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Abstract

Given a heterogeneous relation algebra R, it is well-known that the algebra
of matrices with coefficients from R is a relation algebra with (not necessarily
finite) relational sums. In this paper we want to show that under slightly
stronger assumptions the other implication is also true. Every relation algebra
R with relational sums and subobjects is equivalent to an algebra of matrices
over a suitable basis. This basis is the full subalgebra B induced by the
integral objects of R. Integral objects may be characterized by their identity
morphisms. Furthermore, we show that this representation is not a trivial one
since B is always a proper subalgebra of R. Last but not least, we reprove
that every relation algebra may be embedded into a product of simple algebras
using our concept of a basis.

1 Introduction

Under certain circumstances, i.e. relational products exist or the point axiom is
given, a relation algebra may be represented in the algebra Rel of concrete binary
relations between sets. In other words, the algebra may be seen as an algebra of
boolean matrices.

As known, not every relation algebra is representable and therefore is not an algebra
of boolean matrices. In this paper, we want to show that in every relation algebra R
with relational sums and subobjects it is possible to characterize a full' subalgebra
B such that the matrix algebra B with coefficients from B is equivalent to R. This
equivalence is not necessarily an isomorphism since isomorphic objects from R may
be identified under this equivalence. The objects of B are the integral objects of
R. Integral objects are characterized by the fact that their identity morphism is an
atom. We call B the basis of R.

lin the sense of category theory




As shown in [5], every relation algebra may be embedded into one with relational
sums and subobjects and hence into one which is equivalent to a matrix algebra.
This embedding and the equivalence above is not a trivial one. We show that B is
never isomorphic or equivalent to R and hence, a proper subalgebra of R.

Furthermore, we use our concept to reprove that every relation algebra may be
embedded into a product of simple algebras.

The rest of the paper is organized as follows. In Section 2, we briefly recall some basic
definitions of the theory of heterogeneous relation algebras. Section 3 is dedicated to
matrix algebras with coefficients from a given relation algebra. The integral objects
and the basis are introduced in Section 4. Afterwards in Section 5 we prove our main
theorem, i.e. a pseudo-representation theorem for heterogeneous relation algebras.
Finally, in Section 6 we reprove the theorem mentioned above.

We assume that the reader is familiar with the basic concepts of category theory
and the theory of heterogeneous relation algebras. We use the notation of [3].

2 Heterogeneous Relation Algebras

In this section we recall some fundamentals on heterogeneous relation algebras. For
further details we refer to [1, 2, 3].

Definition 2.1 A (heterogeneous abstract) relation algebra is a locally small cate-
gory R consisting of a class Objg of objects and a set R[A, B] of morphisms for all
A, B € Objg. The morphisms are usually called relations. Composition is denoted
by %7 and identities are denoted by 14 € R[A, A]. In addition, there is a totally
defined unary operation g : R[A, Bl — R[B, A] between the sets of morphisms,
called conversion. The operations satisfy the following rules:

1. Every set R[A, B] carries the structure of a complete atomic boolean algebra
with operations Uap,Map, aB, zero element 1 4p, universal element T 4p,
and inclusion ordering C 4p.

2. The Schroder equivalences
Q;RCac S < Q7;S5Cpc R < S;R"CupQ

hold for relations @, R and S (where the definedness of one of the three for-
mulae implies that of the other two).

All the indices of elements and operations are usually omitted for brevity and can
easily be reinvented. a

In the next lemma we collect some properties we will need throughout this paper.
A proof may be found in [1, 2, 3, 4, 5, 6].



Lemma 2.2 Let R be a relation algebra, A, B objects of R and Q@ € R[A, B]. Then

we have
1. QC Q;Q7;Q,
2. MTaa; Tap = Tas,
3. Tap; Ter = Tag,

4. Tap; Tpa; Tap = Tap. 0

An important class of relations are the mappings.

Definition 2.3 Let Q € R[A, B] be a relation.

1. Q is called univalent iff Q~;Q C g,
2. Q is called total iff T4 C Q; Q™ or equivalent Q; Tpa = TT 44,

3. Q) is called a map iff Q is univalent and total. a

In the next lemma we collect two fundamental facts about univalent relations. A
proof may be found in [1, 2, 3, 4, 5, 6].

Lemma 2.4 Let Q € R[A, B] be univalent and R, S € R[B,C]. Then we have

1. Q;(RNS)=Q;RNQ; S,

2. If Q is further total and hence a mapping then Q; R = Q; R. O

We define the notion of a homomorphism between relation algebras as usual.

Definition 2.5 Let R and S be relation algebras and F : R — S a functor. Then
F s called a homomorphism between relation algebras iff

1. F([18:) = [1F(S),

el el
2. F(R) = F(R),

3. F(R") = F(R)",

hold for all relations R, S; with 1 € I. O



A pair of homomorphisms F': R — §,G: S — R is called an equivalence iff F o G
and G o F' are naturally isomorphic to the identity functors, e.g. F' and G are inverse
of each other up to isomorphism.

The relational description of disjoint unions is the relational sum [3, 6]. This con-
struction corresponds to the categorical product?. Here we want to generalize this
concept to not necessarily finite sets of objects.

Definition 2.6 Let {A; | i € I} be a set of objects indexed by a set I. An object
> A, together with relations oj € R[A;, > Ai] for all j € I is called a relational sum
i€l i€l

of {A; |1 €1} iff for all i,7 € I with ¢ # j the following holds

=14, tise; = a4, ¢t =15 4,

; Ai j AjAj ,€|_|I A

List
R has relational sums iff for every set of objects the relational sum does exist. O

For a set of two objects {A, B} this definition corresponds to usual definition of the
relational sum. As known categorical products and hence relational sums are unique
up to isomorphism.

For given sets of relations @; € R[A;,C] and R, € RI[A;, B;] for all ¢« € [ and

relational sums (> A;, ¢i)ier and (D By, t;)ier we use the notaion
i€l el

\/Q, 2:|_|L:;R,' ZR,' 2:\/Ri;L2:|_|L:;R,';L2.

el el el el el

V @Q; is the biproduct morphism, i.e. it is the unique relation S such that ¢;; 5 = Q
el
for all 2 € I.

Lemma 2.7 Let > A; be the relational sum of {A;, | i € I} and > Bj be the
€l jeJ

relational sum of {B; | j € J}. Then for all R;; € R[A;, Bj] the following holds

L U 5By = U o5 Rijse,

el jed el jed

2. i Brysuy, T Bigysu, = by g By for all by ky € 11, € J with
ier  jes
kl 7£ kz or ll 7£ lz.

Proof:

’By conversion, a relation algebra is self-dual. Therefore, a product is also a coproduct and
hence a biproduct.



1. By Lemma 2.4 we have

Lk |_| ti s Rijyey = |_| sty s Riji

el jed el jed

= | wsos Rugi g

JjeJ

= | | Rty

JjeJ

for all £ € I. By the uniqueness of the biproduct morphism we get

|_|L:; |_| Rijiv; = \/ |_| Rijiej = |_| L3 Riji 4.

= jeJ €l geJ el jed

Analogously, we conclude from

u; |_|L]‘ ;Ri]‘ = |_| Lty ;Rij

JjeJ JjeJ

s

— Ry
by the uniqueness of the biproduct morphism

U Rsiu= (5B =(VER;) =s5R; =] Ry

JEJ JjeJ jeJ jeJ jeJ

L] &Ry = || Bisw

el jed el jeJ

= | L) B

€l jeJ

= | 4R

el jed

and hence

2. Suppose ky # ky. Then by Lemma 2.4 we have

by Rklll N M Ly s Rk2l2; by, = (|_| b3 Li); (Lkl; Rklll N M Ly s Rk2l2; Ll2)

el

= |_| Ly by (Lkl; Rklll sy T bpys Rk2l2; Ll2)
el

= | a5 (s B g Dt 3 Rty )
el

- |_| tiidla x B
i€l et

= Llsay s

i€l jeJ



The case [y # I3 is shown analogously. O

Subsets may be represented in two different ways inside a relation algebra; by vectors
(a relation v such that v = TT;v) or partial identities (a relation [ C I). These two
concepts are equivalent and may be used to characterize subobjects.

Definition 2.8 Let [ € R[A, A] be a partial identity. An object B together with a
relation ¢ € R[B, A] is called subobject of A induced byl iff

;7 = 1Ip, V7 =1

A relation algebra has subobjects iff for all partial identities a subobject exists. O

Notice, that we have Q; R = Q N R for all partial identities ) and R (see [1, 4]).

3 Matrix Algebras

Given a heterogeneous relation algebra R, an algebra of matrices with coefficients
from R may be defined.

Definition 3.1 Let R be a relation algebra. The algebra R™ of matrices with coef-
ficients from R is defined by:

1. The class of objects of RT is the collection of all functions from an arbitrary
set I to Objg.

2. For every pair f : I — Objp,q : J — Objg of objects from RT, the set of
morphisms RY[f, g] is the set of all functions R : I x J — Morg such that

R(i. j) € RIf(),g(j)] holds.

3. For R € RT[f,q] and S € R*[g,h] composition is defined by

(R; S)(i k) := || R(i,5); (s ).

JjeJ

4. For R € RY[f,g| conversion and negation is defined by

R7(5,1) = (R(1,5)) ", R(i,7) := R(1, 7).
5. For R, S € RT[f,g] union and intersection is defined by

(RUS)(i,5) = R(1,5) U5, 5), (RN 5)(4,7) == R(i,7) N 5(, 7).



6. The identity, zero and universal elements are defined by

P AL i) f (12 ) 7
I(iy.ia) = { Lo ? "

AL pg(2,5) = AL piyg()s T 19(3,7) == T 1(i)9)- O

Obviously, a morphism in R may be seen as a (in general non-finite) matrix indexed
by objects from R. The proof of the following result is an easy exercise and is,
therefore, omitted.

Lemma 3.2 R* is a relation algebra. O

Furthermore, the possibility to build disjoint unions of arbitrary sets indexed by a
set gives us the following.

Lemma 3.3 RT has relational sums. O

Proof: Let {f; : J; = Objg | 1 € I} be a set of objects of R*. Then the function
ho: > J; = Objg defined by h(j) := fi(j) iff 7 € J; is also an object of R*. Now,
el
we define 4
. AL fiiu)h(iz) * 1 7 T2
Ly 5 = . .
(J1,J2) { i) G = Ja.
An easy verification shows that the above definition gives us the required relational
sum. 0

4 Integral Objects and the Basis of R

Following the notion used in algebra, we call an object A integral if there are no
zero divisors within the subalgebra R[A, A]. Later on, the class of integral objects
will define the basis of R.

Definition 4.1 An object A of a relation algebra is called integral iff 1Las # T 44
and for all Q, R € R[A, A] the equation Q; R = a4 implies either @ = 44 or
R=1,44. O

There are two other simple properties characterizing the integral objects of a relation
algebra.

Lemma 4.2 The following properties are equivalent:



1. A is an integral object,
2. Every non-zero relation in R[A, A] is total,

8. 14 s an atom.

Proof:

1. = 2.: Suppose lLa4 # Q. From Q; T 44 C Q; T 44 we deduce Q@7;Q; T 44 =
Al 44 using the Schroder equivalences. Since A is integral and @ # 144 we
have Q; T 44 = T 44, l.e. @) is total.

2. = 3.: Suppose L 44 # Q C I4. Using that @ is total, we obtain
LEQQ CQ I =0Q.

3. = 1.: Suppose (; R = 1 44. Since I 4 is an atom we have R; T 44 M4y = 144
or R; T44 M4 =14 The first case implies

RT =R I4NTMsa C R (T4 R; Tas) =Rl su = lya
and hence R = 1l 44. From the second case we conclude

Q=0Q:14=Q; (R Tas NI CQ; Ry Tas=Lan; Taa =144 O

The special properties of the relations in R[A, A] mentioned in the last lemma can
be transfered to the relation in R[A, B] for an arbitrary object B.

Lemma 4.3 Let B be an integral object. Then we have

1. if Q; R = 140 with Q € R[A, B] and R € R[B,C] then either Q = 145 or
R: J.LBC}

2. ’LfR 7£ J_LBC then R; —H—CD == —H—BD-
Proof:

1. @; R = lLac implies Q7;Q; R; R™ = Q7; 1Lac; R = A pgp. Since B is in-
tegral, we have either 7; @) = llpg or R;R™ = Al gp. In the first case we
conclude using Lemma 2.2 Q C Q;Q7;Q = Q; 1Lgp = 1l 45. The other case
is similar.

2. Analogously to 1. = 2. of the last lemma by using 1. O

Notice, that the last lemma implies that all non-zero relations in R[B, C] are total
if B is integral.



Definition 4.4 Let R be a relation algebra. The basis Br of R is defined as the
full subcategory given by the class of all integral objects. a

As usual, we omit the index R in Bg when its meaning is clear from the context.

Theorem 4.5 Let R be a relation algebra with relational sums, and let B be the
basis of R. Then B s a proper subalgebra of R.

Proof: Let A be an object of B. We show that the relational sum A 4+ A is not
an object of B. Since R has relational sums, R and B are not equivalent. Suppose
I444 is an atom. Then we have

Taya=1ty30 U750 dig st
Now, we distinguish two cases:
L.ey 500 = AL ayaara: We conclude

t1 =t1;t 500 = 15 araa4a = AL aaga
and T4 =c13¢] = dLaagase] = g,

but the last equality contradicts to 14 beeing an atom.
2. ;11 = L4140 We conclude

Agaga = dlaaser = o500 50 = t2

and T4 =195t = WL gata;ey = Laa.

As in case 1 this is a contradiction. O

The last lemma has shown that the definition of the basis of an algebra is not
senseless, 1.e. the basis usually does not correspond to the whole algebra.

In the rest of this section we want to define an equivalence relation & on the basis of
R. Later on, it turns out that the equivalence classes of ~ characterize the simple
components of the algebra.

Lemma 4.6 Let A be an integral object. Then we have T ag; Tpa € {1Laa, Taa}.

Proof: Sincell4is an atom T 45; T galMl 4is either Al 44 or I 4. Suppose T 45; T gall
I4= 1 44. Then we have

T BA

Tpa; 14l Tpa
Tpa;(LaM T ap; Tra)
T pa;dlaa

A g4.

I



10

It follows —H—AB;—H—BA = —H—AB;J-LBA = J_LAA. If —H—AB;—H—BA |_|]IA = ]IAA we conclude
using Lemma 2.2

Taa=Tan;Ta & Tan; Tap; Tpa = Tap; Tha. O
The last lemma leads to the following definition.

Definition 4.7 Ax B :<—= Tp; Tpa= Ta4. O

To show that & is an equivalence relation on the class of integral objects we need
the following lemma.

Lemma 4.8 Let A and B be integral objects. Then we have

1. Tap; Tpa= Taa if and only if Tpa; Tap = T BB,

2. Tap; Tpa= 1aa if and only of Tpa; Tap = lLpp.
Proof:

1. Suppose T ap; Tpa = T 44 and Tga; Tap = Il gp. Then using Lemma 2.2
Tap = Tap; Tpa; Tap = Tap; Llpp = llap
we get a contradiction. The other implication follows by duality.

2. The assertion follows from 1. and Lemma 4.6. O

The last lemma and Lemma 4.6 show that objects A % B are characterized by the
equation T 4p; Tpa = 1 44.

Lemma 4.9 = s an equivalence relation on the basis of R.

Proof: By Lemma 2.2 ~ is reflexive. Symmetry is implied by Lemma 4.8. Suppose
A= B and B ~ C. By definition we have T sap; Tga = T 44 and T ge; Tep =
—H—BB- By Lemma 4.8 we get —H—BA;—H—AB = —H—BB and —H—CB;—H—BC = ch. USiIlg
Lemma 2.2 we conclude

Tee = Te; Tae

Ten; Tes; Tae
Tes; Teas Tas; Tae
Tea; Tac

I

and hence A ~ C. O

The equivalence classes of & are in a way indepentend.
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Lemma 4.10 Let A and B integral objects. Then the following properties are equi-
valent:

1. A% B,

2. Tap = A ap.
Proof:

1. = 2.: Since A % B we have T 45; T4 = 144 by Lemma 4.6. From this we con-

clude T 45 = 145 because otherwise Lemma 4.3 would imply T 45; Tps =
—H—AA.

2. = 1. : We immediately conclude

T4; Tpa=1lap; Tpa =g # T a4. 0

Notice, that the last Lemma implies that R = 1L 45 for all R € R[A, B]if A % B.

5 A Pseudo Representation Theorem

Now, we are able to prove our main theorem.

Theorem 5.1 Let R be a relation algebra with relational sums and subobjects and
B the basis of R. Then R and BT are equivalent.

Proof: First, we show that every object A of R is isomorphic to a relational sum

> A; of objects from B. Let {I; | i € I} be set of all atoms I; C I4. Because R
el

has subobjects, this gives us a set {4; | ¢ € I} of objects and a set {¢; | 1 € I} of
morphisms with

izt = I, U=
Together with the computations

Uiy =1 =10 = A,
izt =i s v s vy = i dlaasdy = L,
and I_J¢;;¢i::LJli::HA-

i€l i€l
and the uniqueness of a relational sum, we have A 2= 3" A,.
el
Suppose R C I4,. Then we have
U R by 0 =1

Now, we distinguish two cases:
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1. 73 Ry = 1l aa: We conclude
R =i Ryt o) = iy Laas = AL,
2. ¥ R;vp; = 1;: We conclude
R =i Rypis ) = iy L 07 = by b5 s by = La,

This shows that [4, is an atom and hence 4; in B. Now, we define the required
equivalence F': R — Bt,G : Bt — R by

F(A) := f:I— Objg with f(:) = A,,

F(R) := h:I; x I, = Morg with h(iy,i2) = ¢;,; R; L/J;,
G(f) = ) (i),
el

G(h) = || ¥ih(i,5)5,

el jed

for all R € R[A, B], objects A= > A;,B= > B;, f € Objg+ and h € BT[f,g].
€l 1€ln
By Lemma 2.4 and the computations

F(]IA)(h,iz) = @/)il;]IA;@/’z;
= iy,
_ {]IAM i =1
Ala; 4, 1 # iz
= Iglir,i2),
(FQ); F(R)(i, k) = | | F(Q)(i,): F(R)(j, k)
JjeJ
= || @iy v Riwy
JjeJ
= u Qs (|| vy Rewy
JjeJ
= i Qs Ry,
= F(Q;R)(i, k),
(F@QNF(S)(i5) = F(Q)i.J)N F(S)(i.j)
= i Q5] Taby; S5y
= ¥;(QNS); ;7
= F(QNS)(i7),
F(Q)(i,7) = F(Q)())
= i Q)
= %/%;a;%/);



13

= F(Q),
(F(Q)7)(:1) = (F(Q)(.7))”
= (Wi @:v))
= ¥;; Q757
= F(Q7)(j,7)

is F' a homomorphism. We have shown F(Q)MF(S) = F(QT1S). The more general

case is proven analogously. Conversely, using Lemma 2.4 and 2.7 we get

Gy = || o7, d2); v,

11,00 €1

= | oLy e

el

= U%/)iv;%/%

el
— |_|zi
el
= ]IA7
G(f);Glg) = (|| w7 fGae)C L o790, k) vw)
el jed JEJkEK
= L o7 £ 30w 055 90, K); b

1€l,51,j2€ k€K

= || s G )i 95 K)o

i€l geJkeK

= | e (L] FGa)ieG R e
el ke K jeJ

= || e k)
el ke K

= G(f;9),

GUHNGHh) = || erfinen | o565,

€l jed icljej

= L A ea N R o)
1 22€1l,51,52€J0
= || o5 ) G G)s
€l jed
= || &) nRGL )
€l jed
= || &5
€l jed
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G(f) = || o7 fGae
i€l ged
= L e TE
i€l ged
= U enfaae
i€l ged
= G(f).
G = (] wrifise)
i€l ged
= L ey fa) T e
i€l ged
= L e
i€l ged

= G(f7).

Moreover, we have (Go F')(A) = > A; 2 A such that there is a natural isomorphism
el
between GG o F' and the identity on R. Conversely, we have

(FoG)(f)(i,g) = F( || i fig))
el jed
= i (| e FG )iy
i.EI,jEJ

= f(ivj)' O

In [5] it had been shown that every relation algebra may be embedded into one with
relational sums and subobjects. Together, we gain the following corollary.

Corollary 5.2 FEvery heterogeneous relation algebra may be embedded into an alge-
bra which is equivalent to a matriz algebra over a suitable basis. a

6 Simple Relation Algebras

It is known that every homogeneous relation algebra® may be embedded into a
product of simple algebras. This theorem is an application of general concept from
universal algebra. In [5] it was shown that this theorem can be extended to arbitrary
heterogeneous relation algebras.

In this section, we want to reprove this theorem using our notion of the basis of a
relation algebra and the induced equivalence relation ~.

3a relation algebra with just one object
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To avoid any set-theoretic problems we require that all relation algebras in this
section be small, i.e. the collections of all morphisms and of all objects should be
sets.

Definition 6.1 A collection = of equivalence relations =45 on R[A, B] is called a
congruence iff

1. Qv EBARv and@EABEforallQ,R ’withQEAB R,
2. Q;5 =40 R;T for all Q, R and S,T with Q =1 R and S =p¢ T,
3. Q = AB |_| Ry fO’I“ all Q,Rk with Q =B Rx fO’I“ all k € K. O

keK
As in universal algebra we define the concept of simple relation algebras.
Definition 6.2 A relation algebra is called simple iff there at most two congruences.

It is possible to characterize simple algebras by just one equation, the so-called
Tarski-rule.

Lemma 6.3 Let R be a relation algebra. Then the following properties are equiva-
lent

1. R s stmple,

2. Q?éiLAB implies Tea;Q; Tep = Tep. a
A proof can be found in [5].

Lemma 6.4 Let R be a relation algebra with relational sums and subobjects such
that all objects of basis B are equivalent (in resp. to ~). Then R is simple.

Proof: We show that B* is simple. The equivalence of BT and R then implies
the assertion. Let bee: I — B, f:J = B,g: K — B and h : L — B objects
of Bt and 1, # R € B[f,g]. By definition there is a ;' € J and a k' € K such
that R(j', k") # 1Ls(1)gx)- From Lemma 4.3 and the fact that all objects of B are
equivalent we conclude

Teisn: BUSED): Tomnay = Teqsin: Tramn = Tena)
for all 2 € I and [ € L. This gives us

(—H—ef; R; —H—gh)(iv l) — |_| (—H—ef(iv.j); R(.]v k)a —H—gh(kv l))
jeJkEK
= |_| (Teiyrys BT K T gynay)
jeJkEK
= Teinq

= Ten(i,1)
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and hence T o5 B; Ty = Tep. O

Let B, the set of equivalence classes of ~, and B be the full subcategory of B
induced by the equivalence class k. By the last lemma B} is simple.

Definition 6.5 Let K be a set, and Ry for all k € K be relation algebras. The

product relation algebra [| Ry ts defined as follows:
keK

1. An object of [] Rk is a function f: K — |J Objg, such that f(k) € Objg, .

keK kEK
2. A morphism in [| Ri[A, B] is a function Q : K — |J Ri[A, B] such that

keK keK

Q(k) € Ri[A, B].

3. The operations and constants are defined in componentwise manner by

(Q: S)(k) = Q(k); S(k),

(@M R)(k) == Q(k)N R(k),

(QUR)(k) == Q(k)U R(k),
Q7 (k) = Qk)7,
Q(k) = Q(k),
Li(k) = Iyw,
Trglk) = T payg(r)
ALyg(k) = AL payg(rs

for all Q,R € kl_;Rk[f,g] and S € kl_;Rk[g,h]. O

An easy verification shows that [[ Ry is indeed a relation algebra.
keK

Theorem 6.6 Let R be a small relation algebra. Then BT and [] B are iso-
k€Bx
morphic.

Proof: Let f: I — Objz and g : J — Objgz be objects of BT and R € B*[f, g].

Furthermore, let

Io:={t € 1| f(i) is a object of By},

Je:={5 € J]|g(j) is a object of By},

fx : Iy = Objy such that fi(i) = f(2),

Ry : I X Jx — Morg, such that Ry(i,7) = R(i,7).
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Then we define a functor F: BT — [[ B} by

= fk7
= Rk

Using Lemma 4.10 we get

F(R; S)(k)(i,1) = (R S(i,1)
= (R;9)(4,1)
= | RG.5): 860
= | BG.5)86.0)
= |_| Ryi(2,7); Sk(7,1)
- 4|_| F(R)(F)(i,5); F(S)(k)(j. 1)

= (F(R)(k); F(S)(k))(i,1)
and hence F(R;S) = F(R); F(S). An easy verification shows the other required

properties of F' and is, therefore, omitted. a

Combining our two main theorems we aim the following.

Corollary 6.7 LetR be a small relation algebra with relational sums and subobjects.

Then R and [] B are equivalent. O
k€Bx

Corollary 6.8 FEvery small heterogeneous relation algebra may be embedded into an
algbra which is equivalent to a product of simple matriz algebras. a

7 Conclusion

In this paper we have shown that every relation algebra R may be considered as a
subalgebra of a matrix algebra over a suitable basis. This basis is a proper subalgebra
of the global completion [1] of R. This shows that a lot of non-finite algebras are
completely determined by a finite subalgebra.

The computer system RELVIEW works with Boolean matrices and hence with con-
crete relations to visualize computations with them. Using the result of this paper,
it seems possible to build another computer system working with arbitrary hetero-
geneous relation algebras. These algebras may be represented by a matrix algebra
over a basis given by the user.
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