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Abstract

During early phases of design and implementation, not all the parameter values
of a performance model are usually known exactly. In related research contributions,
intervals have been proposed as a means to capture parameter uncertainties. Existing
model solution algorithms can be adapted to interval parameters by replacing conven-
tional arithmetic by interval arithmetic. However, the so-called dependency problem
may cause extremely wide intervals for the computed performance measures. Interval
splitting has been proposed as a technique to overcome this problem. In this work we
give an overview of existing splitting algorithms and propose a new selective splitting
method that significantly reduces the computational complexity of interval evaluations.
Moreover, the exploitation of partial monotonicity properties to further decrease the
computational complexity is discussed. The proposed methods are illustrated along
the lines of two examples: a small performance model of the MACA-BI protocol for
ad-hoc wireless mobile networks and a more complex model of an Enterprise JavaBeans
server implementation.

Keywords: Performance models; Analytic modeling; Parameter uncertainties; Interval
parameters; Interval splitting
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Typically, two types of abstraction are required to build a performance model: firstly, the
structural properties of a real system are modelled which can be characterized for example
using a corresponding Petri Net or queueing network structure. Secondly, quantitative be-
havior such as e.g. service or inter-arrival times have to be characterized. The result of this
abstraction step is usually a set of model parameters. However, especially in early phases of
design and implementation, not every aspect of the real system may be known exactly. Such
uncertainties may exist in both, structural as well as parametrical model aspects. This work



deals with uncertainties associated with model parameters. The issue of model parameters
being subject to uncertainties and variabilities is also addressed in more detail in [15].

The use of intervals to characterize parameter uncertainties in performance models has
been introduced in related works [14, 24, 12]. There are many situations where parameter
intervals occur naturally: although an exact value for a parameter may not be known,
the designer may provide a reasonable range of values for that parameter. If parameters
are obtained via measurement, confidence intervals are an important tool to increase the
reliability of the results. Parameter intervals may also occur in a situation where bounding
analysis is used at one level of a hierarchical model producing input parameter intervals
on another level. Parameter intervals are also suitable for worst-case analysis as well as
sensitivity studies. Furthermore, the numerical treatment of other approaches to model
parameter uncertainties such as e.g. parameter histograms [10], or fuzzy number parameters
[11] is based on intervals.

When parameters of an analytical model are characterized by intervals, performance mea-
sure intervals can be obtained by adapting existing solution algorithms and formulae for the
corresponding model characterized by single value (SV) parameters. This adaptation is done
by replacing conventional arithmetic by so-called interval arithmetic. I.e., basic operations
and elementary functions for real numbers are replaced by corresponding arithmetic defined
for intervals. There are two major advantages of using interval arithmetic as opposed to other
techniques for uncertainty analysis like Monte-Carlo [21] and Quasi-Monte-Carlo [19] meth-
ods and sensitivity analysis (see for example [6] for a comparison of these two approaches
in the context of Markov reward models): (a) results produced by interval analysis are safe
performance bounds, i.e., it is guaranteed that the possible range of performance measures
is always enclosed by the obtained interval results; (b) if interval splitting is applied, the
accuracy of the obtained interval results is automatically known.

However, there is also a major drawback of using interval arithmetic: the so-called depen-
dency problem may cause extremely wide intervals for the computed performance measures
[18]. Interval splitting as an approach to overcome this problem has been proposed by Ma-
jumdar and Ramadoss: In [16], a brute force splitting algorithm is used to obtain reasonable
tight performance measure intervals. In [20], following an approach proposed in [22], selec-
tive interval splitting with significantly reduced computational complexity is considered. In
this paper, a new selective splitting algorithm is presented that uses occasional single value
model evaluations to further reduce the overall computational complexity for producing in-
terval results. In the case of so-called N-monotonicity (i.e., monotonicity w.r.t. all input
parameters), Liithi and Haring use monotonicity properties to obtain an efficient interval
solution without interval splitting [12]. In this work we show that monotonicity w.r.t. just
one or more interval parameters can also be exploited to obtain a more efficient interval
splitting solution.

The application of the interval splitting algorithms presented in this paper is demon-
strated along the lines of two models that we have adapted to interval parameters: a basic
analytical model of the MACA-BI protocol for ad hoc wireless mobile networks and a more
complex queueing network model of an Enterprise JavaBeans implementation. The corre-



sponding models with conventional parameters are presented in [3] and [9], respectively.

The paper is organized as follows: since many readers may not be familiar with in-
terval arithmetic, the corresponding mathematical background is summarized in Section 2.
An overview of existing splitting approaches as well as our new splitting algorithm is pre-
sented in Section 3. This section also includes considerations on possibilities to exploit single
parameter occurrence and partial monotonicity properties. Sections 4 and 5 provide two ap-
plication examples for the proposed techniques. In Section 6, the results are summarized
and conclusions are drawn.

2 Interval Parameters

Typically, performance measures in analytical models can be expressed as mathematical
functions of a number of input parameters. These input parameters are usually real numbers
or integers. Thus, we consider a real function f as follows:

fR" — IR,
r=(x1,...,2,) — [f(x).
As discussed in Section 1, we are interested in using intervals as input parameters for

performance measure functions. In the following, we give some basic definitions of intervals
and related terms. A detailed introduction can be found in books like [18, 1, 17].

2.1 Basic Definitions
A real interval is a set of the form
X=[z7={reR|z<z<T}

where 2,7 € IR and x < T. x and T are called endpoints of the interval. In particular, z
is called lower bound, and T is called upper bound of the interval X = [z,7]|. By IR we
denote the set of all real intervals. An interval X € IR is called thin if x = T, and it is
called thick, if z < 7. If S is a nonempty bounded subset of IR, we denote the hull of S by
0S = [inf(S), sup(S)]. The hull is the tightest interval enclosing S. E.g., 0{a, b} = [a, b], if
a < b, and O{a,b} = [b,a], if a > b. We denote the set of interval vectors X = (Xy,..., X,)
with n components by TIR". An element X € IIR™ is interpreted as the set of all vectors
x € IR"™ such that z; € X;, i =1,...,n. For example, in the case n = 2, this is a rectangle.
An interval vector is also referred to as a boz.

For a real function f, continuous on every closed box on which it is defined, the range of
a box X is defined as:

F{(X) = 0{f(@) |z € X} = {f(x) |z € X}

Because of the continuity of f, the range is itself an interval:
frX) =111

4



In general, the computation of the range is a constrained optimization problem with
box constraints. Ie., the global minimum f(z) = mingey f(x) and the global maximum
f(r) = maxgex f(z), subject to z € X have to be found.

In the special case of so-called N-monotonic functions, the range can be computed us-
ing only real value evaluations of f with appropriate combinations of parameter interval
endpoints as input parameters. To be more specific, let f(zi,...,z,) be monotonically
increasing w.r.t. all parameters z;, ¢« € I and monotonically decreasing w.r.t. all parame-
ters z;, i € D, where I UD = {1,...,n}. Then the range of f with interval parameters
X; =[z,,7),..., X, = [2,,Ts] can be computed as follows:

f*(Xla"'aXn) - [f(yla"'ayn)a f(zla"'azn)]a

where y; = z;, 2, = T;if i € I, and y; = T;, 2; = z; if i € D. In [12], this situation is
discussed in detail for the example of the Mean Value Analysis (MVA) algorithm (see for
example the book [8]) for closed single class queueing networks. A generalized monotonicity
theorem, allowing exploitation of partial N-monotonicity is given in Section 3.5.

2.2 Interval Extensions

For many performance measures, monotonicity properties do not hold and general optimiza-
tion methods are often difficult to apply and of high computational complexity. Sometimes
the exact range of a function need not be known, but an interval enclosing the range suffi-
ciently tight may be adequate as well. Thus, in the following we introduce the concept of
interval extensions and interval arithmetic for their efficient computation.

An interval function F' : IIR™ — IR is an interval extension of the real function f :
R" — IR if (for simplification purposes we leave aside consideration of definition regions)
[18]:

F(z) = f(x) for v € IR,
f(zx) € F(X) for all z € X € IR. (1)

Interval extensions provide enclosures of the range of a real function:
FX) 2 {f()|lr € X}.

A property of interval functions that is important for interval splitting techniques that
are considered in Section 3, is inclusion isotony. An interval function F' : IIR" — IR is
called inclusion isotone if for all X,Y € IR,

XCY=FX)CF().



2.3 Interval Arithmetic

An important class of inclusion isotone interval extensions is obtained by interval evaluation
of arithmetic expressions. This is done by defining elementary arithmetical operations and
functions for intervals. Arithmetic expressions are subsequently defined as recursive com-
binations of constants, interval variables, elementary operations, and elementary functions.
For a formal definition see the book [18]. Since most functions representing performance
measures are actually arithmetic expressions, interval arithmetic can serve as a powerful
tool to obtain interval extensions of performance measures.

On the set of intervals, the elementary operations o € {+,—,-,/, "} =: Q are defined by
setting:

XoV=H{roy|lzeX,yeY}={zoy|lze X,yeY}, VoeQ,

for all X,Y € IR such that x oy is defined for all x € X, y € Y.
The elements ¢ of a predefined set ® of elementary continuous real functions are extended
to interval arguments by defining:

p(X) = Ofo(r) |z € X} = {p(x) |z € X},

for all X € IR such that ¢(z) is defined for all z € X. Such a set ® of elementary functions
may for example include abs (absolute value), the square and square root functions, exp
(exponential), In (natural logarithm), or the trigonometric functions sin, cos, tan.

From monotonicity properties it follows that the elementary operations o € {+, —, -, /}
can be computed in terms of the end points of the intervals X = [z,7],Y = [y, 7] € IR:

oy}.

S

XoY = D{gog,gog,fog,

In particular,

X+Y = [z+y7+7],
X-Y = [z-7,7—y|,
XY = [mln(iya zy, Tga @), max(iga Yy, _ga @)]7

XY = X-[1/y3,1/y], if0¢Y.

Analogously, (piecewise) monotonicity of the elementary functions can be exploited to
define their evaluations along the lines of computations with the interval endpoints of the
argument. E.g., because of the monotonicity of the exponentiation function we know that
for any X = [z,7] € IR, exp(X) = [exp(z), exp(T)].

Using the interval extensions of elementary operations and functions, an arithmetic ex-
pression in n variables can be evaluated with intervals by substituting the variables by the
corresponding intervals and step by step application of interval arithmetic. E.g., given the
intervals Xy = [1,2] and X, = [4,5], the arithmetic expression f(z1,22) = (221 + x2)x1 is



evaluated as follows:
f(X,Xp) = (2-[1,2]+[4,5]) - [1,2]
= ([2,4]+[4,5]) - [1,2]
= [6,9]-[1,2] =[6,18].

Given an arithmetic expression f(xy,...,z,), in [18] it is shown that the corresponding
interval evaluation f(Xq,...,X,) is inclusion isotone and that it provides an enclosure of
the range f*(X) = f*(X,,...,X,) of the real arithmetic expression. ILe.,

XiCXy,..., X, CX, = [f(X],....X,)Cf(Xy,...,Xn), (2)

and

(X)) = {f(@)]x € X} C f(X). (3)
Eq. (2) is originally proved in [17], Eq. (3) follows directly from the definitions of interval
arithmetic.

2.4 Dependency Problem

As discussed above, interval arithmetic can serve as a tool to obtain interval extensions of
real functions. However, due to an effect known as dependency problem, equality is often
not obtained in Eq. (3). This effect is also known as overestimation. The root of the
dependency problem is the memoryless nature of interval arithmetic if a parameter occurs
multiple times in an arithmetic expression [18]. For every occurrence of a variable in an
expression it is treated independently. For example, the expression X — X is evaluated to
{1 — 29| x1,290 € X} =[2 — T, T — z], instead of {x — x|z € X} =]0,0].

Sometimes an expression can be re-formulated to reduce the number of occurrences of
an interval parameter. Examples of this technique are presented in Subsections 4.1 and 5.2.
However, in general the dependency problem may often cause crucial overestimation of the
actual range of an evaluated function. For example, the iterative nature of the well-known
MVA algorithm (NN iterations for a queueing network with N jobs) causes an increasing
number of parameter occurrences with increasing number of jobs. Fig. 1 shows the overesti-
mation of the response time interval using the interval arithmetical evaluation of the MVA.
In this example, a queueing network with two queueing centers is analyzed. One of the
service demands and the terminal think time are characterized by interval parameters. The
diagram shows the relative width of the interval evaluation in multiples of the actual range
for the response time. For example with 10 jobs in the network, the response time interval
obtained via interval arithmetic is more than 120 as wide as the actual interval of possible
response times.

A way to overcome overestimation due to the dependency problem is to split the original
input parameter intervals into subintervals and evaluate the arithmetic expression using
these subintervals as input parameters. Approaches in that direction are discussed in the
following section.



Overestimation of response time interval

140
120

100 /
80 /
60 /

40 /‘/
20
0@ —- 4 M ‘ ‘

number of jobs

Figure 1: Overestimation of response time intervals with MVA.

3 Interval Splitting

The principal idea for interval splitting is to subdivide the input parameter intervals into
several subintervals, compute interval evaluations of the arithmetic expression with the subin-
tervals as input parameters, and find the overall result by computing the minimum of all
lower bounds and the maximum of all upper bounds of the intermediate results. Analogously,
an interval parameter vector (box) is split into subboxes. The basic idea is illustrated in the
following subsection describing a brute-force splitting algorithm. Eq. (2) guarantees that
results obtained via interval splitting yield enclosures of the range that are at most as wide
as the interval evaluation using the original input parameter intervals. In [22] it is shown
that the results obtained from interval splitting converge to the actual range if the width
of the subintervals approaches zero. For the sake of readability, in the algorithms discussed
in the following sections, we restrict the considerations to a single interval input parameter
X = [z,7]. The generalization to multiple interval input parameters is straight forward.
Considerations regarding computational complexity are however also included for the case
of n interval parameters.

3.1 Brute Force Interval Splitting

In the brute force splitting (BFS) algorithm, in every iteration the input parameter intervals
are split into two subintervals of equal length. The parameter (sub)intervals considered in
iteration s (i.e. splitting degree s) are collected in P*, the set of potential input parameter
intervals. The respective algorithm is depicted in Fig. 2.

In step S1 of the BES algorithm, after the initialization, the interval evaluation of f with
the original parameter interval X is computed.



Brute-force Splitting (f, X, €)
S1 s+ 0
P+ {X}
PO =[] & f(X)
do
S2 s s5+1
P+ ()
S3 VZ = [z,7Z] € P*~! do begin
m=(z+7%)/2
P« P*U{[z,m],[m,Z]}
end
54 Fr=f* 1« |min f(2), max f(7)
S5 until (f*— f' <¢) and (7571 )

Figure 2: Brute force splitting algorithm with one interval parameter.

In every iteration, the splitting degree s is incremented and a new set of input parameter
intervals under consideration (P?) is initialized (step S2). Subsequently, in step S3 of the
algorithm, P* is filled with subintervals of all intervals X € P*!. Finally, the minimum
of all lower bounds as well as the maximum of all upper bounds of evaluations of these
subintervals is computed in step S4. Steps S2 — S4 are iterated until the difference between
successive iterations becomes smaller than a predefined stopping criterion € (step S5).

Note that the number of subintervals in consideration with splitting degree s is 2°. More
general, if n parameters are characterized as intervals (i.e. we have an n-dimensional input
parameter box), it holds that |P*| = 2%". The application of the BFS algorithm for the
solution of interval-based computer performance models is proposed in [16].

3.2 Selective Interval Splitting

In the course of computation in the BFS algorithm, it can be observed that not necessarily
every interval in P® needs to be considered for further splitting. Consider for example
the following situation: let Y and Z be two parameter subintervals in P°. We denote

the respective interval evaluations by f(YV) = [f(Y)],f(Y)] and f(Z) = [f(Z), f(Z)]. If

f(Z) > f(Y), we know that the actual lower bound f of the range f*(X) = [f, f] can not

be obtained by evaluation of any point x € Z, since we know that f < f(Y).
More general, if we denote the set of parameter subintervals Z € P*~! U P® that have
already been evaluated by P,,, we know that:

L g 1.
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f(A) : : "old" evaluations
f(B)|—| N s+1
f(C) |_'—| (:Pevg PoOP )
f(Z,) f(Zl); | @ 0
f(Z,) v NO) | possible situations
f(Z,,) — | @a for "new" evaluations
f(Z ) 1 @b

Figure 3: 4+1 situations to be considered in selective interval splitting.

Thus, in the situation described above, the subinterval Z need not be considered for further
splitting to find the lower bound of the range f*(X). This idea of selective interval splitting
was introduced by Skelboe in the context of general purpose optimization of rational interval
functions [22] and its application to performance models is presented in [20].

In the following we consider the computation of the lower bound f of the range f*.
Computation of the upper bound f can be done analogously. If an interval Z; with interval
evaluation f(Z;) = [f(Z;), f(Z;)] is considered to be included in the set of P* that may
potentially produce the lower bound f of the range f*(X), four situations have to be distin-
guished for efficient selective interval splitting. These situations are depicted in Fig. 3. In
this figure, f* = miny¢p,, f(Y), and minub = minycp,, f(Y):

1. In the first situation, f(Z;) > minub. Thus, in the sequel Z; can be ignored w.r.t. the
search for f.

2. In the second situation, f(Z;) < minub. This means that 7, is a parameter interval
that may eventually produce f. However, neither f° nor minub are affected by f(Z5).

3. In the case depicted as situation three, additionally, f(Z3) < f°. Thus, by inclusion of
Z3 in Py, f* has to be updated to the value f(Z3).

4. In the fourth situation, we have f(Z4.) < minub. Thus, minub has to be updated.
Furthermore, there may now eventually be some intervals Y € P,, such that f(Y) >
minub. Such Y are no longer of interest for finding f. Thus, they should be removed
from P* or P*~!. Situation 4a in Fig. 3 shows the case where non of the intervals in
P,, is affected, whereas in situation 4b the interval C' would be dropped from the set

of potential interval parameters since f(C) > f(Zy).

The situations described above can be exploited to integrate filtering mechanisms into the
BFS algorithm that dramatically reduce the number of interval evaluations that have to be

10



Selective Interval Splitting (f, X, €)
Sl s+0
PY + {X}
FO= [, 7] « f(X)
minub < 70
do
S2 s s+1
[P0
P10
S3 VZ =lz,z] € P*~!' do begin
S4 m<+ (z+7%)/2
Zy + |z,m]; Zy + [m,Z]
S5 for i <— 1,2 do begin
S6 if (f(Zi) < minub then begin
ST P* «+ P*U{Z;}
S8 if (f(Z:) < [?) then f° « f(Z))
S9 if (f(Z;) < minub then begin
S10 minub « f(Z;)
S11 check_1b (P*~1); check_b (P?)
end
end
end
end
S12 until (f*— f*7' <e)

Figure 4: Selective splitting algorithm with one interval parameter (considering lower bound
only).

check_1b (P)
S1 VY € Pdo
S2 if f(Y') > minub then P < P\{Y'}

Figure 5: Checking routine for the selective splitting algorithm.

11



computed to obtain a sufficiently tight enclosure of the range f*(X). In Fig. 4, the selective
interval splitting (SIS) algorithm is depicted. Note, that in the depicted algorithm, only the
lower bound of the enclosure of the range is considered. The upper bound can be computed
analogously. The initialization (step S1) is extended by setting the minimum of all upper
bounds to 0o (i.e., MAXREAL or some equivalent value). In the iteration initialization (step
S2), the lower bound of the enclosure is also initialized to oo. As in the BFS algorithm,
every parameter interval in P*~! (step S3)) is split into two intervals (step S4) which are
subsequently considered for further treatment (step S5). However, situation (1) in Fig. 3 is
filtered by the condition in step S6 of the SIS algorithm. I.e., only those parameter intervals
that may eventually produce the lower bound of the enclosure are considered. This means
that in the sequel, we are dealing with situations (2) to (4). In step S7, the parameter
intervals of interest are included in the next set P® of potential parameter intervals. Step
8 deals with situation (3) of Fig. 3. Le., it is decided whether the lower bound f* of the
enclosure of iteration s has to be updated. Situation (4) is managed in step S9 of the
algorithm. The minimum of all upper bounds is eventually updated (step S10) and in step
S11 it is checked (the checking routine is listed in Fig. 5), whether parameter intervals have
to be removed from P* ! or from P* due to the update of minub. Steps S2 to S11 are
iterated until the change in the lower bound f* of the enclosure is sufficiently small (step
S12). In the subroutine depicted in Fig. 5, all intervals Y in the set P are checked (step S1)
and eventually removed from P if f(Y') > minub (step S2).

If the lower and upper bounds of the enclosure are computed simultaneously, identical
parameter evaluations can be used to optimize the computational effort. To accelerate the
decisions in the check_lb routine, the sets P*~! and P® can be implemented as sorted linear
lists as it is also suggested in [22]. Note that for multiple (n) interval parameters, every
parameter box X € P*~! has to be split in 2" subboxes. However, as it is illustrated in
Section 5, after some initial iterations the number of interval evaluations eventually increases
only linearly with the splitting degree s. This is due to the filtering effect of the SIS algorithm.

3.3 Selective Interval Splitting with Midpoint Evaluation

Given an interval Z = [z,z] € P*~!, consider the lower bound f*(Z) of the range f*(Z). In
the SIS algorithm discussed in the previous section, we use the fact that f*(7) € f(Z) =

[f(Z), f(Z)] for the selection process. To be more specific, the selection threshold minub is

chosen as the minimum of the values f(Z) for all parameter intervals Z that have already
been evaluated. However, by definition we also know that f*(Z) < f(z) for any z € Z.
Le., the real function evaluation f(z) for any point z € Z is also an upper bound for the
lower bound of the range f*(Z). Thus, we know that f*(Z) € [f(Z), f(z)] for any arbitrary

z € Z. This yields indeed a sharper threshold than f(Z), since also f(z) < f(Z) holds for
any z € /.

In the selective splitting with midpoint evaluation (SSME) algorithm, depicted in Fig. 6,
the interval midpoint z = (z + 2)/2 of every interval Z = [z,Z] € P*"! is used to obtain
a sharper threshold for the selection decision. Steps S1 to S8 of the SSME algorithm are

12



Selective Splitting with Midpoint Evaluation (f, X, €)
ST s+ 0
S2  minub <+ f((x +7T)/2)

59 fm = (2 +7)/2)

S10 if (fm < minub) then begin
S11 minub < f,
S12 check_lb (P*~'); check b (P?)
end
end
end
end

513 until (f°— f*7' <)

Figure 6: Selective splitting algorithm with midpoint evaluation, one interval parameter
(considering lower bound only).

identical to the SIS algorithm and are thus not listed in Fig. 6. However, in step 59, f,,
is assigned the real function evaluation of the interval midpoint. In the sequel (steps S10
to S12), fn is used to determine the threshold minub which is subsequently used to decide
which parameter intervals are of interest for further investigation.

Fig. 7 shows the effect of the sharper decision threshold minub obtained via evaluation
of the interval midpoints. The bullets in that figure represent the real function evaluations
of the respective parameter interval midpoints. Here, the real function evaluations of the
midpoint are assumed to be in the middle of the interval evaluations. This does of course
not hold in general, but does not effect the principal mechanism of midpoint evaluation as
an additional filtering technique. We denote the midpoint of parameter interval Y by m,,.
Note that as opposed to Fig. 3, in Fig. 7 the threshold minub is determined as the minimum
of all midpoint evaluations. Thus, using the SSME algorithm, the parameter interval C'
would not have been included in P,, in the first place because f(C) > f(m,) = minub.
Considering the parameter intervals Z; to Zy, in Fig. 7 we can observe that both Z; and Zs
need not be split any further, since from f(Z,) > minub we conclude that f ¢ f(Z,). Le., as
opposed to the conventional selective splitting algorithm, Z» is filtered out due to the sharper
selection threshold obtained via midpoint evaluation. Next, consider situation (4a): using
conventional SIS, the threshold minub is updated, but non of the parameter intervals in P,
is affected by that update. The situation with SSME is different: because f(mz,,) < (f(B),
the parameter interval B can be removed from the set of parameter intervals of further

13



f(A) I ‘ I "old" evaluations
f(B) —— B S s+1
' (£(C) ——e—1) (=P,,cPUP )
1 f(Zy) . XO)
; @f(Zi) : ° X0) ‘ o
f(Z;) -——e ¥O) possible situations
f(Zy,) ¢ , @a for "new" evaluations
(Z4) o+ @b

e ... midpoint evaluations

Figure 7: Effect of midpoint evaluation for interval splitting.

interest,.

This example as well as the experimental results presented in Sections 4 and 5 illustrates
that the additional filtering effect of the SSME algorithm may usually be worth the higher
computational expense due to the additional real function evaluation necessary to obtain the
tighter threshold.

Due to continuity properties, functions describing performance measures are usually at
least piecewise monotonic. Thus, using interval endpoints instead of the interval midpoint
to obtain an even tighter threshold may be heuristically argued. However, even with just
a single interval parameter, this would double the additional effort due to real function
evaluations and experiments have shown that often the improvement of the filtering effect
is almost negligible. Furthermore, this approach does not scale well to multiple interval
parameters, because in the lack of knowledge of monotonicity behavior, given n interval
parameters, real function evaluations on all 2" corners of the n-dimensional parameter box
would have to be computed.

Instead of the stopping criterion of the algorithms listed in Figs. 4 and 6 (f* — f*~' < ¢),
an alternative stopping criterion can be used: f° — minub < e. This stopping criterion
automatically provides a bound (namely €) on the difference between the lower endpoint f
of the actual range f*(X) = [f, f] and the lower endpoint f° of the enclosure obtained via
interval splitting, because the relation f € [f*, minub] holds.

3.4 Exploitation of Single Parameter Occurrence

As it is discussed in Subsection 2.4, the overestimation due to the dependency problem stems
from multiple occurrences of one or several input parameters in an expression. However, if
not all input parameters occur more than once in the arithmetic expression, the following
theorem holds.
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Theorem 1 (Moore) Let f(&1, .-, &, Viy---yUm) = f(&, V) be an arithmetical expression
in n+m variables. Suppose that the variables v, k =1,...,m, occur only once in f. Given
interval vectors X € IIR™, Y € IIR™, it holds that:

fXY)=0{f(z,y) |z e X,yeY} = f(z,Y)

reX

A proof of this theorem can be found in [17] or in [18]. The interpretation of this theorem
is that finding the range of an expression with interval parameters is a classical optimization
problem only w.r.t. those parameters that occur multiple times. Parameters that occur only
once in the arithmetic expression can be treated with interval arithmetic without producing
additional overestimation. Regarding interval splitting, this means that in principal only
parameters that occur more than once in the expression have to be split into subintervals.
Thus, in the BFS approach, the number of splitting combinations in iteration s is reduced
from 25(ntm) o 257,

However, in the selective splitting approaches, avoiding to split certain parameter inter-
vals may cause extremely low effectiveness of the filtering mechanism of these algorithms.
In many situations, reducing the number of split parameter intervals via exploitation of
single occurrence of parameters may cause the selective approaches to behave like the BFS
algorithm. Il.e., eventually no filtering may take place. Consider the following simple ex-
ample: f(X,Y)=X+X+Y, X =[0,1], Y = [0,10]. Since Y appears only once in the
expression of f, only X might be considered for splitting. Now consider the evaluation of
[ using the following subintervals of X: X’ = [0,¢] and X" = [1 — ¢, 1]. Evaluation of f
yields: f(X',Y) = 10,10 + 2¢] and f(X",Y) = [2 — 2¢,12] for any arbitrarily small € > 0.
Since 2 — 2e < 10 + 2¢, even X" is not filtered out by selective splitting. From this we may
conclude that however small the subintervals of X are chosen, non of them is filtered out by
selective splitting. Thus, in this case the selective splitting approach behaves like the BFS
algorithm. Depending on the desired accuracy, reducing the number of parameter intervals
that are split at the cost of switching from selective to (almost) brute force splitting may
or may not reduce the total computational complexity. This effect is also illustrated in the
experimental results presented in Section 4.

3.5 Exploitation of Partial N-Monotonicity

Monotonicity of the evaluated expression w.r.t. one or more input parameters can be ex-
ploited to reduce the number of parameters that have to be split. To obtain the range of
an expression, two separate runs of the interval splitting algorithm can be performed. This
yields the lower and upper bounds of an enclosure of the range, respectively. In the two runs
of the splitting algorithm, parameter intervals for parameters with monotonicity properties
can be replaced by appropriate endpoints of the original parameter intervals. This reduces
the number of interval parameters in the splitting algorithm, and hence drastically reduces
the computational complexity. The following theorem and associated corollary provide the
formal justification for this simplification.

15



Theorem 2 Let f(&1, ... &nyViy ey Vs i1y -5 ) = f(& v, 1) be an arithmetical expres-
ston in n +m + [ variables. Suppose that f is monotonic increasing w.r.t. v;, © =1,...,m
if all other parameters are fized and f is monotonic decreasing w.r.t. pj, j =1,...,1 if all
other parameters are fized. Given interval vectors X € IIR*, Y € IIR™, and 7 € IR it
holds that:

ff(X,v,72) = f{f(x,y,2) |z e X,yeYze Z}

= [;g}’(f(x,g,?), sup f(fr,@,z)] :

reX

The proof of Theorem 2 can be found in Appendix A.

Corollary 3 Under the assumptions of Theorem 2 it holds that:
FXY,2) C [ f(X,p,2), [(X,75.2)].

The corollary is proved in Appendix B. Corollary 3 guarantees that an enclosure for
the range f*(X,Y,Z) can be obtained as follows: compute the evaluation of the expression
where parameters with monotonic increasing effect are replaced by the respective lower
bounds of the parameter intervals, and where parameters with monotonic decreasing effect
are replaced by the respective upper bounds of the parameter intervals. This evaluation yields
an interval because the input parameters without monotonicity properties are still intervals.
The lower bound of this evaluation interval yields the lower bound of the enclosure. The
upper bound of the enclosure is computed analogously. The amount of overestimation of
that enclosure can be reduced by interval splitting as described in the previous sections.
However, Theorem 2 implies that only the parameter intervals X = (Xy,...,X,) without
known monotonicity properties have to be split whereas parameters with monotonicity can
be replaced by appropriate single values.

3.6 Summary of Splitting Considerations

In the previous subsections, possibilities to exploit different parameter characteristics to
optimize the SIS and SSME algorithms are discussed. In particular, three properties are
used to handle input parameters: (1) an input parameter can be an interval or a single value
(i.e., thick or thin), (2) it may occur once or multiple times, (3) monotonic behavior of the
arithmetic expression may exist (and be known) or not. These parameter properties and
associated parameter treatment in the splitting algorithm are summarized in Table 1. In
this table, the notation “—” stands for “don’t care”.

Fig. 8 lists the generalized splitting algorithm (GSA), which uses calls of the SSME al-
gorithm and considers special parameter properties. In this listing, Xy, denotes a vector
of (thick) interval parameters that occur multiple times in the arithmetic expression. Xy
denotes a vector of interval parameters that are not supposed to be split. Xyions (Xuvon—)
denotes a vector of parameter intervals that have monotonic increasing (decreasing) effect.
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Table 1: Summary of parameter properties for interval evaluation.

Parameter properties Treatment in splitting algorithm
Thin Single occurrence Monotonicity

Treat as real number

o N B (no special consideration)

Treat as interval without splitting
or split in interval splitting algo-
rithm

(depending on situation)

Double call of interval splitting
with

appropriate endpoints as single val-
ues

no no no Split in interval splitting algorithm

no no yes

Finally, 25y denotes a vector of single value parameters (or thin intervals). If there are no pa-
rameters with known monotonicity properties, the SSME algorithm is called only once (step
S1). The notation SSME (f(Xtm, X1vs, Tsv), X, €) indicates that f is evaluated with all
parameters (Xyon and Xy, are dropped because they do not exist in that case), but only
the parameters X, are supposed to be split. If there are parameters with known mono-
tonicity properties, the SSME algorithm is called with the lower bounds xyjony of parameter
intervals in Xy, and with the upper bounds Ty, of parameter intervals in Xy, to
obtain the lower bound f of the evaluation (step S2). Analogously, the upper bound f of
the evaluation is obtained by calling the SSME algorithm with the upper bounds Tyon; of
parameter intervals in Xyone and with the lower bounds xyp,— of parameter intervals in
Xuon— (step S3).

4 Interval Parameters in a Model for Wireless Mobile
Networks

As an illustrative example we use a model of the MACA-BI (Multiple Access with Collision
Avoidance By Invitation) protocol for so-called ad hoc wireless mobile networks described
by Gerla et al. [3].

4.1 Normalized Throughput for the MACA-BI Protocol

Using the following parameters:

A... the aggregate rate of packet generation,
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Generalized Splitting (f(Xvms X1vsy XMonts XMon—s LSV )y €)
if (Xnions U Xaton_) = 0 then
S1 F =[f, f] + SSME (f (X1, Xivs, Tsv), Xtom, €)
else begin
S2 f < SSME(f (XM, X1vs, TMont > Thon—s L5V ), X1vM, €)
S3 f < SSME(f(Xtym, X1vs, Trtonss TMon—» T8V ), XM, €)
end

Figure 8: Generalized interval splitting algorithm considering different parameter types.

v ... the control packet length,
7 ... the maximum propagation time,
0... the data packet length,

in [3], an expression for the normalized throughput of the single hop case is derived:

)
S0+ (y 4 27)emr

In this expression, the packet length parameter d occurs twice, A and 7 occur three times, just
~v occurs only once. Thus, it is likely that S is subject to the dependency problem causing
overestimation of throughput intervals if intervals are used for the model parameters. As
discussed in Subsection 2.4, the widening effect of the dependency problem can sometimes
be decreased if the expression is rewritten such that interval parameters occur less often. If
S is rewritten in the following way:

1

5= 1+ (276/\#X + (y+ 27')6”‘) /5’

the packet length parameter 0 occurs only once whereas the number of occurrences of the
other parameters does not change. In the sequel we refer to the expression S as the original
throughput expression, S’ is referred to as the optimized expression.

Derivation of the expression w.r.t. the four parameters yields that S is monotonically in-
creasing w.r.t.  and S is monotonically decreasing w.r.t. 7 and  as long as all parameters are
positive. In the following comparisons, these monotonicity properties can be used to reduce
the number of interval parameters in the splitting algorithms as discussed in Section 3.5.
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Figure 9: Single value (SV) as well as various interval (IV) results for the normalized through-
put of the example model with varying network load A.

4.2 Experimental Results with Interval Model

For the experiments discussed in this section, we use the single value parameters from [3]
(data packet length = 296 bytes, control packet length is 20 bytes, propagation delay is 54
s, channel speed is 1Mbps), as a bases and assume parameter uncertainties in the way that
every parameter ¢ is described as & + 10%), i.e., as the interval [0.9¢,1.1£]. Along the lines
of [3], using bits and s as units, the parameter intervals are:

o D=15,0] =2368 4 10% = [2131.2, 2604.8],
o G =[y,7] = 160 + 10% = [144, 176],
o T =r,7] = 54+ 10% = [48.6, 59.4].

The load parameter ) is varied (logarithmically scaled) from 107¢ to 1.0 and is also subject
to an uncertainty of +10%. In each step, the load factor \ is increased by the factor 1.5.
Fig. 9 depicts the results of this experiment, including the single value (SV) normalized
throughput, results from interval evaluation of S (IV /orig) and S’ (IV/opt) as well as the
actual range of the interval evaluation (IV /range). ’Ib’ denotes lower bounds and "ub’ denotes
upper bounds. In this figure, the overestimation caused by the dependency problem can be
observed. Direct interval evaluation of S’ yields almost exactly the range, whereas evaluation
of S yields much wider intervals. However, this fact can only be recognized if the range is
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known. Thus, interval splitting has to be applied to gain control over the accuracy of the
interval results.

Table 2 lists the results for the computational complexity when using the various interval
splitting approaches (BFS, SIS, SSME) and different values for the desired accuracy ¢ =
1072,...,¢e7% TFor a comparison of the computational complexity of the different splitting
algorithms, four variants of the interval model are considered: in the variant denoted as
'NAIVE’, monotonicity properties and the single occurrence of parameters are not exploited,
i.e., all four parameter intervals are split into subintervals. In the 'ESO’ (exploitation of
single occurrence) variant, monotonicity properties are not used but parameter intervals
that occur only once in the expression are not split (see Subsection 3.4). In the variant
denoted by '"MONO 2’, monotonicity properties of S w.r.t. § and ~ are exploited, whereas \
and 7 are split (see Subsection 3.5). Finally, in the variant '"MONQO”; all known monotonicity
properties are exploited and thus only A has to be considered for interval splitting. For the
'NAIVE’ and "ESO’ variants, two sub-variants are considered: using the original expression
S (‘orig.”) and using the rewritten expression S’ ("opt.”). This distinction is not made for
the '"MONOZ2’ and '"MONOQO’ variants, because in these two, the parameter ¢ is treated via its
interval endpoints anyway (only the number of occurrences of § is reduced if using S’ instead
of S). The table lists the number of necessary interval evaluations for the various splitting
algorithms. In the case of the SSME algorithm, also the number of necessary single value
(SV) evaluations and the weighted sum iv+ sv/2 is listed (a SV evaluation is estimated to be
of approximately half the computational complexity as an interval evaluation). The values
represent the total numbers of evaluations necessary to gain all results depicted in Fig. 9,
i.e., results for 35 different A intervals. Omitted results reflect experiments that had to be
aborted because of time and/or memory constraints.

Several observations can be inferred from the results of Table 2: in general, BFS is not
an option for efficient interval evaluation as compared to selective interval splitting such as
SIS or SSME. Comparing SIS and SSME, the SSME approach always manages to further
reduce the number of interval evaluations. In the SSME algorithm, the reduction of interval
evaluations is achieved at the cost of additional SV evaluations (the midpoint evaluations).
However, almost always the total cost of SSME is smaller than that of SIS. As discussed
in Section 3.4, exploitation of single parameter occurrence disables the filtering effect of the
selective splitting techniques as soon as the desired accuracy gets small. Thus, avoiding to
split parameter intervals that occur only once in the evaluated expression only makes sense for
BFS. However, as the results in Table 2 suggest, it is more efficient to use a selective splitting
algorithm (SIS or SSME) without exploitation of single parameter occurrence than to use
BFS with exploitation of single parameter occurrence. Another important conclusion that
can be drawn from the results of these experiments is that rewriting an expression to reduce
the number of parameter occurrences may significantly reduce the necessary computational
effort for interval splitting. This effect can be seen by comparing the ’Orig.” with the
‘Opt.” results. Furthermore, exploitation of monotonicity properties is even more important,
because only parameters without known monotonicity properties have to be split. Thus,
with exploitation of monotonicity the problem dimension in the splitting algorithms can be
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Table 2: Complexity results for example.

Accuracy Variant BFS SIS SSME
IVeval. IVeval. IVeval. SVeval. IV4+SV/2
e=10"2 NAIVE/Orig. 1,216,678 414,998 178,822 32,952 195,298
NAIVE/Opt. 1,190 1,190 1,190 802 1,591
ESO/Orig. 83,830 57,614 31,150 13,166 37,733
ESO/Opt. 350 350 350 341 521
MONO 2 350 350 350 341 521
MONO 210 210 210 178 299
e =107 NAIVE/Orig. - 4,741,110 1,302,758 167,421 1,386,469
NAIVE/Opt. 247,206 10,790 4,598 1,701 5,449
ESO/Orig. - - - - -
ESO/Opt. 2,094 2,094 2,038 1,990 3,033
MONO 2 2,094 850 634 414 841
MONO 414 342 320 256 448
e =10"" NAIVE/Orig. - - 3,831,862 486,351 4,075,038
NAIVE/Opt. - 59,702 20,950 5,726 23,813
ESO/Orig. - - - - -
ESO/Opt. 168,334 164,962 144,590 143,354 216,267
MONO 2 168,334 2,702 1,742 950 2,217
MONO 3,110 760 668 511 924
e =10"°" NAIVE/Orig. - - - - -
NAIVE/Opt. — 235,302 85,350 21,091 95,896
ESO/Orig. - - - - -
ESO/Opt. - - - - -
MONO 2 - 7,226 4,426 2,197 5,525
MONO 28,630 1,652 1,404 1,034 1,921
e=10"% NAIVE/Orig. - - - - -
NAIVE/Opt. - 1,005,974 374,310 90,240 419,430
ESO/Orig. - - - - -
ESO/Opt. - - - - -
MONO 2 - 21,960 12,882 5,951 15,858
MONO 301,902 4,718 3,922 2,822 5,333
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Figure 10: MACA-BI model with interval parameters and interval splitting: computational
complexity vs. desired accuracy.

reduced to the number of interval parameters without monotonicity.

In Fig. 10, the comparison of the two selective splitting techniques SIS and SSME is
summarized: the number of necessary interval and SV evaluations is depicted for varying
values of € (desired accuracy). The four diagrams show results for the variants 'NAIVE/Orig’,
'NAIVE/Opt’, 'MONO?2’, and "MONOQO’. Tt can be seen that with the exception of "MONO’
(here, only one parameter is split), the additional cost due to SV evaluations in the SSME
algorithm is always more than compensated by the decreased number of interval evaluations
in that approach.

Fig. 11 illustrates that the computational complexity for interval splitting may strongly
depend on the values of the parameters. This figure depicts the number of expression evalu-
ations necessary during interval splitting for varying midpoints of the A-interval. For orien-
tation purposes, the SV throughput results are also depicted (labeled on the right y-axes). It
is interesting to see that in all cases the splitting effort is highest where S is non-monotonic
(i.e., where S takes its maximum). This means, that interval splitting is more costly when it
is actually required, i.e., when the upper throughput bound is not obtained by using interval
endpoints of the input parameters.
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Figure 11: MACA-BI model with interval parameters and interval splitting: computational
complexity vs. .

5 Model of an EJB Server Implementation

As a more complex example we use a model of an EJB (Enterprise JavaBeans) server
implementation, which in this case works as the central scheduler of a distributed, three-
tier, client-server architecture. The real application modelled is the Kensington Enterprise
Data Mining system [7, 2] whose application server (or scheduler) implements the EJB-1.1
specification [23].

Specifically, the behavior of a method execution is modelled since it is the most common
operation in the system. Detailed description of this execution and derivation of the model
can be found in [9].

5.1 EJB Submodel to be Adapted to Interval Parameters

The model that is used to illustrate the application of interval splitting techniques corre-
sponds to a sub-model of the system described above which is also derived in [9]. This
sub-model is shown in Fig. 12 and it was obtained via the application of the Flow Equivalent
Server method (FES) (see [5], for example) in order to reduce the complexity of the original
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model.

Blocking is the critical non-standard characteristic in this network. A client that has
completed service in the outer node may be blocked under certain circumstances (see [9] for
details). In this case blocking time is the time required for the first of the M parallel servers
to clear its queue in a blocking-after-service discipline.

The M parallel servers are aggregated into a single node as it is shown in Fig. 13. At
constant population N (j clients at the outer server and k = N — j at the M parallel servers)
the service rate functions p;(j) and po(k), are estimated as follows:

= { e I g

where m; is the mean service time for server 1 (the outer server) when there is no blocking
and fy_; is the dynamic blocking probability. b(N — j) is the mean blocking time when
there are j customers at the outer server (N — j customers at the parallel servers) and it
is estimated by b(k) = k/(M?u) (see [4]), where p is the service rate of each of the parallel
servers. The computation of the probabilities By_; is beyond the scope of this paper; the
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details can be found in [9]. The service rate of the aggregated second server is:

MQ(k) = Z gknn/% (5)

where the parameter &, is the probability that n out of the M servers are busy, given that
there are k customers at the parallel servers altogether. The probabilities &, are computed
considering an M-state Markov chain for each population size k > M at the parallel servers,
where each state corresponds to the number of busy queues in the system. The following
recursive function for the corresponding equilibrium probabilities 7 (n) is derived from the
balance equations determined by the M-state Markov chain:

) if n = 1,
(I—n+1)(k=1) .
ﬂ'k(’n): WF}@(Z\ZLQ— 1), . if2<n< M, (6)
: 7n+13\£[2:nl%)l(tgll}n(nfir)(lia) )Trk (n - 1)7 if n=»M.

The parameter [ is related to the blocking behavior, a detailed explanation is beyond the
scope of this paper. Normalizing the 7 (n) gives the probabilities

Wk(n)

e ()

Clearly the visitation rate is the same for both servers (see Fig. 13). The steady state queue
length probability distribution for this network — p(j) for the state with j tasks at server 1
and N — j at server 2 — is then calculated as a product form in standard fashion. Finally,
the throughput of the FES submodel given N threads in the submodel can be computed:

N

T(N) =Y p(H)mj) - (8)

=1

5.2 EJB Submodel with Interval Parameters

The computational steps for the solution of the submodel throughput, given that the service
demand parameters p and m; are intervals are adapted to interval arithmetic. During
this adaptation several equations are re-formulated to decrease overestimation due to the
dependency problem. Moreover, monotonicity properties of combined computation steps are
exploited to further reduce the amount of overestimation. As an example for the adaptation
process we discuss the interval adaptation of the probabilities &, (see Eqs. (6) and (7)). The
complete adaptation process is described in more detail in [13].

Due to the recursion in Eq. (6), m; and g occur multiple times in each of the expressions
7r(n). Since with the exception of the case n = M, m; as well as p appear only in the
denominator, this does not cause overestimation of intervals for m;(n). However, in the
normalization step, the dependency problem is in effect, because by having 7(n) in the
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numerator and the sum 3, 7.(I) in the denominator, m; and u have both increasing as
well as decreasing influence on &g,,.

In the following we rewrite the expressions for m;(n) in a way that allows to cancel as
many occurrences of m; and p as possible in the normalization. In a first step, we extract
the interval parameters m; and p from the recursion of Eq. (6). This can be done by defining
the following recursive expression 7;(n) that does not depend on my and pu:

B 1, if n=1, 9
m(n) = et r(n— 1), if2<n< M. (9)
Using these 74 (n), the probabilities &, can be rewritten to reduce the effect of the dependency
problem. For n < M, the reciprocals &, can be computed as follows:

T B SO wll) |, m(N(0 — o)k
Een = 1+Tk(n) [; k(1) (map) +z%1 (map)=" " M2(myp)M-—n+1

Note that in this expression for £}, 1 < n < M, the computation is separated in a part where
my and p contribute with an increasing effect and a part where m; and p contribute with a
decreasing effect, respectively. Within these parts, the parameters m; and p are cancelled as
often as possible. This significantly reduces the effect of the dependency problem as compared
to the original expressions in Eqgs. (6) and (7). The case n = M is treated separately:

M2 M—-1 l
o= 14+ (1) (m
Suar AN+ (1= /] 2 HO0mm™

Since in this expression m; and ju contribute solely with an increasing effect to &, the
probability &xps is monotonically decreasing w.r.t. the parameters m; and p. Thus, an
interval Xy = [€,,,,&pn] can be obtained by single value evaluation of £y using the

endpoints of m; and y’s parameter intervals. Le., , . == & (my, p) and Epnr = Een (T, T0).

5.3 Experimental Results with Interval-Based EJB Model

In the following comparison we use two different adaptations of the EJB model to interval
arithmetic. In the version denoted as ’orig.’, the normalization step during the computation
of the probabilities &, is done along the lines of the original equations given in [9]. For the
computation of results labeled ’rewr.’, the rewritten expressions as discussed in Subsection 5.2
are used reducing the dependency problem in this specific computational step. Note that
for SV parameters, the original and rewritten equations are mathematically equivalent, the
re-formulation only makes a difference for interval evaluations.

In the experiments we use parameter values taken from evaluations described in [9]:
M = 6 bean servers per container and I = 20 different bean instances. The estimates
for the service rate of the bean servers ; and the mean service time of the outer server
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Figure 14: Comparison of original and rewritten expressions: (a) throughput interval results
and (b) computational complexity for interval splitting with varying number of threads (with
desired accuracy € = 1072).

m; are subject to uncertainty. Thus, these parameters are characterized by the intervals
p) = 1/4.1 4+ 5% = [0.2317, 0.2561] and m{™ = 0.4 + 5% = [0.38, 0.42].

Fig. 14 shows the effect of using the original respectively rewritten expressions for the
intermediate probability intervals &, when computing intervals for the submodel throughput
T(N). Fig. 14(a) depicts throughput intervals for populations N =1,...,25. It can be seen
in this figure that using the original expressions for &,, the throughput interval is much
more overestimated than the throughput interval obtained using the rewritten expressions
for f]m

Unfortunately, due to the dependency problem occurring in the computation of T'(N),
even the throughput intervals obtained by using the rewritten expressions are more than 10
times as wide as the actual range of the throughput (the innermost intervals in Fig. 14(a)).
Thus, in both cases, interval splitting has to be applied to obtain reasonable tight enclosures
of the throughput range. However, even though interval splitting may be necessary for both,
original as well as optimized (w.r.t. interval computation) expressions, the computational
effort is significantly reduced when using the rewritten formulae. Fig. 14(b) depicts the com-
putational complexity required to obtain the range for the throughput with an accuracy of
e < 1072. To obtain the range of the throughput, the SSME approach is used, which per-
forms both, interval as well as conventional evaluations . For each version of the expressions
(original and rewritten), three different plots are shown: the number of necessary interval
evaluations (iv), the number of necessary single value evaluations (sv), and the weighted sum
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Figure 15: Computational effort for interval splitting for the EJB model with interval pa-
rameters and varying accuracy € = 2°,...,2713,

iv+sv/2 (total) — the computational complexity for an interval evaluation is approximately
twice as high as for a single value evaluation. Note that using the rewritten &;,-expressions
decreases the number of evaluations during the interval splitting algorithm by a factor of
more than 5.

In Fig. 15, the splitting complexity of the SIS algorithm is compared to that of the SSME
algorithm. In this comparison, the number of threads is N = 20. Fig. 15(a) depicts complex-
ity results using the original expressions for the probabilities &,, whereas Fig. 15(b) shows
complexity results obtained using the rewritten expressions. Both diagrams show complexity
values for logarithmically scaled accuracy values € = 2°, ... 2713 (i.e, deviation of obtained
interval results from the actual range). Again, the computational effort is shown in terms of
the number of necessary IV evaluations. In both cases, the SSME algorithm out-performs
SIS by a factor of about 2. Note that with BFS (not depicted here), the computational
complexity would have grown exponentially, whereas the filtering effect of both selective
splitting algorithms causes an almost perfectly linear increase of the computational effort
when the accuracy is increased.

By comparing Fig. 15(a) and Fig. 15(b) it can also be seen that using expressions that
are rewritten in order to reduce overestimation, the computational effort of interval splitting
can be significantly reduced. For example, to obtain an accuracy of ¢ = 2713 with SSME,
the equivalent of 87930 interval evaluations is necessary if the original expressions are used,
whereas only 12415 interval evaluations are necessary when using the rewritten expressions.
Hence this example illustrates that the adaptation of existing solution techniques to interval
parameters has to be done with great care. For as many steps as possible, intermediate
expressions have to be optimized for an efficient interval computation. I.e., wherever possible,
monotonicity properties as well as possibilities to cancel occurrences of interval parameters
should be exploited.
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6 Conclusions

Recent studies have shown that using intervals as input parameters for models of com-
puter and communication systems is appropriate to represent uncertainties in parameter
values that are usually provided as single value numbers. The representation of uncertain-
ties in performance models is of special importance in early phases of system design and
implementation and for situations with restrictions to obtain data for input parameters via
measurement. If intervals are used to characterize model parameters, any given parameter
uncertainty is also reflected in the model output, i.e., in corresponding performance mea-
sures. This can be gained by adaptation of an existing conventional solution algorithm to
interval parameters: every arithmetical operation of the original solution is replaced by a
corresponding interval arithmetic operation.

However, the so-called dependency problem, well-known in interval mathematics, often
causes significant overestimation on the obtained performance measure intervals. This means
that the actual range of possible results, given the constraints defined by the set of interval
parameters, may be a much smaller interval than the one obtained via interval arithmetic.
This effect can be overcome if the original input parameter intervals are split into smaller
intervals. For every combination of subintervals, the interval solution is computed and the
overall minimum and maximum yield the bounds for a tighter performance measure interval.

In this paper we give an overview of existing interval splitting algorithms such as brute
force splitting and selective interval splitting. We introduce a new splitting technique called
selective splitting with midpoint evaluation (SSME) that combines conventional and interval
model evaluations to reduce the overall computational complexity. Furthermore, we show
how partial monotonicity properties can be exploited to give a more efficient interval solution.
Two example models are included in this work to illustrate the application of the proposed
interval splitting techniques. Along the lines of these examples a comparison of the various
splitting algorithms is included and it shows that in most situations the new SSME approach
performs better than plain selective splitting.
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A  Proof of Theorem 2

By definition, the range f*(X,Y, Z) is:
ffXY.z) = O{f(zy.2)|zeX,yeY e Z}

= inf T A su T 5
xEX:Z/EY,zer( 'Y )7 xEX,yGI))/,ZGZf( » Y, )
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Thus, we have to prove that

inf = inf zZ 1
rexatloe, [ 0:2) = Ik (7,9,7) (10)
and that
sup  f(z,y,2) =sup f(2,7,2). (11)
rzeX,yeY,zeZ zeX
Clearly,
. < 2).
rex il e, S0 2) < Il (2, 9,%)
Thus, to proof Eq. (10), it is sufficient to show that:
inf > inf Z 12
sexnf  f(ey,2) 2 inf f(z,y,%) (12)
This inequality follows directly from the monotonicity properties of f: let z = (z1,...,2,) €
R, y = (y1,...,ym) € IR™, and 2z = (z1,...,7;) € IR' be arbitrarily chosen. Since f is
monotonic increasing w.r.t. y;, ¢ = 1,...,m it holds:
flr,y,2) = f(@1, e Ty Yy e ooy Ymy 215 - -5 21)
> [ @1y Ty Y Y2 - Yy 215 - - -5 21)
2 "'2f(xla---al‘naﬂa'"7y_m7Z17"-72l)'
Because f is monotonic decreasing w.r.t. z;, 7 = 1,...,[ we continue:
f(xla'"7xn7ﬂ7"'7y_mazla"'azl) 2 f(xla---axnaﬂa"'ay_maz_laz%"-7zl)

>0 > frn T Y Y B - A
Le., for any z € R", y € IR™, z € IR’ we have:

f(xayaz) 2 f(l‘7gvz)a

which proves Eq. (12) and hence Eq. (10). Eq. (11) is proved analogously. This completes
the proof of Theorem 2.

B Proof of Corollary 3

From the properties of interval extensions (see Eq. (1)) it follows that for all z € X:

flz,y,%2) € f(X,y,2).
Thus,

inf f(2,y,2) € f(X,5,%) = [ [(X,5,2), [(X,4.7)].

reX
Hence it follows that:
f(X,y,z) < inf f(z,y,7).

T zreX =
Analogously,

[(X,7,2) > sup f(2,7,2),
reX

which completes the proof of Corollary 3.
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