =


 ∗

total ∗
total ∗ ∗


;





 b =





 =


 ∗

total ∗
total ∗ ∗


;







It seems extremely interesting, to find out how these standard iterations behave if matrices are taken
the coefficients of which are drawn from other relation algebras. Do, e.g., matrices over an interval
algebra lead to steering algorithms? Will game algorithms over matrices with pairs (interval, compass)
give hints to escape games? Will there be targeting games?

6.4 Matching and Assignment 47

6.4 Matching and Assignment

An additional antimorphism situation is known to exist in connection with matchings and assignments.
Let two matrices Q, λ : V ↔ W be given where λ ⊆ Q is univalent and injective, i.e. a matching —
possibly not yet of maximum cardinality, for instance

Q =

1 2 3 4 5

1

2

3

4

5

6

7




1 0 0 1 0
0 0 0 0 0
1 0 0 1 0
0 0 0 1 0
0 1 1 1 1
1 0 0 1 0
0 0 1 0 1




⊇ λ =

1 2 3 4 5

1

2

3

4

5

6

7




1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0




Sympathy and matching

We consider Q to be a relation of sympathy between a set of boys and a set of girls and λ the set
of current dating assignments, assumed only to be established if sympathy holds. We now try to
maximize the number of dating assignments.

6.4.1 Definition. i) Given a possibly heterogeneous relation Q, we call λ a Q-matching provided
it is a univalent and injective relation contained in Q, i.e., if

λ ⊆ Q λ;λT ⊆ , λT;λ ⊆ .
ii) We say that a point set x can be saturated if there exists a matching λ with λ; = x.

The current matching λ may have its origin from a procedure like the following that assigns matchings
as long as no backtracking is necessary. The second parameter serves to bookkeeping purposes so that
no matching row will afterwards contain more than one assignment.

trivialMatchAbove q lambda =
let colsOccupied = map or (transpMat lambda)

trivialMatchRow [] [] = []
trivialMatchRow (True:t) (False:_) = True :(replicate (length t) False)
trivialMatchRow (_ :t) (_ :tf) = False:(trivialMatchRow t tf)
trivialMatchAboveH [] _ = []
trivialMatchAboveH ((hq, hl) : t) f =

let actRow = case or hl of
True -> hl
False -> trivialMatchRow hq f

fNEW = zipWith (||) actRow f
in actRow : (trivialMatchAboveH t fNEW)

in trivialMatchAboveH (zip q lambda) colsOccupied
trivialMatch q = trivialMatchAbove q (nullMatFor q)

Given this setting, it is again wise to design two antitone mappings. The first shall relate a set of boys
to those girls not sympathetic to anyone of them, v �→ σ(v) = QT;v. The second shall present the set
of boys not assigned to some set of girls, w �→ π(w) = λ;w. In Haskell, they may both be formulated
applying

antitoneMapAssign b x = negaMat (b *** x)

48 6 Galois-Decompositions

Using these antitone mappings, we execute the standard Galois iteration, i.e., we apply the following
function, which may be started in two ways.

data LR = LeftRight | RightLeft deriving (Eq, Show)
assignSolution q lambda lr

= let lv = case lr of
LeftRight -> startVector False q
RightLeft -> startVector True q

rv = case lr of
LeftRight -> startVector True (transpMat q)
RightLeft -> startVector False (transpMat q)

in untilGS (antitoneMapAssign (transpMat q))
(antitoneMapAssign lambda)
(lv, rv)

The iteration will end with two vectors (a, b) satisfying a = π(b) and σ(a) = b as before. Here, this
means a = λ; b and b = QT;a. In addition a = Q; b. This follows from the chain a = λ; b ⊆ Q; b ⊆ a,
which implies equality at every intermediate state. Only the resulting equalities for a, b have been
used together with monotony and the Schröder rule.

Remembering Prop. 4.3.3, we learn that the pair a, b is an inclusion-maximal pair of independent sets
for Q, or else: a, b is an inclusion-minimal line covering.

As of yet, a, b need not be an inclusion-maximal pair of independent sets for λ, nor need a, b be an
inclusion-minimal line covering for λ! This will only be the case, when in addition b = λT ; a. We
provide functions to test for these properties.

aBarEQUALSlamB q lambda (a, b) = negaMat a === (lambda *** b)
bBarEQUALSqTa q lambda (a, b) = negaMat b === ((transpMat q) *** a)
aBarEQUALSQb q lambda (a, b) = negaMat a === (q *** b)
bBarEQUALSlTa q lambda (a, b) = negaMat b === ((transpMat lambda) *** a)
isInclMinLineCoveringForQ q lambda (a, b) = aBarEQUALSQb q lambda (a, b) &&

bBarEQUALSqTa q lambda (a, b)
isInclMinLineCoveringForLambda q lambda (a, b) = aBarEQUALSlamB q lambda (a, b) &&

bBarEQUALSlTa q lambda (a, b)

We now visualize the results of this matching iteration by concentrating on the subdivision of the
matrices Q, λ initially considered by the resulting vectors a = {2, 4, 6, 1, 3} and b = {5, 3, 2}.

1 4 5 3 2

2

6

4

1

3

5

7




0 0 0 0 0
1 1 0 0 0
0 1 0 0 0

1 1 0 0 0
1 1 0 0 0

0 1 1 1 1
0 0 1 1 0




1 4 5 3 2

2

6

4

1

3

5

7




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1 0 0 0 0
0 1 0 0 0

0 0 1 0 0
0 0 0 1 0




Sympathy and matching rearranged

We now discuss whether we had been right in deciding for the variant LeftRight of the iteration
procedure. Assume now we had decided the other way round and had chosen to start with RightLeft.
This would obviously mean the same as starting with LeftRight for QT and λT. One will observe
easily that again four conditions would be valid at the end of the iteration with QT for Q and λT for λ

6.4 Matching and Assignment 49

as well as, say a′, b′. Then a′ corresponds to b and b′ corresponds to a. This means that the resulting
decomposition of the matrices does not depend on the choice of LeftRight/RightLeft — as long as
all four equations are satisfied.

It is thus not uninteresting to concentrate on condition b = λT;a. After having applied trivialMatch
to some sympathy relation and applying the iteration, it may not yet be satisfied. So let us assume

b = λT;a not to hold, which means that b = QT;a
⊇
=/ λT;a.

We make use of the formula λ;S = λ; ∩ λ;S, which holds since λ is univalent; see Prop. 3.1.4.iv. The
iteration ends with b = QT;a and a = λ; b. This easily expands to

b = QT;a = QT;λ; b = QT;λ;QT;a = QT;λ;QT;λ;QT;a . . .
from which the last but one becomes

b = QT;a = QT;λ; b = QT;λ; ∩ λ;QT;a = QT; (λ; ∪ λ;QT;a) = QT; (λ; ∪ λ;QT; (λ; ∪ λ;QT;a))
indicating how to prove that

b = (QT ∪ QT;λ;QT ∪ QT;λ;QT;λ;QT ∪ . . .);λ;

If λT;a ⊆
=/ b, we may thus find a point in λT;a ∩ (QT ∪ QT;λ;QT ∪ QT;λ;QT;λ;QT ∪ . . .);λ; which leads

to the following alternating chain algorithm.

findMaxMatchFromInitial q lambda =
let triv = trivialMatchAbove q lambda

(a,b) = assignSolution q triv LeftRight
coveredFromA = transpMat lambda *** a
test = negaMat b === coveredFromA
findBetterMatching q lambda (a,b) coveredFromA =

let qLambdaT = (q &&& (a *** [replicate (cols q) True])) *** (transpMat lambda)
rowsMatched = map or lambda
bBarMinusCoveredFramA = negaMat (b ||| coveredFromA)
unMatchedInA = pointVecToNuS $ zipWith (\[x] y -> x && (not y)) a rowsMatched
leftForUncoveredBBar = pointMatToNuS $ q *** bBarMinusCoveredFramA
sp = shortPath qLambdaT unMatchedInA leftForUncoveredBBar
lastRight = head $ filter (‘elem‘ succs q (last sp))

(pointMatToNuS bBarMinusCoveredFramA)
correspondingRight = map (\x -> head $ succs lambda x) (tail sp) ++

[lastRight]
in alternateExchange lambda sp correspondingRight

alternateExchange lambda lLeft lRight =
let pairList = zip lLeft lRight

sortedPairList = sort pairList
rowForSecondComponent s = (replicate (s - 1) False) ++ [True] ++

(replicate (cols lambda - s) False)
splToMatrix spl = splToMatrixAUX spl []
splToMatrixAUX [] nm = nm ++

(zip (replicate (rows lambda - (length nm)) False) (repeat []))
splToMatrixAUX ((a,b):rest) nm =

splToMatrixAUX rest (nm ++ (zip (replicate (a-(length nm)-1) False)
(repeat []))

++ [(True, rowForSecondComponent b)])
zipFunction row (bool,newRow) = case bool of

True -> newRow
False -> row

in zipWith zipFunction lambda (splToMatrix sortedPairList)
in case test of

True -> triv
False -> findMaxMatchFromInitial q (findBetterMatching q triv (a,b) coveredFromA)

50 6 Galois-Decompositions

When showing the result, some additional care will be taken concerning empty rows or columns in Q.
To obtain the subdivided relations neatly, these are placed at the beginning, or at the end, depending
on f being assigned the value True or False, respectively,

printResMatching f q lambda =
let (a, b) = assignSolution q lambda LeftRight

u = head $ transpMat a
v = head $ transpMat b
aSubdivision =

case f of
True ->
let qEmptyRow = map not (map or q)

matchPartnerInA = map or (lambda *** (negaMat b))
restInA = zipWith (&&) u

(map not (zipWith (||) matchPartnerInA qEmptyRow))
in reverse $ filter or [map not u, matchPartnerInA, restInA, qEmptyRow]
False -> [map not u, u]

bSubdivision =
case f of

True -> let qEmptyCol = map not (map or (transpMat q))
matchPartnerInB = map or ((transpMat lambda) *** (negaMat a))
restInB = zipWith (&&) v
(map not (zipWith (||) matchPartnerInB qEmptyCol))

in filter or [map not v, matchPartnerInB, restInB, qEmptyCol]
False -> [map not v, v]

xxx = lambda &&& (negaMat a *** [replicate (cols q) True])
yyy = transpMat $ filter or (transpMat (filter or xxx)) -- is a permutation!
cycYYY = permMatToCyc yyy
lBBar = length $ filter (\[x] -> not x) b
cyc1 = map (\y -> [y]) [1..lBBar] ++

map (map (\z -> z + lBBar)) cycYYY ++
map (\y -> [y]) [1 + lBBar + (length $ concat cycYYY)..cols q]

pM = ident $ cols q --permCycToMat cyc1
pMT = transpMat pM
sympDiv = stringForNamedMatrixLines $

rearrangeMatWithLines (q) aSubdivision (bSubdivision)
matchDiv = stringForNamedMatrixLines $

rearrangeMatWithLines (lambda) aSubdivision (bSubdivision)
bBarEQUALSLAMBDATa =

case bBarEQUALSlTa q lambda (a, b) of
True -> "satisfies $\\RELneg{b}=\\lambda\\RELtraOP\\RELcompOP a$\n\n"
False -> "violates $\\RELneg{b}=\\lambda\\RELtraOP\\RELcompOP a$\n\n"

in ((stringForOriginalNamedMatrix q) ++
(stringForOriginalNamedMatrix lambda) ++ "\n\n" ++
sympDiv ++ matchDiv ++ "\n\n" ++ bBarEQUALSLAMBDATa)

printResMatchingFromScratch q =
printResMatching False q (trivialMatch q)

printResMatchingFromScratchOPT q =
printResMatching False q (findMaxMatchFromInitial q (trivialMatch q))

printResMatchingFromScratchOPTFine q =
printResMatching True q (findMaxMatchFromInitial q (trivialMatch q))

6.5 König’s Theorems 51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19




0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0




3 15 13 17 4 9 14 1 5 7 12 8 16 2 11 6 10

7

16

6

12

14

1

2

4

5

10

3

8

9

11

13

15

17

18

19




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0




Arbitrary relation with a rearrangement according to a cardinality-maximum matching — the diagonals

6.4.2 Proposition (Decomposing according to matching and assignment). i) Any given heteroge-
neous relation can by independently permuting rows and columns be transformed into a matrix of the
following form: It has a 2 by 2 pattern with not necessarily square diagonal blocks.

Q =
(

HallT

∗ Hall

)
λ =

(
univalent + surjective + injective

univalent + total + injective

)

ii) In addition, any maximum matching λ of Q will obey the subdivision on the right. The respective
second rows and columns may be further decomposed in this refinement, however, depending on the
maximum matching λ:


 total

HallT + square

* Hall + square surjective





 permutation

permutation




Here, any vanishing row of Q, if it occurs, is positioned in the first zone. Vanishing columns are
shown last. The chosen λ determines necessarily square permutations inside the positions of Q that
are Hall or HallT, respectively. Other λ’s might make another choice from the second zone and the
third; correspondingly for columns.

Looking back to Def. 4.3.1, we see that we have not just decomposed according to a pair of independent
sets, but in addition ordered the rest of the relation so as to obtain matchings. This improves the
visualizations shown earlier.

6.5 König’s Theorems

We will now put concepts together and obtain and visualize results based on famous combinatorial
concepts. The first are on line-coverings and assignments. Some sort of counting comes into play,

52 6 Galois-Decompositions

however, here in its algebraic form. Permutations allow 1:1-comparison of sets. Often this means to
transfer heterogeneous concepts to the n × n-case.

We first consider a matching (or an assignment) which is maximal with respect to cardinality. An
easy observation leads to the following

6.5.1 Proposition. Let some relation Q be given together with a matching λ ⊆ Q and the results
a, b of the iteration. Then the following hold

i) (a, b) forms a line-covering and Q ⊆ a; ∪ ; b
T.

ii) term rank(Q) ≤ |a| + |b|
iii) |λ| ≤ term rank(Q)

iv) If b = λT;a, then term rank(Q) = |a| + |b| = |λ|

Proof : i) We consider two parts of Q separately, starting with a; ∩Q ⊆ a; . Then, we have b = QT;a
as a result of the iteration, so that

a; ∩ Q ⊆ (a ∩ Q;
T); (∩ aT;Q) ⊆ ;aT;Q = ; b

T

ii) According to (i), the rows of a together with the columns of b cover all of Q, so that the term rank
cannot be strictly above the sum of the cardinalities.

iii) A line-covering of a matching λ can obviously not be achieved with less than |λ| lines. The matching
properties λT;λ ⊆ , λ;λT ⊆ of univalency and injectivity require that every entry of λ be covered
by a separate line.

iv) Condition b = λT;a together with a = λ;b shows that |b| entries of λ are needed to end in b and |a|
to start in a. According to injectivity no entry of λ will start in a and end in b as λ; b = λ;λT;a ⊆ a.
Therefore, |a| + |b| ≤ |λ|, which in combination with (ii,iii) leads to equality.

The following is an easy consequence which sometimes is formulated directly as a result.

6.5.2 Corollary (König-Egervary-Theorem). For an arbitrary heterogeneous relation we have that
the maximum cardinality of a matching equals the minimum cardinality of a line-covering.

We now specialize to the homogeneous case and investigate what happens when the term rank of a
homogeneous relation is less than n.

6.5.3 Proposition (Frobenius-König; see [BR96] 2.1.4). For a finite homogeneous relation Q the
following are equivalent:

i) None of all permutations P satisfies P ⊆ Q.

ii) There exists a pair of sets a, b such that a, b is a line-covering with |a|+ |b| < n, or equivalently,
a, b is an independent pair of sets with n < |a| + |b|, or equivalently term rank < n.

iii) There exists a vector z together with a permutation P such that QT ; z ⊂=/ P ; z. In other words:
There exists a subset z which is mapped by Q onto a set with strictly fewer elements than z.

6.6 Full Indecomposability 53

Proof: (i) =⇒ (ii): Find a maximum cardinality matching λ ⊆ Q and execute the assignment
iteration on page 48. It will end in a, b with |a| + |b| = |λ| < n as λ can by assumption not be a
permutation.

(ii) =⇒ (iii): Take z := a, which satisfies QT;a = b according to the iteration. Then |b| = n− |b| < |a|.
(iii) =⇒ (i): When (iii) holds, Q violates the Hall condition for the subset z. If there were a permutation
P contained in Q, we would have QT;z ⊇ P T;z, and thus |QT;z| ≥ |P T;z| = |z|, a contradiction.

6.6 Full Indecomposability

We now investigate a special case where term rank is n exhibiting a concept closely related to irre-
ducibility. It takes into account not just a set and its complement as for irreducibility. Originally
these investigations were triggered mainly from numerical mathematics as often computations were
heavily dependent on the relational structure of coefficients being =/ 0 or = 0 and not so much on the
values of the coefficients of a matrix.

6.6.1 Definition. A homogeneous relation A is called partly decomposable if there exists a vector
=/ x=/ together with a permutation P such that A; x ⊆ P ; x. A relation A is fully indecom-

posable, if it is not partly decomposable.

Choosing a permutation P ′ that sends all the 1 -coefficients of x to the end, and choosing in addition
a permutation P ′′ that sends all the 1 -coefficients of P ;x to the end, we arrive at a rearranged form
with square diagonal blocks like

P ′′
;A;P ′T =

(∗
∗ ∗

)
P ′

;x =
()

P ′′
;P ;x =

()

Of course, every reducible relation is partly decomposable. On the other hand, being fully indecom-
posable is stronger than being irreducible. Given any vector =/ x=/ , we have for all permutations
P that A;x ⊆/ P;x if A is fully indecomposable. As every permutation is tested, this is a mere counting
argument meaning that the number of entries 1 in x doesn’t suffice to cover the number of coefficients
1 in A;x, or that for any x — excluding the trivial cases x = and x = — A;x has strictly more
1 ’s than x.

There is also a connection with the concepts of line-covering and independence. If A is partly decom-
posable based on x, P , it admits a line-covering (P ; x, x) and a pair (P ;x, x) of independent sets. In
both cases, the term rank, i.e., the sum of cardinalities, is n.

The next two propositions show properties which a fully indecomposable relation enjoys in addition
to those of an irreducible relation.

6.6.2 Proposition (See, e.g., [BR96] 2.2.1). A fully indecomposable n × n-relation A satisfies
An−1 = .

Proof: The counting argument holds in particular, when we choose columns of Ak for x. As long as
they are neither nor , the number of 1 ’s will strictly increase in columns of Ak, where k = 1, 2,
Therefore, finally An−1 = A+ = .

54 6 Galois-Decompositions

One might be tempted to compare primitive irreducible relations with fully indecomposable ones.
Of course, the latter implies the former following Prop. 6.6.2 in combination with Def. 5.2.3. The
so-called index of primitivity is defined to be the least q for which Aq = . While Prop. 6.6.2 shows
that q ≤ n − 1 for fully indecomposable relations, estimations in [HV58] show only q ≤ (n − 1)2 + 1
for a primitive relation.

6.6.3 Theorem (See, e.g., [BR96] 2.2.2). If A, B are fully indecomposable then so is A;B.

Proof: We use the same argument as in the preceding proof. As A, B are fully indecomposable, we
have for all vectors =/ x=/ that A;x as well as B ;x have strictly more 1 ’s than x. This obviously
holds also for A;B;x.

We now ask for the properties a fully indecomposable relation has in addition to its term rank being
n. The identity, e.g., has term rank n but can be decomposed in many ways.

6.6.4 Theorem (See, e.g., [BR96] 2.2.4). A homogeneous relation A is fully indecomposable pre-
cisely when it is the union of permutation matrices and it is chainable.

Proof : We first prove that any entry 1 of a fully irreducible relation A is also an entry in some
permutation P contained in A. Consider the matrix obtained by cutting out the row and the column
corresponding to the entry in question. Either it contains a permutation in which case we are done.
Or it doesn’t. Then the submatrix will admit a vector z as in the preceding Frobenius-König-Theorem
6.5.3 (iii) mapped by A onto a set strictly smaller in cardinality than z. Then z will in the original
matrix be a set that is mapped by A onto a set with not strictly more elements and thus partly
decompose A.

A will according to Prop. 4.3.6 either be chainable or admit a non-trivial line-covering A ; b ⊆ a.
But then AT ; a ⊆ b and so a is mapped into b. However, we know that the term rank is n, so that
|a|+ |b| ≥ n, and |b| ≤ |a|. We would have found, thus, a set that is mapped by A on a set not strictly
larger in size, a contradiction to being fully indecomposable.

Next, we prove the reverse direction showing that A cannot be chainable if it is the union of permuta-
tions and it is assumed not to be fully indecomposable, i.e. there exists A;x ⊆ P ;x, which also means
A ⊆ P ;x;xT.

Let A = sup ι∈J Pι be a representation of A as a union of permutations. From the assumption
A;x ⊆ P ;x we deduce Pι;x ⊆ P ;x for all ι ∈ J .

Now we use that P as well as Pι are permutations obtaining P T;Pι;x ⊆ x as well as (P T;Pι)k;x ⊆ x
for all k. As P T;Pι is a permutation, some power of it will equal its transpose (P T;Pι)k = (P T;Pι)T, so
that we have (P T;Pι)T;x ⊆ x and consequently P T

ι
;P ;x ⊆ x or P ;x ⊆ Pι;x, i.e., finally Pι;x = P ;x.

Altogether, we have Pι ⊆ syq((P ;x)T, xT) for all ι ∈ J . Therefore, A ⊆ syq((P ;x)T, xT) and

A;AT;A ⊆ syq((P ;x)T, xT);syq(xT, (P ;x)T);syq((P ;x)T, xT)
= syq((P ;x)T, (P ;x)T);syq((P ;x)T, xT)
= syq((P ;x)T, xT)

⊆ P ;x;xT

6.6 Full Indecomposability 55

showing the same decomposition for A;AT;A as for A. So A;AT;A =/ and also hdifu(A) =/ .

The result has been known for quite a while. It was here given a relation-algebraic proof. There is
a correspondence to a result on doubly-stochastic matrices. By definition, these are matrices with
non-negative entries such that all row and column sums are equal to 1. The theorem states that such
a matrix may always be written as a positive linear combination of permutation matrices.

7 Theory Extraction

Now, we try to automatically develop the theory combined with some given relations, starting from
a given ontology (difunctionality, game, e.g.). When applying a relational decomposition, this theory
will change as it afterwards fits into the given ontology and, thus, includes the necessary predicates
and theorems.

We first present a language allowing to talk on elements, vectors (or sets), and (binary) relations
together with a typing scheme. Then we show how an interpretation may be given. In our approach,
theory and model are both represented in Haskell; so the distinction between the two will sometimes
be a bit difficult.

A method of translating relational formulae to formulae in classical predicate logic is added. Then
two theory extractions are shown in some detail.

7.1 Language

From the very beginning, we work in a typed or heterogeneous setting, which means that we work in
a category which later stays the same as an extended theory is extracted guided by some ontology.
For this category, we already provide some object names for testing purposes. Normally, however, we
will be able to give names to the category objects.

data CatObject = O1 | O2 | O3 | O4 | Obj String deriving (Eq, Show, Read, Ord)

One usually needs denotations for individual variables, constants, functions, and predicates. In our
setting, we always bind these together with their typing, and we restrict to unary predicate constants
which we call vectors and binary predicates, which we call relations. A relational constant is nothing
more than a name, the string, together with the types/objects between which the relation is supposed
to hold. They are, however, not concretely given as we stay — so far — on the syntactical side.

data ElemConst = Elem String CatObject deriving (Eq, Ord, Read, Show)
data VectConst = Vect String CatObject deriving (Eq, Ord, Read, Show)
data RelaConst = Rela String CatObject CatObject deriving (Eq, Ord, Read, Show)

On all this, we now build first-order predicate logic, introducing individual variables, terms, and
formulae. Vectors are here supposed to be column vectors. From the beginning, we distinguish
element terms, vector terms, and relation terms. Null, universal, and identity relation constants may
uniformly be denoted throughout as indicated. An interpretation need not be given as it is generated
automatically.

data ElemVari = Vari String CatObject deriving (Eq, Ord, Read, Show)
data ElemTerm = IndVar ElemVari | IndConst ElemConst deriving (Eq, Ord, Read, Show)
data VectTerm = VCT VectConst | RelaTerm :****: VectTerm |

VectTerm :||||: VectTerm | VectTerm :&&&&: VectTerm |

56

7.1 Language 57

NegaVect VectTerm | NullForV VectTerm | UnivForV VectTerm |
PointVector ElemTerm deriving (Eq, Ord, Read, Show)

data RelaTerm = RCT RelaConst | RelaTerm :***: RelaTerm | RelaTerm :|||: RelaTerm |
RelaTerm :&&&: RelaTerm | NegaRela RelaTerm | LIdent RelaTerm |
RIdent RelaTerm | NullForR RelaTerm | UnivForR RelaTerm |
Transp RelaTerm | VectTerm :||--: VectTerm |
PointDiag ElemTerm deriving (Eq, Ord, Read, Show)

The typical checks are provided for well-formedness and type control.

elemTermIsWellFormed :: ElemTerm -> Bool
elemTermIsWellFormed e =

case e of
IndVar (Vari _ _) -> True
IndConst (Elem _ _) -> True

syntMaterialUsedInElemTerm e =
case e of

IndVar ev -> ([ev], [],[],[])
IndConst ec -> ([],[ec],[],[])

vectTermIsWellFormed :: VectTerm -> Bool
vectTermIsWellFormed vt =

case vt of
VCT _ -> True
rt :****: vt -> let (o1,o2) = typeOfRelaTerm rt

in relaTermIsWellFormed rt && vectTermIsWellFormed vt &&
(o2 == typeOfVectTerm vt)

vt1 :||||: vt2 -> vectTermIsWellFormed vt1 && vectTermIsWellFormed vt2 &&
(typeOfVectTerm vt1 == typeOfVectTerm vt2)

vt1 :&&&&: vt2 -> vectTermIsWellFormed vt1 && vectTermIsWellFormed vt2 &&
(typeOfVectTerm vt1 == typeOfVectTerm vt2)

NegaVect vt1 -> vectTermIsWellFormed vt1
NullForV vt1 -> vectTermIsWellFormed vt1
UnivForV vt1 -> vectTermIsWellFormed vt1
PointVector et -> elemTermIsWellFormed et

putSyntMatTogether (a,b,c,d) (u,v,w,x) =
(nub $ a ++ u, nub $ b ++ v, nub $ c ++ w, nub $ d ++ x)

syntMaterialUsedInVectTerm vt =
case vt of

VCT vc -> ([],[],[vc],[])
rt :****: vt -> let (a,b,c,d) = syntMaterialUsedInRelaTerm rt

(u,v,w,x) = syntMaterialUsedInVectTerm vt
in putSyntMatTogether (a,b,c,d) (u,v,w,x)

vt1 :||||: vt2 -> let (a,b,c,d) = syntMaterialUsedInVectTerm vt1
(u,v,w,x) = syntMaterialUsedInVectTerm vt2

in putSyntMatTogether (a,b,c,d) (u,v,w,x)
vt1 :&&&&: vt2 -> let (a,b,c,d) = syntMaterialUsedInVectTerm vt1

(u,v,w,x) = syntMaterialUsedInVectTerm vt2
in putSyntMatTogether (a,b,c,d) (u,v,w,x)

NegaVect vt1 -> syntMaterialUsedInVectTerm vt1
NullForV vt1 -> syntMaterialUsedInVectTerm vt1
UnivForV vt1 -> syntMaterialUsedInVectTerm vt1
PointVector et -> syntMaterialUsedInElemTerm et

58 7 Theory Extraction

relaTermIsWellFormed :: RelaTerm -> Bool
relaTermIsWellFormed rt =

case rt of
RCT _ -> True
rt1 :***: rt2 -> relaTermIsWellFormed rt1 && relaTermIsWellFormed rt2 &&

((snd $ typeOfRelaTerm rt1) == (fst $ typeOfRelaTerm rt2))
rt1 :|||: rt2 -> relaTermIsWellFormed rt1 && relaTermIsWellFormed rt2 &&

(typeOfRelaTerm rt1 == typeOfRelaTerm rt2)
rt1 :&&&: rt2 -> relaTermIsWellFormed rt1 && relaTermIsWellFormed rt2 &&

(typeOfRelaTerm rt1 == typeOfRelaTerm rt2)
NegaRela rt1 -> relaTermIsWellFormed rt1
LIdent rt1 -> relaTermIsWellFormed rt1
RIdent rt1 -> relaTermIsWellFormed rt1
NullForR rt1 -> relaTermIsWellFormed rt1
UnivForR rt1 -> relaTermIsWellFormed rt1
Transp rt1 -> relaTermIsWellFormed rt1
vt1 :||--: vt2 -> vectTermIsWellFormed vt1 && vectTermIsWellFormed vt2
PointDiag et -> elemTermIsWellFormed et

syntMaterialUsedInRelaTerm rt =
case rt of

RCT rc -> ([],[],[],[rc])
rt1 :***: rt2 -> let (a,b,c,d) = syntMaterialUsedInRelaTerm rt1

(u,v,w,x) = syntMaterialUsedInRelaTerm rt2
in putSyntMatTogether (a,b,c,d) (u,v,w,x)

rt1 :|||: rt2 -> let (a,b,c,d) = syntMaterialUsedInRelaTerm rt1
(u,v,w,x) = syntMaterialUsedInRelaTerm rt2

in putSyntMatTogether (a,b,c,d) (u,v,w,x)
rt1 :&&&: rt2 -> let (a,b,c,d) = syntMaterialUsedInRelaTerm rt1

(u,v,w,x) = syntMaterialUsedInRelaTerm rt2
in putSyntMatTogether (a,b,c,d) (u,v,w,x)

NegaRela rt1 -> syntMaterialUsedInRelaTerm rt1
LIdent rt1 -> syntMaterialUsedInRelaTerm rt1
RIdent rt1 -> syntMaterialUsedInRelaTerm rt1
NullForR rt1 -> syntMaterialUsedInRelaTerm rt1
UnivForR rt1 -> syntMaterialUsedInRelaTerm rt1
Transp rt1 -> syntMaterialUsedInRelaTerm rt1
vt1 :||--: vt2 -> let (a,b,c,d) = syntMaterialUsedInVectTerm vt1

(u,v,w,x) = syntMaterialUsedInVectTerm vt2
in putSyntMatTogether (a,b,c,d) (u,v,w,x)

PointDiag et -> syntMaterialUsedInElemTerm et

typeOfElemTerm :: ElemTerm -> CatObject
typeOfElemTerm t =

case t of
IndVar (Vari _ o) -> o
IndConst (Elem _ o) -> o

typeOfVectTerm :: VectTerm -> CatObject
typeOfVectTerm vt =

case vt of
VCT (Vect _ o) -> o
rt :****: vt2 -> fst $ typeOfRelaTerm rt
vt1 :||||: vt2 -> typeOfVectTerm vt1
vt1 :&&&&: vt2 -> typeOfVectTerm vt1

7.1 Language 59

NegaVect vt1 -> typeOfVectTerm vt1
NullForV vt1 -> typeOfVectTerm vt1
UnivForV vt1 -> typeOfVectTerm vt1
PointVector et -> typeOfElemTerm et

typeOfRelaTerm :: RelaTerm -> (CatObject,CatObject)
typeOfRelaTerm rt =

case rt of
RCT (Rela _ o o’) -> (o,o’)
rt1 :***: rt2 -> (fst $ typeOfRelaTerm rt1, snd $ typeOfRelaTerm rt2)
rt1 :|||: _ -> typeOfRelaTerm rt1
rt1 :&&&: _ -> typeOfRelaTerm rt1
NegaRela rt1 -> typeOfRelaTerm rt1
LIdent rt1 -> (a,a) where a = fst $ typeOfRelaTerm rt1
RIdent rt1 -> (b,b) where b = snd $ typeOfRelaTerm rt1
NullForR rt1 -> typeOfRelaTerm rt1
UnivForR rt1 -> typeOfRelaTerm rt1
Transp rt1 -> (b,a) where (a,b) = typeOfRelaTerm rt1
vt1 :||--: vt2 -> (typeOfVectTerm vt1,typeOfVectTerm vt2)
PointDiag et -> (a,a) where a = typeOfElemTerm et

Three forms of formulae are distinguished in order to facilitate maintenance of ubiquitous typing.

data ElemForm = Verum | Falsum | VC VectTerm ElemTerm | PC RelaTerm ElemTerm ElemTerm |
Equation ElemTerm ElemTerm | Negated ElemForm | Implies ElemForm ElemForm |
Disjunct ElemForm ElemForm | Conjunct ElemForm ElemForm |
UnivQuantForm ElemVari ElemForm | ExistQuantForm ElemVari ElemForm

deriving (Eq, Ord, Read, Show)
data VectForm = VectTerm :<===: VectTerm | VectTerm :>===: VectTerm

deriving (Eq, Ord, Read, Show)
data RelaForm = RelaTerm :<==: RelaTerm | RelaTerm :>==: RelaTerm

deriving (Eq, Ord, Read, Show)

Again, typing and well-formedness is defined as usual. The type of an element formula is intended to
be Bool; we have, however, kept us apart from using machine- or programming language-dependent
facilities as long as possible.

typeOfVectForm :: VectForm -> CatObject
typeOfVectForm vf =

case vf of
vt1 :<===: vt2 -> typeOfVectTerm vt1
vt1 :>===: vt2 -> typeOfVectTerm vt1

typeOfRelaForm :: RelaForm -> (CatObject,CatObject)
typeOfRelaForm rf =

case rf of
rt1 :<==: rt2 -> typeOfRelaTerm rt1
rt1 :>==: rt2 -> typeOfRelaTerm rt1

elemFormIsWellFormed :: ElemForm -> Bool
elemFormIsWellFormed f =

case f of
Verum -> True
Falsum -> True
VC vt t -> vectTermIsWellFormed vt && elemTermIsWellFormed t &&

60 7 Theory Extraction

(typeOfElemTerm t == typeOfVectTerm vt)
PC rt t1 t2 -> let (o1,o2) = typeOfRelaTerm rt

in relaTermIsWellFormed rt &&
elemTermIsWellFormed t1 && elemTermIsWellFormed t2 &&
(typeOfElemTerm t1 == o1) && (typeOfElemTerm t2 == o2)

Equation t1 t2 -> elemTermIsWellFormed t1 && elemTermIsWellFormed t2 &&
(typeOfElemTerm t1 == typeOfElemTerm t2)

Negated f1 -> elemFormIsWellFormed f1
Implies f1 f2 -> elemFormIsWellFormed f1 && elemFormIsWellFormed f2
Disjunct f1 f2 -> elemFormIsWellFormed f1 && elemFormIsWellFormed f2
Conjunct f1 f2 -> elemFormIsWellFormed f1 && elemFormIsWellFormed f2
UnivQuantForm v f1 -> elemFormIsWellFormed f1
ExistQuantForm v f1 -> elemFormIsWellFormed f1

syntMaterialUsedInElemForm f =
case f of

Verum -> ([],[],[],[])
Falsum -> ([],[],[],[])
VC vt t -> let (a,b,c,d) = syntMaterialUsedInVectTerm vt

(u,v,w,x) = syntMaterialUsedInElemTerm t
in putSyntMatTogether (a,b,c,d) (u,v,w,x)

PC rt t1 t2 -> let (a,b,c,d) = syntMaterialUsedInRelaTerm rt
(u,v,w,x) = syntMaterialUsedInElemTerm t1
(p,q,r,s) = syntMaterialUsedInElemTerm t2

in putSyntMatTogether (a,b,c,d)
(putSyntMatTogether (u,v,w,x) (p,q,r,s))

Equation t1 t2 -> let (a,b,c,d) = syntMaterialUsedInElemTerm t1
(u,v,w,x) = syntMaterialUsedInElemTerm t2

in putSyntMatTogether (a,b,c,d) (u,v,w,x)
Negated f1 -> syntMaterialUsedInElemForm f1
Implies f1 f2 -> let (a,b,c,d) = syntMaterialUsedInElemForm f1

(u,v,w,x) = syntMaterialUsedInElemForm f2
in putSyntMatTogether (a,b,c,d) (u,v,w,x)

Disjunct f1 f2 -> let (a,b,c,d) = syntMaterialUsedInElemForm f1
(u,v,w,x) = syntMaterialUsedInElemForm f2

in putSyntMatTogether (a,b,c,d) (u,v,w,x)
Conjunct f1 f2 -> let (a,b,c,d) = syntMaterialUsedInElemForm f1

(u,v,w,x) = syntMaterialUsedInElemForm f2
in putSyntMatTogether (a,b,c,d) (u,v,w,x)

UnivQuantForm v f1 -> syntMaterialUsedInElemForm f1
ExistQuantForm v f1 -> syntMaterialUsedInElemForm f1

vectFormIsWellFormed :: VectForm -> Bool
vectFormIsWellFormed vf =

case vf of
vt1 :<===: vt2 -> vectTermIsWellFormed vt1 && vectTermIsWellFormed vt2 &&

(typeOfVectTerm vt1 == typeOfVectTerm vt2)
vt1 :>===: vt2 -> vectTermIsWellFormed vt1 && vectTermIsWellFormed vt2 &&

(typeOfVectTerm vt1 == typeOfVectTerm vt2)

syntMaterialUsedInVectForm vf =
case vf of
vt1 :<===: vt2 -> let (a,b,c,d) = syntMaterialUsedInVectTerm vt1

(u,v,w,x) = syntMaterialUsedInVectTerm vt2
in putSyntMatTogether (a,b,c,d) (u,v,w,x)

vt1 :>===: vt2 -> let (a,b,c,d) = syntMaterialUsedInVectTerm vt1

7.1 Language 61

(u,v,w,x) = syntMaterialUsedInVectTerm vt2
in putSyntMatTogether (a,b,c,d) (u,v,w,x)

relaFormIsWellFormed :: RelaForm -> Bool
relaFormIsWellFormed rf =

case rf of
rt1 :<==: rt2 -> relaTermIsWellFormed rt1 && relaTermIsWellFormed rt2 &&

(typeOfRelaTerm rt1 == typeOfRelaTerm rt2)
rt1 :>==: rt2 -> relaTermIsWellFormed rt1 && relaTermIsWellFormed rt2 &&

(typeOfRelaTerm rt1 == typeOfRelaTerm rt2)

syntMaterialUsedInRelaForm rf =
case rf of
rt1 :<==: rt2 -> let (a,b,c,d) = syntMaterialUsedInRelaTerm rt1

(u,v,w,x) = syntMaterialUsedInRelaTerm rt2
in putSyntMatTogether (a,b,c,d) (u,v,w,x)

rt1 :>==: rt2 -> let (a,b,c,d) = syntMaterialUsedInRelaTerm rt1
(u,v,w,x) = syntMaterialUsedInRelaTerm rt2

in putSyntMatTogether (a,b,c,d) (u,v,w,x)

Free variables are defined. Here, they originate from individual variables which are used to define
point vectors etc.

freeVarInElemTerm :: ElemTerm -> [ElemVari]
freeVarInElemTerm t = case t of IndVar v -> [v]

IndConst _ -> []

freeVarInVectTerm :: VectTerm -> [ElemVari]
freeVarInVectTerm vt =

case vt of
VCT _ -> []
rt :****: vt2 -> nub $ freeVarInRelaTerm rt ++ freeVarInVectTerm vt2
vt1 :||||: vt2 -> nub $ freeVarInVectTerm vt1 ++ freeVarInVectTerm vt2
vt1 :&&&&: vt2 -> nub $ freeVarInVectTerm vt1 ++ freeVarInVectTerm vt2
NegaVect vt1 -> freeVarInVectTerm vt1
NullForV vt1 -> []
UnivForV vt1 -> []
PointVector et -> freeVarInElemTerm et

freeVarInRelaTerm :: RelaTerm -> [ElemVari]
freeVarInRelaTerm rt =

case rt of
RCT _ -> []
rt1 :***: rt2 -> nub $ freeVarInRelaTerm rt1 ++ freeVarInRelaTerm rt2
rt1 :|||: rt2 -> nub $ freeVarInRelaTerm rt1 ++ freeVarInRelaTerm rt2
rt1 :&&&: rt2 -> nub $ freeVarInRelaTerm rt1 ++ freeVarInRelaTerm rt2
NegaRela rt1 -> freeVarInRelaTerm rt1
LIdent rt1 -> []
RIdent rt1 -> []
NullForR rt1 -> []
UnivForR rt1 -> []
Transp rt1 -> freeVarInRelaTerm rt1
vt1 :||--: vt2 -> nub $ freeVarInVectTerm vt1 ++ freeVarInVectTerm vt2
PointDiag et -> freeVarInElemTerm et

freeVarInElemForm :: ElemForm -> [ElemVari]

62 7 Theory Extraction

freeVarInElemForm f =
case f of

Verum -> []
Falsum -> []
VC vt t -> nub (freeVarInElemTerm t ++ (freeVarInVectTerm vt))
PC rt t1 t2 -> nub (freeVarInElemTerm t1 ++ (freeVarInElemTerm t2)

++ (freeVarInRelaTerm rt))
Equation t1 t2 -> nub (freeVarInElemTerm t1 ++ (freeVarInElemTerm t2))
Negated f1 -> freeVarInElemForm f1
Implies f1 f2 -> nub (freeVarInElemForm f1 ++ (freeVarInElemForm f2))
Conjunct f1 f2 -> nub (freeVarInElemForm f1 ++ (freeVarInElemForm f2))
Disjunct f1 f2 -> nub (freeVarInElemForm f1 ++ (freeVarInElemForm f2))
UnivQuantForm v f’ -> filter (/= v) (freeVarInElemForm f’)
ExistQuantForm v f’ -> filter (/= v) (freeVarInElemForm f’)

isClosedElemForm f = freeVarInElemForm f == []

7.2 Models

We will now offer the opportunity to interprete the language we have defined in a model. Via an
interpretation, the objects get assigned sets in this model, however, we just mention the cardinalities
of the sets as they are intended to later correspond to row and column entries. Also vector and relation
denotations are assigned concrete versions by the model.

data InterpreteObjs = Carrier CatObject Int deriving (Eq, Show, Read, Ord)
data InterpreteCons = InterCon ElemConst Int deriving (Eq, Show, Read, Ord)
data InterpreteVect = InterVec VectConst [Bool] deriving (Eq, Show, Read, Ord)
data InterpreteRela = InterRel RelaConst [[Bool]] deriving (Eq, Show, Read, Ord)

Only in rare cases as, e.g., studying rooted graphs with the root distinguished, will we have individual
constants. We provide an automatic interpretation for null relations, universal relations, and identity
relations.

Putting this together, a model defined as follows:

data Model = MO String -- name of the model
[InterpreteObjs]
[InterpreteCons]
[InterpreteVect]
[InterpreteRela] deriving (Eq, Show, Read, Ord)

In our exposition, the concrete relations and vectors are usually given as a starting point. Row and
column entries owe their existence only to the analysis of the given relations and vectors. This means
that we provide some generic mechanisms on the model side: We are able to check, whether the sets
in question are assigned to objects consistently by the interpretations.

getObjectCarrierSize os o =
(\(Carrier _ n) -> n) $ head $ dropWhile (\(Carrier c _) -> c /= o) os

getElemConstInterpretation cs c =
(\(InterCon a b) -> b) $ head $ dropWhile (\(InterCon e f) -> c /= e) cs

7.2 Models 63

getVectConstInterpretation vs v =
(\(InterVec a b) -> b) $ head $ dropWhile (\(InterVec e f) -> v /= e) vs

getRelaConstInterpretation rs r =
(\(InterRel a b) -> b) $ head $ dropWhile (\(InterRel e f) -> r /= e) rs

getArityCarrier m et =
let tyEt = typeOfElemTerm et
in arity m tyEt

getArityVectConst m vt =
let tyVt = typeOfVectTerm vt
in arity m tyVt

getArityRelaConst m rt =
let (a,b) = typeOfRelaTerm rt
in (arity m a,arity m b)

Lots of technicalities are necessary to ensure that this works as it is supposed to.

namesDisjointM (MO s os cs vs rs) =
let elemNames = nub $ map (\(InterCon (Elem s _) _) -> s) cs

vectNames = nub $ map (\(InterVec (Vect s _) _) -> s) vs
relaNames = nub $ map (\(InterRel (Rela s _ _) _) -> s) rs
lcs = length cs
lvs = length vs
lrs = length rs
cDisjoint = length elemNames == lcs
vDisjoint = length vectNames == lvs
rDisjoint = length relaNames == lrs
allDisjoint = length (nub (elemNames ++ vectNames ++ relaNames)) == lcs + lvs + lrs

in cDisjoint && vDisjoint && rDisjoint && (s ‘notElem‘ elemNames) && allDisjoint &&
(s ‘notElem‘ vectNames) && (s ‘notElem‘ relaNames)

aritiesConsistent (MO s os cs vs rs) =
let ooo (Carrier o n) = (o, n)

eee (InterCon (Elem s o) n) = (o, n)
vvv (InterVec (Vect s o) v) = (o, length v)
rrr (InterRel (Rela s o o’) m) = [(o, rows m), (o’, cols m)]
carrSetAndSize = map ooo os
elemNumbInSets = map eee cs
vectSetAndSize = map vvv vs
relaSetAndSize = concat (map rrr rs)
noDiscrepancies = length carrSetAndSize ==

(length $ nub (carrSetAndSize ++ vectSetAndSize ++ relaSetAndSize))
elementsInSet (o,e) =

e <= (snd $ head $ dropWhile (\x -> o /= fst x) carrSetAndSize)
allElementsInside = and (map elementsInSet elemNumbInSets)

in noDiscrepancies && allElementsInside

arities (MO _ os _ _ _) =
let ooo (Carrier o n) = (o, n)
in map ooo os

arity m o = snd (head $ dropWhile (\(o’,n) -> o’ /= o) (arities m))

64 7 Theory Extraction

7.3 Interpretation

Before interpretation is possible, we need valuations of the individual variables. Using a rather prim-
itive lookup version, the rest is then standard.

type InterpreteVari = (ElemVari, Int)
type Valuations = [InterpreteVari]

lookupPrimitive :: Eq a => a -> [(a,b)] -> b
lookupPrimitive k ((x,y):xys)

| k==x = y
| otherwise = lookupPrimitive k xys

valuation vi v = lookupPrimitive v vi

interpreteElemTerm :: Model -> Valuations -> ElemTerm -> Int
interpreteElemTerm m vi t =

let MO _ _ cs vs _ = m
in case t of

IndConst c -> (\(InterCon a b) -> b) $ head $
dropWhile (\(InterCon name value) -> c /= name) cs

IndVar v -> valuation vi v

interpreteVectTerm :: Model -> Valuations -> VectTerm -> [Bool]
interpreteVectTerm m vi vt =

let MO _ os _ vs _ = m
in case vt of

VCT vc -> interpreteVectConst m vi vc
rt :****: vt1 -> map head $ (interpreteRelaTerm m vi rt ***

(map (\x -> [x]) (interpreteVectTerm m vi vt1)))
vt1 :||||: vt2 -> zipWith (||) (interpreteVectTerm m vi vt1)

(interpreteVectTerm m vi vt2)
vt1 :&&&&: vt2 -> zipWith (&&) (interpreteVectTerm m vi vt1)

(interpreteVectTerm m vi vt2)
NegaVect vt1 -> map not $ interpreteVectTerm m vi vt1
NullForV vt1 -> replicate (getObjectCarrierSize os $ typeOfVectTerm vt1) False
UnivForV vt1 -> replicate (getObjectCarrierSize os $ typeOfVectTerm vt1) True
PointVector et -> take (getObjectCarrierSize os $ typeOfElemTerm et)

(map (== interpreteElemTerm m vi et) [1..])

interpreteVectConst :: Model -> Valuations -> VectConst -> [Bool]
interpreteVectConst m _ vc =

let MO _ _ _ vs _ = m
in getVectConstInterpretation vs vc

interpreteRelaTerm :: Model -> Valuations -> RelaTerm -> [[Bool]]
interpreteRelaTerm m vi rt =

let MO _ _ _ _ rs = m
in case rt of

RCT rc -> interpreteRelaConst m vi rc
rt1 :***: rt2 -> interpreteRelaTerm m vi rt1 *** interpreteRelaTerm m vi rt2
rt1 :|||: rt2 -> interpreteRelaTerm m vi rt1 ||| interpreteRelaTerm m vi rt2
rt1 :&&&: rt2 -> interpreteRelaTerm m vi rt1 &&& interpreteRelaTerm m vi rt2
NegaRela rt1 -> negaMat $ interpreteRelaTerm m vi rt1
NullForR rt1 -> nulMatNM p q where (p,q) = getArityRelaConst m rt1
UnivForR rt1 -> allMatNM p q where (p,q) = getArityRelaConst m rt1
LIdent rt1 -> ident p where (p,q) = getArityRelaConst m rt1

7.3 Interpretation 65

RIdent rt1 -> ident q where (p,q) = getArityRelaConst m rt1
Transp rt1 -> transpMat $ interpreteRelaTerm m vi rt1
vt1 :||--: vt2 -> (map (\i -> [i]) (interpreteVectTerm m vi vt1)) ***

(map (\i -> [i]) (interpreteVectTerm m vi vt2))
PointDiag et -> pv *** (transpMat pv)

where pv = map (\i -> [i])
(interpreteVectTerm m vi (PointVector et))

interpreteRelaConst :: Model -> Valuations -> RelaConst -> [[Bool]]
interpreteRelaConst m _ rc =

let MO _ _ _ _ rs = m
in getRelaConstInterpretation rs rc

interpreteElemFormInModel :: Model -> Valuations -> ElemForm -> Bool
interpreteElemFormInModel m vi f =

let MO _ os cs vs rs = m
in case f of

Verum -> True
Falsum -> False
VC vt t -> let intVT = interpreteVectTerm m vi vt

intT = interpreteElemTerm m vi t
in intVT !! (intT - 1)

PC rt t1 t2 -> let intRT = interpreteRelaTerm m vi rt
intT1 = interpreteElemTerm m vi t1
intT2 = interpreteElemTerm m vi t2

in intRT !! (intT1 - 1) !! (intT2 - 1)
Equation t1 t2 -> interpreteElemTerm m vi t1 == interpreteElemTerm m vi t2
Negated f1 -> not (interpreteElemFormInModel m vi f1)
Implies f1 f2 -> not (interpreteElemFormInModel m vi f1) ||

(interpreteElemFormInModel m vi f2)
Conjunct f1 f2 -> (interpreteElemFormInModel m vi f1) &&

(interpreteElemFormInModel m vi f2)
Disjunct f1 f2 -> (interpreteElemFormInModel m vi f1) ||

(interpreteElemFormInModel m vi f2)
UnivQuantForm v f ->

let Vari s1 o1 = v
carriers = [1 .. getObjectCarrierSize os o1]
lOHNEv = filter (\(a,b) -> a /= v) vi
viMOD = [(v, nn) | nn <- carriers]
vis = map (\p -> ((p : lOHNEv))) viMOD

in and (map (\vi’ -> interpreteElemFormInModel m vi’ f) vis)
ExistQuantForm v f ->

let Vari s1 o1 = v
carriers = [1 .. getObjectCarrierSize os o1]
lOHNEv = filter (\(a,b) -> a /= v) vi
viMOD = [(v, nn) | nn <- carriers]
vis = map (\p -> ((p : lOHNEv))) viMOD

in or (map (\vi’ -> interpreteElemFormInModel m vi’ f) vis)
interpreteVectFormInModel :: Model -> Valuations -> VectForm -> Bool
interpreteVectFormInModel m vi vf =

case vf of
(vt1 :<===: vt2) -> let int1 = interpreteVectTerm m vi vt1

int2 = interpreteVectTerm m vi vt2
in int1 <= int2

(vt1 :>===: vt2) -> let int1 = interpreteVectTerm m vi vt1
int2 = interpreteVectTerm m vi vt2

66 7 Theory Extraction

in int2 <= int1

interpreteRelaFormInModel :: Model -> Valuations -> RelaForm -> Bool
interpreteRelaFormInModel m vi rf =

case rf of
(rt1 :<==: rt2) -> let int1 = interpreteRelaTerm m vi rt1

int2 = interpreteRelaTerm m vi rt2
in int1 <== int2

(rt1 :>==: rt2) -> let int1 = interpreteRelaTerm m vi rt1
int2 = interpreteRelaTerm m vi rt2

in int2 <== int1

The following is a first model for test purposes.

testModel = MO "TestModel" [] [] [difuSetL0, difuSetL1, difuSetL2, difuSetL3,
difuSetR1, difuSetR2, difuSetR3] [ir1, ir2]

iv1 = InterVec (Vect "set" O1) [True, False, True]

difuSetL0 = InterVec (Vect "difuSetL0" O1)
[False, False, False, False, False, False,
False, True, False, False, False, False]

difuSetL1 = InterVec (Vect "difuSetL1" O1)
[True, False, False, True, False, True,
False, False, False, True, False, True]

difuSetL2 = InterVec (Vect "difuSetL2" O1)
[False, True, False, False, True, False,
True, False, False, False, False, False]

difuSetL3 = InterVec (Vect "difuSetL3" O1)
[False, False, True, False, False, False,
False, False, True, False, True, False]

difuSetR1 = InterVec (Vect "difuSetR1" O2)
[True, False, True, False, True, False,
False, True, True, False, True, True, False, True]

difuSetR2 = InterVec (Vect "difuSetR2" O2)
[False, True, False, True, False, False,
True, False, False, True, False, False, False, False]

difuSetR3 = InterVec (Vect "difuSetR3" O2)
[False, False, False, False, False, True,
False, False, False, False, False, False, True, False]

ir1 = InterRel (Rela "testDifu" O1 O2) difuTestMatrix
ir2 = InterRel (Rela "testDifuT" O2 O1) (transpMat difuTestMatrix)

val1, val2, val3, val4 :: (ElemVari, Int)
val1 = (Vari "x" O1, 3)
val2 = (Vari "y" O2, 2)
val3 = (Vari "z" O2, 3)
val4 = (Vari "w" O1, 3)
vals = [val1, val2, val3, val4]

closedTestElemForm = ExistQuantForm (Vari "x" O1)
(PC (RCT (Rela "testDifu" O1 O2))

7.4 Example Extraction 67

(IndVar (Vari "x" O1))
(IndVar (Vari "z" O2))

)
difuTestElemForm =

UnivQuantForm
(Vari "x" O1)
(UnivQuantForm

(Vari "y" O2)
(ExistQuantForm

(Vari "z" O2)
(ExistQuantForm

(Vari "w" O1)
(Implies (Conjunct (Conjunct (PC (RCT (Rela "testDifu" O1 O2))

(IndVar (Vari "x" O1))
(IndVar (Vari "z" O2)))

(PC (RCT (Rela "testDifuT" O2 O1))
(IndVar (Vari "z" O2))
(IndVar (Vari "w" O1)))

)
(PC (RCT (Rela "testDifu" O1 O2))

(IndVar (Vari "w" O1))
(IndVar (Vari "y" O2)))

)
(PC (RCT (Rela "testDifu" O1 O2))

(IndVar (Vari "x" O1))
(IndVar (Vari "y" O2)))

)
)

)
)

7.4 Example Extraction

We learn how to formulate a theory and how to check it for being well-formulated.

data Theory = TH String -- name of the theory
[CatObject] -- carrier set denotations encountered in the theory
[ElemConst] -- element denotations encountered in the theory
[VectConst] -- subset denotations encountered in the theory
[RelaConst] -- relation denotations encountered in the theory
[ElemForm] -- element formulae demanded to hold
[VectForm] -- vector formulae demanded to hold
[RelaForm] -- relation formulae demanded to hold

deriving (Read, Show, Eq, Ord)

checkTheoryWelldefined th =
let TH s os cs vs rs ef vf rf = th

objectsInElemConsts = map (\(Elem _ o) -> o) cs
objectsInVectConsts = map (\(Vect _ o) -> o) vs
objectsInRelaConsts = concat $ map (\(Rela _ so to) -> [so, to]) rs
quadrupel1 = foldr1 putSyntMatTogether $ map syntMaterialUsedInElemForm ef
quadrupel2 = foldr1 putSyntMatTogether $ map syntMaterialUsedInVectForm vf
quadrupel3 = foldr1 putSyntMatTogether $ map syntMaterialUsedInRelaForm rf
quadrupel = putSyntMatTogether quadrupel1

68 7 Theory Extraction

(putSyntMatTogether quadrupel2 quadrupel3)
onlySyntMatFromTheory (_,b,c,d) th =

let constsOK = and (map (‘elem‘ cs) b)
vectsOK = and (map (‘elem‘ vs) c)
relsOK = and (map (‘elem‘ rs) d)

in constsOK && vectsOK && relsOK
in (sort os == (sort $ nub (objectsInElemConsts ++ objectsInVectConsts

++ objectsInRelaConsts))) &&
(namesDisjointT th) && (onlySyntMatFromTheory quadrupel th)

namesDisjointT (TH s os cs vs rs _ _ _) =
let elemNames = nub $ map (\(Elem s _) -> s) cs

vectNames = nub $ map (\(Vect s _) -> s) vs
relaNames = nub $ map (\(Rela s _ _) -> s) rs
lcs = length cs
lvs = length vs
lrs = length rs
cDisjoint = length elemNames == lcs
vDisjoint = length vectNames == lvs
rDisjoint = length relaNames == lrs
allDisjoint = length (nub (elemNames ++ vectNames ++ relaNames)) == lcs + lvs + lrs

in cDisjoint && vDisjoint && rDisjoint && (s ‘notElem‘ elemNames) && allDisjoint &&
(s ‘notElem‘ vectNames) && (s ‘notElem‘ relaNames)

We can check whether a given model is a model for some theory.

checkIsModelForTheory mo th =
let TH thS osT csT vsT rsT ef vf rf = th

MO moS osM csM vsM rsM = mo
elemFormsSatisfied = and $ map (interpreteElemFormInModel mo []) ef
vectFormsSatisfied = and $ map (interpreteVectFormInModel mo []) vf
relaFormsSatisfied = and $ map (interpreteRelaFormInModel mo []) rf

in (length osT == length osM) && (length csT == length csM) &&
(length vsT == length vsM) && (length rsT == length rsM) &&
(sort osT == (sort $ map (\(Carrier co _) -> co) osM)) &&
(sort csT == (sort $ map (\(InterCon co _) -> co) csM)) &&
(sort vsT == (sort $ map (\(InterVec co _) -> co) vsM)) &&
(sort rsT == (sort $ map (\(InterRel co _) -> co) rsM)) &&
(aritiesConsistent mo) && (namesDisjointM mo) && (namesDisjointT th) &&
elemFormsSatisfied && vectFormsSatisfied && relaFormsSatisfied

Our version of game theory comes with an arbitrary homogeneous game relation on a set of positions.

exGameTheory = TH "GameExample" [Obj "PositionSet"] [] []
[Rela "B" (Obj "PositionSet") (Obj "PositionSet")] [] [] []

In this theory, we can formulate only whether a pair of positions admits a game transition.

posSet = Obj "PositionSet"
gameRel = Rela "B" (Obj "PositionSet") (Obj "PositionSet")
posVar = Vari "p" (Obj "PositionSet")
posVar’ = Vari "q" (Obj "PositionSet")
denoteMoveInGame :: ElemTerm -> ElemTerm -> ElemForm
denoteMoveInGame v v’ = PC (RCT gameRel) v v’

7.4 Example Extraction 69

Whenever we get a concrete game relation, we extend the theory with all the constants derived from
the row/column entries.

buildTheoryWithModelConstants :: Theory -> Model -> (Theory, Model)
buildTheoryWithModelConstants th mo =

let MO moS osM csM vsM rsM = mo
TH thS osT coT vsT msT eF vF rF = th
coT’ = map (\n -> Elem ("Pos " ++ [chr (48 + n)]) o’) [1..k]

where (o’,k) = head $ arities mo
csM’ = map (\n -> InterCon (Elem ("Pos " ++ [chr (48 + n)]) o’) n) [1..k]

where (o’,k) = head $ arities mo
in (TH thS osT coT’ vsT msT eF vF rF, MO moS osM csM’ vsM rsM)

isMoveInGame :: Theory -> Model -> Int -> Int -> Bool

isMoveInGame th mo n m =
let (TH s os cs vs ms _ _ _, mo’) = buildTheoryWithModelConstants th mo

nInDomain = (1 <= n) && (n <= arity mo’ (head os))
mInDomain = (1 <= n) && (n <= arity mo’ (head os))
both = nInDomain && mInDomain
nConst = IndConst (Elem ("Pos " ++ [chr (48 + n)]) (head os))
mConst = IndConst (Elem ("Pos " ++ [chr (48 + m)]) (head os))

in interpreteElemFormInModel mo’ [] (denoteMoveInGame nConst mConst)

The game model first comes just with a game relation. As we ar able to add all the constants to denote
row- as well as column entries, we may now ask whethter there exists a move from some position to
another one.

gameModel = MO "GameModel" [Carrier (Obj "PositionSet") (rows rrr)] [] []
[InterRel (Rela "B" (Obj "PositionSet") (Obj "PositionSet")) rrr]

where rrr = randomMatrix 123456 20 10 10
testQuestion = isMoveInGame t m 4 3

where (t,m) = buildTheoryWithModelConstants exGameTheory gameModel

We are, however, more interested to find out in which positions a player has lost, has won, or will
end up in a draw. This question cannot be answered directly from the model. This question shall
serve us as an example to explain in a rather sketchy way what theory extraction is intended to mean:
We execute all the computations presented earlier in connection with games and provide for means to
formulate the resultsappropriately in an enhanced theory.

extractGameTheoryFrom th mo =
let TH thS os cs vs ms _ _ _ = th

numberObjects = length os
numberElemConsts = length cs
numberVectConsts = length vs
numberRelaConsts = length ms
admissibleTheory = numberObjects == 1 &&

numberElemConsts == 0 &&
numberVectConsts == 0 &&
numberRelaConsts == 1

MO moS io ic iv ir = mo
numberCarriers = length io
numberConstants = length ic

70 7 Theory Extraction

numberVectors = length iv
numberRelations = length ir
admissibleModel = numberCarriers == 1 &&

numberConstants == 0 &&
numberVectors == 0 &&
numberRelations == 1

(t’,m’) = buildTheoryWithModelConstants th mo
TH thS’ os’ cs’ vs’ ms’ eF vF rF = t’
MO moS’ io’ ic’ iv’ ir’ = m’
lll = Vect "loss" (head os’)
lossT = VCT lll
ddd = Vect "draw" (head os’)
drawT = VCT ddd
www = Vect "win" (head os’)
lodrT = lossT :||||: drawT
winT = NegaVect lodrT
rT = (RCT (Rela theOnlyRelDenotation (head os) (head os)))
theOnlyRelDenotation = (\(Rela rD _ _) -> rD) $ head ms’
theOnlyRelation = (\(InterRel (Rela str _ _) r) -> (str, r)) $ head ir’
r = snd theOnlyRelation
(aa, bb) = gameSolution r
loss = head $ transpMat aa
loDr = head $ transpMat bb
draw = zipWith (\x y -> y && (not x)) loss loDr
win = map not loDr

in case admissibleTheory && admissibleModel && checkIsModelForTheory mo th &&
(theOnlyRelDenotation == fst theOnlyRelation) of

True -> (TH (thS ++ "solved") os’ cs’
[lll, ddd, www] ms’ []
[NegaVect lossT :<===: (rT :****: lodrT),
NegaVect lossT :>===: (rT :****: lodrT),
NegaVect lodrT :<===: (rT :****: lossT),
NegaVect lodrT :>===: (rT :****: lossT),
lossT :<===: NegaVect drawT,
lossT :<===: NegaVect winT,
drawT :<===: NegaVect winT,
UnivForV lossT :<===: (lossT :||||: (drawT :||||: winT))]

[],
MO (moS ++ "solved") io’ ic’

[InterVec lll loss, InterVec ddd draw, InterVec www win] ir’)
False -> (th, mo) -- meaning error

exampleTest = checkIsModelForTheory m t
where (t,m) = extractGameTheoryFrom exGameTheory gameModel

One will find out that the formulae a = B; b and B;a = b from our exposition on games have been
entered, here however, as double inclusions. In addition, disjointness of win, draw, and loss has been
formulated.

The following diagram shows the idea. There are concrete relations given and the primitive theory
with which one may work on these; may be hardly more than the syntactic material. There is, however,
also an ontology concerning games, irreducibility, or difunctionality, e.g. What we are constructing is

7.4 Example Extraction 71

in a sense the pushout. Afterwards, the given model may be viewed with the win-loss-draw structure,
e.g., which the game ontology has provided. Then the theory will also contain certain closed formulae
describing what holds between the new items.

Sparse theory

↓
Ontology-enhanced theory

|=

|=

Given model

↓
Result model

Theory Extraction

8 Conclusion and Outlook

With the methods presented here it is possible to analyze a given relation with regard to different
concepts and to visualize the results. In modern words: We provided several ontologies in which to
embed newly presented relations for better handling them in a pre-formatted way. Some programs are
more efficient, others less. In particular, some cannot be really efficient as theoretical investigations
show. This was not a matter of concern in this paper, though. We had in mind data of a size not too
big to be handled and even visualized for presentation purposes.

There is another point of possible criticism that matters more. Should the relations handled stem
from rather fuzzy sources, taken by some α-cut, e.g., the results will heavily depend on single entries
of the relation. On the other hand, such a single entry may be a rather “weak” one as to its origin
from the α-cut as it has hardly passed the threshold.

In the approach chosen, therefore, we have extremely high sensitivity depending on the initial data.
This is a feature, one is usually not interested in. Rather, one would highly estimate results which
stay more or less the same as data are changed only moderately. This would give more “meaning” to
the results and would make it easier to base decisions on them.

Nonetheless, we hope that our exposition will lead to future research. We have scanned a diversity of
topics for their algebraic properties. On several occasions, we have replaced counting arguments by
algebraic ones. Our hope is that these algebraic properties will be of value in the following regard:

Only recently, fuzzy relations have been investigated with more intensity. There, the entry of the
matrix is not just 1 / 0 or yes/no. Instead, coefficients from some suitable lattice are taken. In this
way it is possible to express given situations in more detail. Astonishingly, much of the algebraic
structure of relation algebra remains still valid. In this modified context an investigation should be
executed using fuzzy relations. Reduced sensitivity of results with respect to given data may be hoped
for.

72

9 Appendix

The present document is not just a research report but also a Haskell program in literate style. It is
distributed in PDF-form as well as in ASCII-form via the internet. In order to make the ASCII-version
executable, we add here some technical basics needed. The underlying ASCII document is sufficient
to execute the programs in Haskell. Not every aspect of it, however, is fully explained in the present
TEX-appendix.

9.1 Pretty-printing Matrices

The following functions show ways of printing matrices in ASCII-form, in TEX-form and in addition
as TEX-matrices with colors

printMat :: [[Bool]] -> formatted output on screen
printTeXMat :: [[Bool]] -> formatted output string to be included in TEX-document

Sometimes we have presented boolean matrices with subdivisions so as to make some aspects more
visible. To this end we used a variant of printing that in addition takes markings of row or column
border lines into account that shall be marked by horizontal or vertical lines.

printTeXMatLines :: [Bool] -> [Bool] -> [[Bool]] -> TEX-formatted subdivided output

With epsi 4 as the relation between a 4-element set and its powerset, the command
printTeXMatLines [False,True,False,False] [False,False,True,False,True,False,

False,False,False,False,False,False,False,False,False,False] (epsi 4)
will produce


0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1




Here, a minor problem arises since the character “\” needs special treatment as it is an escape character
in Haskell. This is solved by simply using it twice in the strings.

stringFromPermMatTeXCol f =
let inBoxCol x = "\\hbox to\\matrixskip{\\hfil " ++ (show x) ++ "}"

listConvertTeXCol a [] = a
listConvertTeXCol [] a = a
listConvertTeXCol a b = a ++ "&\n" ++ b

in "\\def\\ColNames{\\hbox{\\tiny$\\smatrix{" ++
(foldr listConvertTeXCol "" (map inBoxCol f)) ++
"\\cr}$\\kern10pt}}"

stringFromPermMatTeXRow f =
let inBoxRow x = "\\hbox to\\matrixskip{\\hfil " ++ (show x) ++ "}\\cr"

listConvertTeXRow a [] = a
listConvertTeXRow [] a = a

73

74 9 Appendix

listConvertTeXRow a b = a ++ "\n" ++ b
in "\\def\\RowNames{\\hbox{\\tiny$\\smatrix{\\noalign{\\kern-2pt}" ++

(foldr listConvertTeXRow ""
(map inBoxRow f)) ++ "}$}}"

Row and column entries as well as the matrix proper are bound together with the following function.
The boolean argument l distinguishes whether the matrix shall be subdivided by horizontal and
vertical lines, or not.

namedMatrix l m r c =
let d = case l of

True -> druckTeXMatLinesH r c m
False -> druckTeXMatH m

in "\\def\\Matrix{\\footnotesize$" ++ d ++
"$}\n\n\\noindent\n\n\\hbox{\\vbox{\\setbox9=\\hbox{\\" ++
"RowNames\\Matrix}\n\\hbox to\\wd9{\\hfil\\ColNames}\n\\box9}\n}\n\n"

In the following function a boolean matrix can be printed together with the permuted row and column
numberings.

stringForNamedMatrix m r c =
(stringFromPermMatTeXCol c) ++ "\n\n" ++
(stringFromPermMatTeXRow r) ++ "\n\n" ++
(namedMatrix False m [] [])

If rows or columns are grouped according to the rearrangement with horizontal or vertical lines, we
employ a different function.

stringForNamedMatrixLines (m, r, c, h, v) =
(stringFromPermMatTeXCol c) ++ "\n\n" ++
(stringFromPermMatTeXRow r) ++ "\n\n" ++
(namedMatrix True m h v)

In case we print the original matrix, the unpermuted row and column numberings can be added as a
default.

stringForOriginalNamedMatrix m =
stringForNamedMatrix m [1..rows m] [1..cols m]

For an example see the relation Arearranged mentioned in the introduction.

9.2 Generating Random Matrices

The programming language Haskell provides for a mechanism to generate random numbers in a re-
producible way. To this end one can convert any integer into a “standard generator”, which serves as
a reproducible off-set.

As we are interested in random matrices with some given degree of filling density, we further provide
0 and 100 as lower and upper bound and assume a percentage parameter to be given as well as the
desired row and column number.

9.2 Generating Random Matrices 75

randomMatrix startStdG perc r c =
let

rowSplit c rest = (fst cAt) : (rowSplit c (snd cAt))
where cAt = splitAt c rest

rowSplit c [] = []
infiniteRandoms = randomRs (0 :: Int, 100 :: Int) (mkStdGen startStdG)
alleKoeff = take (r * c) infiniteRandoms
belowPerc = map (\ x -> fromInt x <= perc) alleKoeff

in
take r (rowSplit c belowPerc)

Here, first the randoms between 0 and 100 produced from the off-set are generated infinitely, but
afterwards only r × c are actually taken. Then they are filtered according to whether they are less
than or equal to the prescribed percentage. Finally, they are grouped into r rows of c elements each.

While it is easy to get a difunctional relation, e.g., it is only a rare situation to find a cyclic one with
this method. So we provide better pseudo-random algorithms which anticipate the structure one is
interested in to a certain extent.

A greater univalent and injective relation may be found inserting one row entry randomly and extin-
guishing what is in excess.

randomUnivAndInject startStdG m n =
let infiniteRandoms = randomRs (1 :: Int, n :: Int) (mkStdGen startStdG)

makeRow k = (replicate (k-1) False) ++ [True] ++ (replicate (n-k) False)
initialRel = map makeRow (take m infiniteRandoms)
makeInjective r = let nonInjRows = map (\ro -> length (filter (\y -> y) ro)) r

in map destroyEntries (zip nonInjRows r)
destroyEntries (n, rr) = if n <= 1 then rr

else destroyEntries (n-1, destroyFirstTrue n rr)
destroyFirstTrue n [] = []
destroyFirstTrue n l = if even n then destroyFirstTrue1 l

else reverse (destroyFirstTrue1 (reverse l))
destroyFirstTrue1 (h:t) = case h of

True -> False : t
False -> False : (destroyFirstTrue1 t)

univalized = transpMat (makeInjective (transpMat initialRel))
in makeInjective univalized

Here, we construct a random permutation matrix for n items.

randomPermutation startStdG n =
let permutate = take n (nub (randomRs (1 :: Int, n :: Int) (mkStdGen startStdG)))

makeRow k = (replicate (k-1) False) ++ [True] ++ (replicate (n-k) False)
in map makeRow permutate

Here, we construct an “arbitrary” irreducible and cyclic relation with n rows and block-widths between
p and q.

randomIrredCyclic startStdG m p q =
let startStdGG = startStdG * 421

infiniteRandoms = randomRs (p :: Int, q :: Int) (mkStdGen startStdGG)
groupSeq res sum (h:t) | sum + h == m = res ++ [h]

76 9 Appendix

| sum + h < m = groupSeq (res ++ [h]) (sum + h) t
| otherwise = res ++ [m-sum]

blockSizeSeq = groupSeq [] 0 infiniteRandoms
blockSizeSeqShift = [last blockSizeSeq] ++ (init blockSizeSeq)
percSeq = [25,35,45,55,65,75,85,95,100]
matrixSeq perc = map (\(r,c) -> randomMatrix (startStdG + 27*r + 871*c) perc r c)

(zip blockSizeSeqShift blockSizeSeq)
nuab a b = nulMatNM (rows a) (cols b)
nuba a b = nulMatNM (rows b) (cols a)
coDiagonal perc = foldl1 (\ a b -> unite [[a, nuab a b],

[nuba a b, b]]) (tail $ matrixSeq perc)
nuPerc11 perc = nulMatNM (rows $ coDiagonal perc) (cols (head $ matrixSeq perc))
nuPerc22 perc = nulMatNM (rows (head $ matrixSeq perc)) (cols $ coDiagonal perc)
full perc = unite [[nuPerc11 perc, coDiagonal perc],

[head $ matrixSeq perc, nuPerc22 perc]]
rP = randomPermutation (startStdG * 197) m
iC = head (filter isIrreducible (map full percSeq))

in transpMat rP *** (iC *** rP)

9.3 Formula Translation

In order to avoid use of the clumsy syntax as long as possible, we provide for a translation of relational
formulae to the element form. This means in particular to introduce all the individual variables
necessary as well as quantifications which are hidden in the relational form.

translateVectTerm :: CatObject -> ElemVari -> VectTerm -> ElemForm

translateVectTerm o v vt =
case vt of

VCT vc -> VC (VCT vc) (IndVar v)
(rt :****: vt) -> let (o1,o2) = typeOfRelaTerm rt

vm = Vari "autoVarName44" o2
in ExistQuantForm vm (Conjunct (translateRelaTerm o1 o2 v vm rt)

(translateVectTerm o2 vm vt))
vt1 :||||: vt2 -> Disjunct (translateVectTerm o v vt1) (translateVectTerm o v vt2)
vt1 :&&&&: vt2 -> Conjunct (translateVectTerm o v vt1) (translateVectTerm o v vt2)
NegaVect vt -> Negated (translateVectTerm o v vt)
NullForV vt -> VC (VCT (Vect "Null" o)) (IndVar v)
UnivForV vt -> VC (VCT (Vect "Univ" o)) (IndVar v)
PointVector et -> let vm = (Vari "autoVarName33" o)

in Equation (IndVar vm) et

translateRelaTerm :: CatObject -> CatObject -> ElemVari -> ElemVari -> RelaTerm -> ElemForm

translateRelaTerm o o’ v v’ rt =
case rt of

RCT _ -> PC rt (IndVar v) (IndVar v’)
rt1 :***: rt2 -> let (o1,o2) = typeOfRelaTerm rt1

(o3,o4) = typeOfRelaTerm rt2
vm = Vari "autoVarName44" o2

in ExistQuantForm vm (Conjunct (translateRelaTerm o1 o2 v vm rt1)
(translateRelaTerm o2 o4 vm v’ rt2))

rt1 :|||: rt2 -> Disjunct (translateRelaTerm o o’ v v’ rt1)
(translateRelaTerm o o’ v v’ rt2)

9.3 Formula Translation 77

rt1 :&&&: rt2 -> Conjunct (translateRelaTerm o o’ v v’ rt1)
(translateRelaTerm o o’ v v’ rt2)

NegaRela rt1 -> Negated $ translateRelaTerm o o’ v v’ rt1
NullForR rt1 -> Falsum
UnivForR rt1 -> Verum
LIdent rt1 -> Equation (IndVar v) (IndVar v’)
RIdent rt1 -> Equation (IndVar v) (IndVar v’)
Transp rt1 -> translateRelaTerm o’ o v’ v rt1
vt1 :||--: vt2 -> Conjunct (translateVectTerm o v vt1) (translateVectTerm o’ v’ vt2)
PointDiag et -> Conjunct (Equation (IndVar v) et) (Equation (IndVar v’) et)

translateVectForm :: VectForm -> ElemForm
translateVectForm (vt1 :<===: vt2) =

let o = typeOfVectTerm vt1
v = (Vari "autoVarName77" o)

in UnivQuantForm v (Implies (translateVectTerm o v vt1) (translateVectTerm o v vt2))
translateVectForm (vt1 :>===: vt2) =

let o = typeOfVectTerm vt1
v = (Vari "autoVarName88" o)

in UnivQuantForm v (Implies (translateVectTerm o v vt2) (translateVectTerm o v vt1))

translateRelaForm :: RelaForm -> ElemForm
translateRelaForm (rt1 :<==: rt2) =

let (o1, o2) = typeOfRelaTerm rt1
v1 = (Vari "autoVarName66" o1)
v2 = (Vari "autoVarName55" o2)

in UnivQuantForm v1
(UnivQuantForm v2 (Implies (translateRelaTerm o1 o2 v1 v2 rt1)

(translateRelaTerm o1 o2 v1 v2 rt2)))
translateRelaForm (rt1 :>==: rt2) =

let (o1, o2) = typeOfRelaTerm rt1
v1 = (Vari "autoVarName66" o1)
v2 = (Vari "autoVarName55" o2)

in UnivQuantForm v1
(UnivQuantForm v2 (Implies (translateRelaTerm o1 o2 v1 v2 rt2)

(translateRelaTerm o1 o2 v1 v2 rt1)))

isTotal r = LIdent r :<==: (r :***: (Transp r))
isSurjective r = RIdent r :<==: ((Transp r) :***: r)
isUnivalent r = (r :***: (Transp r)) :<==: LIdent r
isInjective r = (r :***: (Transp r)) :<==: LIdent r
isMapping r = Conjunct (translateRelaForm $ isTotal r)

(translateRelaForm $ isUnivalent r)
isDifu r = ((r :***: (Transp r)) :***: r) :<==: r

sss = PointDiag (IndVar (Vari "ddd" O1))
ttt = (RCT (Rela "e" O1 O2)) :<==: (RCT (Rela "W" O1 O2))
uuu = (RCT (Rela "e" O1 O1)) :>==: LIdent (RCT (Rela "e" O1 O2))
vvv = sss :<==: (RCT (Rela "W" O1 O1))
www = isInjective (RCT (Rela "e" O1 O2))

xXx = interpreteRelaFormInModel testModel vals (isDifu (RCT (Rela "testDifu" O1 O2)))

78 9 Appendix

9.4 Translation into TEX

To make the ugly type-carrying language more readable, we provide for a straightforward translation
into TEX.

makeTeXCatObject :: CatObject -> String
makeTeXCatObject co =

case co of
O1 -> "O1"
O2 -> "O2"
O3 -> "O3"
O4 -> "O4"
Obj s -> s

makeTeXElemConst :: ElemConst -> String
makeTeXElemConst (Elem s o) = s

makeTeXVectConst :: VectConst -> String
makeTeXVectConst (Vect s o) = s

makeTeXRelaConst :: RelaConst -> String
makeTeXRelaConst (Rela s o o’) = s

makeTeXElemVari :: ElemVari -> String
makeTeXElemVari (Vari s o) = s

makeTeXElemTerm :: ElemTerm -> String
makeTeXElemTerm et =

case et of
IndVar iv -> makeTeXElemVari iv
IndConst ic -> makeTeXElemConst ic

makeTeXVectTerm :: VectTerm -> String
makeTeXVectTerm vt =

case vt of
VCT vc -> makeTeXVectConst vc
rt1 :****: (vt2 :||||: vt3) -> makeTeXRelaTerm rt1 ++ "\\RELcompOP " ++

"(" ++ (makeTeXVectTerm (vt2 :||||: vt3)) ++ ")"
(rt1 :|||: rt2) :****: vt3 -> "(" ++ (makeTeXRelaTerm (rt1 :|||: rt2)) ++ ")" ++

"\\RELcompOP " ++ (makeTeXVectTerm vt3)
rt1 :****: (vt2 :&&&&: vt3) -> makeTeXRelaTerm rt1 ++ "\\RELcompOP " ++ "("

++ (makeTeXVectTerm (vt2 :&&&&: vt3)) ++ ")"
(rt1 :&&&: rt2) :****: vt3 -> "(" ++ (makeTeXRelaTerm (rt1 :&&&: rt2)) ++ ")" ++

"\\RELcompOP " ++ (makeTeXVectTerm vt3)
rt :****: vt1 -> makeTeXRelaTerm rt ++ "\\RELcompOP " ++ (makeTeXVectTerm vt1)
vt1 :||||: vt2 -> makeTeXVectTerm vt1 ++ "\\RELorOP " ++ (makeTeXVectTerm vt2)
vt1 :&&&&: vt2 -> makeTeXVectTerm vt1 ++ "\\RELandOP " ++ (makeTeXVectTerm vt2)
NegaVect vt1 -> "\\RELneg\\{" ++ (makeTeXVectTerm vt1) ++ "\\}"
NullForV vt1 -> "\\RELbot "
UnivForV vt1 -> "\\RELtop "
PointVector et -> "(" ++ (makeTeXElemTerm et) ++ "\\RELcompOP\\RELtop)"

makeTeXRelaTerm :: RelaTerm -> String
makeTeXRelaTerm rt =

case rt of
RCT rc -> makeTeXRelaConst rc
rt1 :***: (rt2 :|||: rt3) -> makeTeXRelaTerm rt1 ++ "\\RELcompOP " ++ "(" ++

9.4 Translation into TEX 79

(makeTeXRelaTerm (rt2 :|||: rt3)) ++ ")"
(rt1 :|||: rt2) :***: rt3 -> "(" ++ (makeTeXRelaTerm (rt1 :|||: rt2)) ++ ")" ++

"\\RELcompOP " ++
(makeTeXRelaTerm rt3)

rt1 :***: (rt2 :&&&: rt3) -> makeTeXRelaTerm rt1 ++ "\\RELcompOP " ++ "(" ++
(makeTeXRelaTerm (rt2 :&&&: rt3)) ++ ")"

(rt1 :&&&: rt2) :***: rt3 -> "(" ++ (makeTeXRelaTerm (rt1 :&&&: rt2)) ++ ")" ++
"\\RELcompOP " ++ (makeTeXRelaTerm rt3)

rt1 :***: rt2 -> makeTeXRelaTerm rt1 ++ "\\RELcompOP " ++ (makeTeXRelaTerm rt2)
rt1 :|||: rt2 -> makeTeXRelaTerm rt1 ++ "\\RELorOP " ++ (makeTeXRelaTerm rt2)
rt1 :&&&: rt2 -> makeTeXRelaTerm rt1 ++ "\\RELandOP " ++ (makeTeXRelaTerm rt2)
NegaRela rt1 -> "\\RELneg\\{" ++ (makeTeXRelaTerm rt1) ++ "\\}"
NullForR rt1 -> "\\RELbot "
UnivForR rt1 -> "\\RELtop "
LIdent rt1 -> "\\RELide "
RIdent rt1 -> "\\RELide "
Transp (rt1 :|||: rt2) -> "(" ++ (makeTeXRelaTerm (rt1 :|||: rt2)) ++ ")\\RELtraOP "
Transp (rt1 :&&&: rt2) -> "(" ++ (makeTeXRelaTerm (rt1 :&&&: rt2)) ++ ")\\RELtraOP "
Transp (rt1 :***: rt2) -> "(" ++ (makeTeXRelaTerm (rt1 :***: rt2)) ++ ")\\RELtraOP "
Transp rt1 -> (makeTeXRelaTerm rt1) ++ "\\RELtraOP "
vt1 :||--: vt2 -> makeTeXVectTerm vt1 ++ "\\RELcompOP " ++

(makeTeXVectTerm vt2) ++ "\\RELtraOP "
PointDiag et -> "(\\RELide\\RELandOP " ++ (makeTeXElemTerm et) ++

"\\RELcompOP\\RELtop)"

makeTeXElemForm :: ElemForm -> String
makeTeXElemForm ef =

case ef of
Verum -> "{\tt True}"
Falsum -> "{\tt False}"
VC vt t -> makeTeXElemTerm t ++ "\\in " ++ (makeTeXVectTerm vt)
PC rt t1 t2 -> "(" ++ (makeTeXElemTerm t1) ++ ", " ++ (makeTeXElemTerm t2)

++ ")" ++ "\\in " ++ (makeTeXRelaTerm rt)
Equation t1 t2 -> makeTeXElemTerm t1 ++ "=" ++ (makeTeXElemTerm t2)
Negated f1 -> "{\\tt NOT }\\;" ++ (makeTeXElemForm f1)
Implies f1 f2 -> makeTeXElemForm f1 ++ "\\longrightarrow " ++

(makeTeXElemForm f2)
Disjunct f1 f2 -> makeTeXElemForm f1 ++ "\\;{\\tt OR}\\;" ++ (makeTeXElemForm f2)
Conjunct f1 f2 -> makeTeXElemForm f1 ++ "\\;{\\tt AND}\\;" ++

(makeTeXElemForm f2)
UnivQuantForm v f’ -> "\\forall " ++ (makeTeXElemVari v) ++ ":\\langle " ++

(makeTeXElemForm f’) ++ "\\rangle "
ExistQuantForm v f’ -> "\\exists " ++ (makeTeXElemVari v) ++ ":\\langle " ++

(makeTeXElemForm f’) ++ "\\rangle "

makeTeXVectForm :: VectForm -> String
makeTeXVectForm vf =

case vf of
vt1 :<===: vt2 -> makeTeXVectTerm vt1 ++ "\\RELenthOP " ++ (makeTeXVectTerm vt2)
vt1 :>===: vt2 -> makeTeXVectTerm vt1 ++ "\\RELaboveOP " ++ (makeTeXVectTerm vt2)

makeTeXRelaForm :: RelaForm -> String
makeTeXRelaForm rf =

case rf of
rt1 :<==: rt2 -> makeTeXRelaTerm rt1 ++ "\\RELenthOP " ++ (makeTeXRelaTerm rt2)
rt1 :>==: rt2 -> makeTeXRelaTerm rt1 ++ "\\RELaboveOP " ++ (makeTeXRelaTerm rt2)

Bibliography

[BGS94] Rudolf Berghammer, Thomas Gritzner, and Gunther Schmidt. Prototyping relational
specifications using higher-order objects. In Jan Heering, Kurt Meinke, Bernhard Möller,
and Tobias Nipkow, editors, Higher-Order Algebra, Logic, and Term Rewriting, volume 816
of Lect. Notes in Comput. Sci., pages 56–75. Springer-Verlag, 1994. 1st Int’l Workshop,
HOA ’93 in Amsterdam.

[BR96] R. B. Bapat and T. E. S. Raghavan. Nonnegative Matrices and Applications, volume 64
of Encyclopaedia of Mathematics and its Applications. Cambridge University Press, 1996.

[BSZ86] Rudolf Berghammer, Gunther Schmidt, and Hans Zierer. Symmetric quotients. Technical
Report TUM-INFO 8620, Technische Universität München, Institut für Informatik, 1986.

[BSZ90] Rudolf Berghammer, Gunther Schmidt, and Hans Zierer. Symmetric quotients and domain
constructions. Information Processing Letters, 33(3):163–168, 1989/90.

[DL01] Sašo Džeroski and Nada Lavrač, editors. Relational Data Mining. Springer-Verlag, 2001.

[HJW+92] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, et al. Report on the programming
language Haskell, a non-strict purely functional language, version 1.2. ACM SIGPLAN
Notices, 27(5), 1992. See also http://haskell.org/.

[HV58] J. C. Holladay and Richard S. Varga. On powers of nonnegative matrices. Proc. Amer.
Math. Soc., 9:631–634, 1958.

[Kit93] Leonid Kitainik. Fuzzy Decision Procedures With Binary Relations — Towards a unified
theory, volume 13 of Theory and Decision Library, Series D: System Theory, Knowledge
Engineering and Problem Solving. Kluwer Academic Publishers, 1993.

[SS89] Gunther Schmidt and Thomas Ströhlein. Relationen und Graphen. Mathematik für Infor-
matiker. Springer-Verlag, 1989. ISBN 3-540-50304-8, ISBN 0-387-50304-8.

[SS93] Gunther Schmidt and Thomas Ströhlein. Relations and Graphs – Discrete Mathematics
for Computer Scientists. EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, 1993. ISBN 3-540-56254-0, ISBN 0-387-56254-0.

[Var62] Richard S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, USA,
1962.

80

http://haskell.org/

Index

aBarEQUALSlamB, 49
aBarEQUALSQb, 49
allCardMinCoverings, 30
allInclMinCoverings, 30
antitoneFctlCorr, 44
antitoneMapAssign, 49
antitonFctlGame, 46
applyPermFct, 9
arities, 64
aritiesConsistent, 64
arity, 64
assignSolution, 49

bBarEQUALSlTa, 49
bBarEQUALSqTa, 49
buildTheoryWithModelConstants, 70

chainableTest, 23
checkTheoryWelldefined, 69
component, strongly connected, 33
cyclSuccessor, 35

Dedekind rule, 14
difuClosLeftRightIterated, 40
difuFactorization, 23
difunctional, 21
difunctionalClosure, 22
difunctionalTest, 22
difuSymmClosure, 38

elemFormIsWellFormed, 62
elemTermIsWellFormed, 60
equivGenerated, 33
extractGameTheoryFrom, 71

Ferrer, 21
ferrerOperator, 26
Ferrers-type relation, 26
ferrersTest, 26
findMaxMatchFromInitial, 51
freeVarInElemForm, 63
freeVarInElemTerm, 63
freeVarInRelaTerm, 63
freeVarInVectTerm, 63

gameSolution, 46

generalized inverse, 25
getArityCarrier, 64
getArityRelaConst, 64
getArityVectConst, 64
getElemConstInterpretation, 64
getObjectCarrierSize, 64
getRelaConstInterpretation, 64
getVectConstInterpretation, 64

heterogeneous relation algebra, 14
higherBound, 75

initial part, 44
initialPart, 44
interpreteElemFormInModel, 67
interpreteElemTerm, 67
interpreteRelaConst, 67
interpreteRelaFormInModel, 67
interpreteRelaTerm, 67
interpreteVectConst, 67
interpreteVectFormInModel, 67
interpreteVectTerm, 67
invPermCyc, 9
invPermFct, 9
invPermMat, 9
invsFctFromPart, 10
invsMatFromPart, 10
irredRelation, 37
irreducible, 34
isClosedElemForm, 63
isDifu, 78
isInclMinLineCoveringForLambda, 49
isInclMinLineCoveringForQ, 49
isInjective, 78
isIrreducible, 35
isMapping, 78
isMoveInGame, 70
isStrongConn, 33
isSurjective, 78
isTotal, 78
isUnivalent, 78

literate style, 8
lookupPrimitive, 67
lowerBound, 75

81

82 Index

makeTeXCatObject, 81
makeTeXElemConst, 81
makeTeXElemForm, 81
makeTeXElemTerm, 81
makeTeXElemVari, 81
makeTeXRelaConst, 81
makeTeXRelaForm, 81
makeTeXRelaTerm, 81
makeTeXVectConst, 81
makeTeXVectForm, 81
makeTeXVectTerm, 81
mapping, 15
matching, 48
Moore-Penrose, 25, 41

namedMatrix, 75
namesDisjoint, 64

percentage, 75
PermCyc, 9
permCycToFct, 9
permCycToMat, 9
PermFct, 9
permFctFromPart, 10
permFctToCyc, 9
permFctToMat, 9
PermMat, 9
permMatFromPart, 10
permMatToCyc, 9
permMatToFct, 9
permToBlockSuccessorForm, 12
permToSuccForm, 12
permToSuccMatrix, 12
primResult, 37
printHeteroReducible, 35
printLeftRightIterated, 41
printResCongrMatrix, 24
printResDifuClosure, 22
printResDifuSymm, 39
printResFerrMatrix, 27
printResMatching, 51
printResMatchingFromScratch, 51
printResMatchingFromScratchOPT, 51
printResMatchingFromScratchOPTFine, 51
printResMatrixCovering, 30
printResMatrixGame, 47
printResReducible, 35
printResTermination, 45
printSuccForm, 12

random, 75

randomIrredCyclic, 77
randomMatrix, 75, 76
randomPermutation, 76
randomUnivAndInject, 76
rearrangeDiagonal, 10
rearrangeMatWithLines, 10
reducible, 34
reflTranClosure, 33
relaFormIsWellFormed, 62
relaTermIsWellFormed, 60
rowSplit, 75

saturated, 48
Schröder, 14
startVector, 44
stringForNamedMatrix, 75
stringForNamedMatrixLines, 75
stringForOriginalNamedMatrix, 75
stringFromPermMatTeXCol, 74
stringFromPermMatTeXRow, 75
strongConnCompDecompose, 34
strongly connected, 34
strongly connected component, 33
surjective, 15
symmetric quotient, 15

term rank, 30
total, 15
translateRelaForm, 78
translateRelaTerm, 78
translateVectForm, 78
translateVectTerm, 78
trivialMatch, 48
trivialMatchAbove, 48
typeOfElemTerm, 60
typeOfRelaForm, 62
typeOfRelaTerm, 60
typeOfVectForm, 62
typeOfVectTerm, 60

unite, 35
univalent, 15
untilGS, 43

valuation, 67
vectFormIsWellFormed, 62
vectTermIsWellFormed, 60

