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Abstract

Symmetric quotients, introduced in the context of heterogeneous relation algebras,
have proven useful for applications comprising for example program semantics and
databases.

Recently, the increased interest in fuzzy relations has fostered a lot of work
concerning relation-like structures with weaker axiomatisations.

In this paper, we study symmetric quotients in such settings and provide many
new proofs for properties previously only shown in the strong theory of heteroge-
neous relation algebras. Thus we hope to make both the weaker axiomatisations and
the many applications of symmetric quotients more accessible to people working on
problems in some specific part of the wide spectrum of relation categories.
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2 1 INTRODUCTION

1 Introduction

The symmetric quotient has been introduced in [BSZ86; BSZ89] as the intersection of two
residuals in the context of heterogeneous relation algebras. For concrete relations R and
S, the symmetric quotient relates elements r from the range of R with elements s from
the range of S exactly if the inverse image of r under R is the same as the inverse image
of s under S, or, in the language of predicate logic:

(r,s) €syq(R,S) = Ve:(z,r) €R < (z,8) €S

(Riguet had introduced the unary operation of “noyeau”, which can now be seen as
defined by noy(R) = syq(R, R), in [Rig48].) Heterogeneous relation algebras (see [SS93;
BKS97]) somewhat abstract away from concrete binary relations between sets, so the
formalisation of symmetric quotients of [BSZ86; BSZ89] makes that concept accessible
also in abstract heterogeneous relation algebras.

In the literature, besides heterogeneous relation algebras also other, weaker formalisa-
tions of relation-like structures have been investigated. An especially fine-grained system
of such formalisations are the various kinds of allegories of [FS90]. By using their tool box,
one may aggregate monster names like “locally complete unitary pretabular allegory” to
describe axiomatisations of carefully selected aspects of relation-like structures. Many of
these are also studied independently in other sources and under different names.

For the concrete application to fuzzy relations, recently there has been increased in-
terest in Dedekind categories (defined by [OS80] and equivalent to complete division alle-
gories), witness [KFM96; Fur98].

Since the symmetric quotient is defined as the intersection of two residuals, obviously
the setting of division allegories is already sufficient for being able to define symmetric
quotients. In [BSZ86; BSZ89] however, since working in the context of heterogeneous
relation algebras, the double-negation formulation of residuals is employed, and many
properties of symmetric quotients have been shown using the Schroder equivalences and
other properties of negation, and a few nice properties with respect to the interaction of
symmetric quotients with negation could also be shown.

Of course, the presence of negation is not always a prerequisite.

In this paper, we therefore set out to make the many possible applications of symmetric
quotients accessible to people working in other, weaker formalisations of relation-like
structures. To this purpose we try to reformulate as much of the previous work on
symmetric quotients as possible in the formalisms of division allegories and Dedekind
categories, which lack negation, but still feature residuals.

This paper is organised as follows: In Sect. 2 we present as a starting point distributive
allegories, which do not yet feature residuals.

The existence of residuals is then the common feature of all the different relation
categories presented in Sect. 3, starting from division allegories and finishing with hetero-
geneous abstract relation algebras.

Section 4 lists useful properties of residuals, some perhaps new, but mostly taken from
other sources, although some of those required more general proofs.



A novel feature presented in this paper is the consideration of symmetric quotients in
the context of distributive allegories, i.e., without assuming the existence of residuals, in
Sect. 5 — some of the useful properties of symmetric quotients already hold in this very
weak setting.

In Sect. 6, symmetric quotients are considered in the presence of residuals, and many
properties originally only shown in heterogeneous relation algebras and using negation
and Schroder equivalences are provided with new proofs only using properties of division
allegories or Dedekind categories as appropriate.

This task is continued in the remaining sections, where we reformulate the interplay
of symmetric quotients with vectors and points (Sect. 7) and orderings (Sect. 8), and the
use of symmetric quotient towards relational specification of sets in Sect. 9.

Besides the list of references, the appendix also includes an index and a few auxiliary
properties of relations.

Throughout this paper, we adhere to the notation for abstract relation algebras fixed
in [BKS97].

Definitions, lemmata, etc. include forward-references to the pages of their use in the
shape “r py,....Pa1".

2 Allegory Preliminaries

Although Freyd and Scedrov start their considerations of relation categories with allegories
that extend categories only with conversion and intersection of relation-morphisms, we
jump right to the next level that also includes empty relations and union of relations.

Definition 2.1 A distributive allegory is a category D consisting of a class Objp
of objects and a set! Morp[A, B] of morphisms for all A, B € Obj,. The morphisms are
usually called relations. For S € Morp[A, B] we use the notation S : A <+ B. Composition
is denoted by “” and identities by I, : A <+ A. In addition, there is the total unary
operation ~ of conversion of morphisms, where for R : A <+ B we have R : B <+ A. The

operations satisfy the following rules:

i) Every set Morp[A, B] carries the structure of a distributive lattice with operations
Ua,p for join, My p for meet, zero element I 4 p, and inclusion ordering T4 p, all
usually written without indices.

ii) The conversion is a monotone and involutive contravariant functor:
(a) (B) =R,
(b) (@:R)"=R:Q"
() (@NE) =0 nNQ" .
iii) For all @ : A <> B and R, R’ : B <+ C, meet-subdistributivity and join-distributivity
hold:

Qi (RMRYC Q:RNQ:R and Qi (RUR)=Q:RUQ:R .

IThis may be a class in [FS90], meaning that there, allegories are not restricted to be locally small.
The price of this generality, however, is that join, meet, etc. need to be characterised at a more elementary
level, while we can introduce these as lattice operators. We therefore sacrifice that generality for the sake
of brevity and readability.



4 2 ALLEGORY PRELIMINARIES

iv) For all @ : A + B, the zero law holds:
Qilpc=1Lsc .
v) Forall @ : A+ B, R: B+ C,and S: A« C, the modal rule holds:

Q;:RMNSC(QMNS;R):R .
]

The following basic properties are easily deduced from the definition of distributive alle-
gories:
Proposition 2.2 Let Q, Q" : A<« B and R, R': B <+ C be relations in D. Then:
i) Lyp=1lpsand ;=14
i) f QC Q" and RC R, then Q;RC Q';R'.
iii) If Q C @', then Q" C Q"
iv) (QUQ) =Q UQ".
v) LapiR=1Lyc. O

From the modal rule listed among the allegory axioms, we may — using properties of
conversion — obtain the other modal rule

Q;RSC QRN Q:S) ,

which is called Dedekind formula by Olivier and Serrato and used for their axiomatisation
of Dedekind categories [0S80; 0S95], see also the next section.

Proposition 2.3 Both modal rules
Q:;RMNS C QiR
Q;RMS C M
together are equivalent to the Dedekind rule

Q:RNSC(QNS;R)(RMNQ:S) .

Proof: The modal rules follow immediately from the Dedekind rule:

(QMS:R):R
Q:(RMQ;S)

Conversely, assume that the modal rules hold. Then we have

Q;RHS;(QI‘IS;R“);(RI‘IQ“;S);{

Q:RNS C @3 RNQE:S)NS (m1)
C (QNS(ROQ:S))(RNQ:S) (m2)
C (QNS:R)(RNQ:S) . VU, V:UNVLCV O



3 Dedekind Categories and Other Relation Cate-
gories

Building on the distributive allegories of the last section, we now present a spectrum of
relation categories featuring residuals, also called division operators.

We start with the raw division allegories of Freyd and Scedrov, and move on via the
Dedekind categories and Schroder categories of Olivier and Serrato to the original home of
the symmetric quotients of [BSZ86; BSZ89], namely the heterogeneous relation algebras
of Schmidt and Strohlein.

Definition 3.1 [FS90] A division allegory is a distributive allegory D where for arbitrary
relations S': A <> C and R : B < C, the left residual S/R defined by

Q:RCS < QLCS/R forall Q: A« B
exists. O

The conditions of meet-subdistributivity, join-distributivity and zero law listed for dis-
tributive allegories are not required in the axiomatisation of division allegories, since here
they can be deduced using the residual.

Independent of Freyd and Scedrov, Olivier and Serrato defined a kind of relation
categories in [0S80] which differs from division allegories precisely by being what is called
“locally complete” in [FS90, 2.22]:

Definition 3.2 [0S80] A Dedekind category is a division allegory D where every homset
Morp[A, B] is a complete lattice with greatest element T 4 p, called universal relation. O

In contrast to [FS90, 2.22], the infinite variants of meet-subdistributivity and join-
distributivity, which form part of the definition of local completeness, need not be listed
here, since they follow from the complete lattice structure via the presence of residuals —
on the other hand, the full definition of local completeness implies the existence of resid-
uals [FS90, 2.315], such that a Dedekind category is just a locally complete distributive
allegory.

With respect to universal relations, we have the following simple properties:

Proposition 3.3 w1 Let A and B be two objects of a Dedekind category, then:
i) TaoaiTap=Tap:Tpp=Tas. O

Since this is less than what one is used to expect from concrete relations (and also from
heterogeneous relation algebras), we define:

Definition 3.4 A Dedekind category has the property of uniformity iff for all objects
A, B, C, composition of universal relations again yields a universal relation:

TasiTece=Tac O
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If all morphisms of a Dedekind category have complements, the Dedekind category is
equivalent to a Schroder category:

Definition 3.5 A Schroder category [0S80; J6n88] is a Dedekind category where every
homset is a Boolean lattice. O

The complement of a relation R is written R.
It is well-known that in an allegory with Boolean lattices as homsets, the Dedekind
rule is equivalent to the Schroder equivalences:

Q:RCS — Q:SCR = SiRCQ

for all relations @ : A <+ B, R : B <> C'and S : A <+ (. For the first direction, it is
sufficient to show that with the Dedekind rule, Q:R £ S implies @755 T R: assume
@R C S, then that is equivalent to Qs RM S = I, and we have

QGSTMRC Q5(STQ:R) =

Conversely, assume that the Schréder equivalences hold. Then [SS85] shows:

Q;:R
= (QNS;RHU(QNS;R)):((RMNQ:S)U(RNQ:S)) Boolean lattice
= (QNS;R)(RNQ:S U(QNS;R)(RMNQ:S)

U (QMNS;R):(RNQT:S)uU( S;R):(RMOQ5S) join-distributivity
C (QNS:R)(RNQS)UQ:i0SUSR R VU,V :UNVCU
C (QNS;R)RNQ:S)US Schroder,

yielding the Dedekind rule @RS C (QMNS;R):(RMNQ:S).

Furthermore, the Schroder equivalences allow us to calculate:

Q;RC S = S;RCQ = QLT S;R”
Therefore, we have S/R = §;R”, so that in Schroder categories the residual is defined a
priori and need not be listed in the axiomatisation.

Finally, the usual definition of relation algebras most notably contains atomicity of
the lattice structure of the homsets:

Definition 3.6 A heterogeneous relation algebra [SS93] is a Schroder category
where every homset is an atomic and complete Boolean lattice with T = 1 and the
Tarski rule

R 7é JLA,B < —H—C,A§R;—H—B,D = —H—QD

holds for all R € Morz[A, B] and C, D € Objg. O

The Tarski rule, however, sometimes is dropped; if it is present, it ensures uniformity.



4 Properties of Residuals
The left residual S/R of two relations S : A <» C' and R : B <> C, defined (as above) by
Q:RCS < QLCS/R for all Q : A < B,

is called right division in [FS90, 2.312].
Dually to the left residual, obviously there also is a notion of the right residual Q\S :
B + C of given two relations () : A <> B and S : A < C defined by

Q:RCS < RLC Q\S forall R: B« C.

This right residual is called left division in [FS90, 2.312] (but the symbols coincide with
ours for both residuals).
For relations on sets, we have the following equivalences:

z(Q\S)y = Vz:(2Qr = 2S5Y)
z(S/R)y = Vz:(yRz = x52)

Proposition 4.1 Dedekind categories have right residuals.

Proof: Assume Q : A« B,R: B+« Cand S: A+ C. Then Q\S = (57/Q") follows

via:

RCQ\S <= QiRCS <= (Q:R)'CS”
< Ri;Q CS < RLCS/Q <= RLC((S/Q) . O

Corollary 4.2 141 For relations Q : A< B, R: B+ C,and S : A <+ C we have:

(S/R)"=R\S~ and  (Q\S) =57/Q" . 0

Freyd and Scedrov provide an alternative characterisation of the left residual via three
inclusions [FS90, p. 225, and we also list the dual inclusions for the right residual:

Proposition 4.3 The residuals can equivalently be characterised by the following
inclusion axioms:
(RiMRy)/S T Ry/STIRy/S S\(RiMRy) C S\RyMS\Ry
T C (T:9)/S T T S\(S5:T)
(R/S);:S C R Si(S\R) C R . O

Next we recall a few properties of the residuals. Many of these can be found in [FS90].
Another source is [Ohk98] where useful results of Hoare and He [HH86] concerning left
residuals are transferred into Dedekind categories. Although we always state both dual
versions of the properties, we only provide proofs for the left-residual variant.
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Proposition 4.4 Let Q,Q': A+ B, R,R': B+ (C and S,5": A +> C be relations in
a division allegory. Then the following holds:

i) k12200 (S/R)S(R/T) C S/T and (Q\S):(S\U) C Q\U for arbitrary relations
T:D ¢« Cand U: A<« D I[FS90, 2.314].

i) s S/R C (S;T)/(R:T) and Q\S C (U;Q)\(U;S) for arbitrary relations
T:C<+< Dand U:D <+ A

iii) o182 If ST S RC Rand @ C @, then S/R C S'/R" and Q\S C Q"\S’
[Ohk98].
Proof:
i) From (S/R):(R/T); T C (S/R);R C S we obtain (S/R):(R/T)C S/T.
i) QCS/R <= Q:RCS= Q:R:TCS:T < QL (S:T)/(R:T).
iii) For each X : A <» B it holds that
XCS/R < X;RCS=— X;R'CS — XCGS/R
by the monotonicity of composition. O
From these, we may derive other useful properties:

Lemma 4.5 251 In division allegories, for F : A <+ B, R: B+ C, S : D + C,
U:A+ B, Q: A+~ C, T:C << D we have:

i) ) F3(R/S)C (F;R)/S and (U\Q): T C U\(Q:T).
ii) 25 if F resp. T  are mappings, then the inclusions in i) are equalities.
Proof:
i) Fi(R/S)C ((F:R)/R):(R/S) E (F:R)/S
ii) (FsR)/SC F;F((F;R)/S)C Fy((F:F;R)/S)C FiR/S) O
With respect to identities, the following simple laws hold:

Proposition 4.6 Let 5,5 : A« C be relations in a division allegory, then:
i) I,CS/8 < S'CS < IcsLC S'\S [Ohk9s].
i) 0,20 T4 £ 5/S and I E S\S [FS90, 2.314].
iii) §=9/I¢cand S =1T4\8 [FS90, 2.314].

Proof: i) and ii) follow from the unit laws of identity.
iii) With Prop. 4.3 we obtain § C (S:I¢)/Ic = §/Ic = (S/I¢):I¢ T S. 0

Note that for each relation S : A <+ C, (§/9);5 =S5 = §;(S5\9) holds by (ii) and Prop.
4.3.



Proposition 4.7 For every relation S : A «+» (' in a Dedekind category, the following
hold:

i) §/TecCSand Tya\SCS[OhkIS].
11) [«17, 22] S/J—B,C = —”—A,B and JI—A,B\S = —”—B,C-
111) [«+16] S\—H—A,B = —”—C,B and TB,C/S = —"—B,A-
Proof:

i) follows from S C ST ¢ ¢ since composition is monotonic.
11) —"—A,BES/J—B,C < —"—A,B;J—B,CES < JLAﬁcES
111) XLC S\—H—A,B — 5 X C —”—A,B O

Lemma 4.8 14,239 Let Q : A+ B, R: B <+ (C and S : A <+ C be relations in a
division allegory.

i) If G : D <> B is univalent, then G;(Q\S) C (Q;G)\S and (S/R):G"C S/(G;R).
If G’ is a mapping, then equality holds.
ii) If @ is injective and R is univalent, then S;R"C S/R and Q@ 7;5 C Q\S.
Proof:

i) For univalent G we have: @Q:G ;G;(Q\S) C Q:(Q\S) C S. If G is a mapping,
) g
then we have the following for arbitrary X : D < C:

XC(Q:GH\S <= @Q:GXCS < G:XLCQE\S < XCGiQ\9) .
ii) If R is univalent, S;R ;R C S < S:R C S/R. If Q is injective, @:Q ;S C
I38=8 < Q@ :SC Q\S. O
Later we shall need the following simple interactions between different residuals:

Lemma 4.9 «151 Let Q: A+ B, R: B+ (C and S : A + C be given relations. Then
the following holds:

i) S/R=(S/S\(S/R) and Q\S = (Q\S)/(S\S9).
ii) S/RC (R/S)\(R/R) and Q\S C (Q\Q)/(5\Q).
Proof:

i) (S/S)\(S/R) C S/R is trivial by Prop. 4.6.ii) and Prop. 4.4.iii). Conversely, for
arbitrary X : A «<» B we have:

XCS/R < X;RC S=(5/5);X:RC(5/59):S .
Now (S5/S5):5 C S holds by Prop. 4.3. Then
(S/S):X;RC S «— (S/9):X;CS/R < X LC (5/5)\(S/R) .
ii) For arbitrary X : A <> B we have:
XCS/R < X:RCS=(R/S);X:RC (R/S):S .
Since (R/S):S C R holds by Prop. 4.3, we get:
(R/S);X;RCR «<— (R/S):XCR/R < XL (R/S\(R/R) . O
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5 Symmetric Quotients in Distributive Allegories

In heterogeneous relation algebras, the notion of symmetric quotient has been defined
[BSZ86; BSZ89; SS93] by

sya(Q, ) = Q51 Q7S
for arbitrary relations ) : A <> B and S : A «» C. In heterogeneous relation algebras, of
course the following equations hold:

sya(Q,5) = QSN QS = Q\SNQ7/S™ = Q\SN(5\Q)”
= sup{X | @:XCS and X:5 CQ} .

Therefore the symmetric quotient as introduced above is — modulo conversion of the
arguments — exactly the symmetric division as introduced by Freyd and Scedrov for
division allegories [FS90, 2.35].

For concrete binary relations R and S between sets, we recall from the introduction
that the syq(R, S) relates elements from the range of R with elements from the range of
S exactly iff the inverse images are equal, or:

(r,s) € syq(R, S) = Vi:(z,r) €R < (z,8) €S

Following a suggestion of Yasuo Kawahara, we first investigate symmetric quotients with-
out assuming residuals — in this setting, syq(-,—) may be a partial operation:

Definition 5.1 «11 In a distributive allegory, the symmetric quotient syq(@,S) :
B <+ C of two relations ) : A <+ B and S : A <+ C' is defined by

X Csyq(@,5) < @Q:;XCS and X:S C Q@ forall X : B« C . ]

Lemma 5.2 The following properties hold for relations @ : A <+ B and §: A «< C'if
the symmetric quotients exist:

) s 8,21 8yq( @, S) = syq(S, Q)

) =213 @Qs5syq(Q,S) T S and syq(Q,5): S C Q7
iii) 1 Ip Csyq(Q, Q)
)

)

1

11

1v

13 Qisyq(Q, @) = @ and Q7 =syq(Q, Q): Q"

v) If @ is univalent and surjective, then Iz = syq(Q, Q).

Proof:

i) X Csyq(Q, ) X C S and X:8 C Q°
Q7 C

S” and S5 X CQ

rree
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ii) From Def. 5.1 via substituting syq(@, S) for X.

iii) From Def. 5.1 via substituting I for X and @ for S.

) @Q:syq(Q, Q) E @ follows from ii). Conversely @ = @Q:Ip C Q:syq(Q, @) by iii).
)

v) Since @ is univalent and surjective, with iv) we obtain

syd(@, Q) =Igisyq(Q, Q) = Q: Q;syq(Q, Q) =1p . O

1v

Proposition 5.3 21 In distributive allegories, the following properties hold for relations
Q:A+< Band 5: A« C:

i) syq(@,S) C syq(P; @, P;S) for each relation P : D + A.

i) Fisyq(Q,S) C syq(Q:F~,S)if F : D < B is univalent; if F' is a mapping, then
equality holds.

iii) syq(@, S): R =syq(@Q, S; R) for each injective and surjective R : C <> D.

Proof:
i) X Csyq(Q,9)
— :;XLCS and X5 CQ
= P;Q;XCP;5 and X3S P CQ P
< X Csyq(P;Q,P;S5)
ii) X C Fisyq(Q, S)
= Q:F X CQ:F i Fisyq(@,5) and X5 C Fisyq(@Q,S):S~
= Q:F X CQisyq(@,S) and X5 C F;Q° F univalent
— @;F;XCS and X585 CF;Q
<~ X Csyq(Q:F,S)
— @Q:;F;XCS and X;S CF;Q
= :F;XCS and F: X3S CFLFQ
— @Q;FXCS and F ;X585 CQ F univalent
<~ F;X Csyq(Q,9)
= F;F ;X C Fisyq(Q,S5)
= X C Fisyq(Q,5) F total
iii) is dual to ii). O

Proposition 5.4 In a distributive allegory, let relations Q) : A <> B and S : A" <> C be
given. For each injective and surjective mapping 7 : A <+ A’ we then have:

syd(Q, T:5) = syq(T7: @, S) and syd(T5Q,S) =syq(Q, T7:5) .

Proof: With 773 T =14 and T;T =14 and i) we get:
sya(Q, T58) Csyq(T5Q, T5T:5) =syq(T 5@, 5)

and
syd(T7:Q,8) Csyq(T:T7:Q, T55) =syq(Q, T;S) . O



12 6 SYMMETRIC QUOTIENTS IN DEDEKIND CATEGORIES

6 Symmetric Quotients in Dedekind Categories

We now harness the additional power of Dedekind categories to obtain more useful results
about symmetric quotients, many of which had before only been shown with the help of
negation and the Schroder equivalences.

Theorem 6.1 14171 In division allegories the symmetric quotient always exists and for
two relations ) : A <+ B and S : A < C we have

sya(@Q,S) = Q\SM Q7 /S . O

Proposition 6.2 212329 Let () : A <> B and §: A <+ C be are given relations. Then
the following holds:

i) Qisyq(Q,5)=STTapisyq(Q,S).
ii) If syq(@, S) is surjective, then @Q:syq(@,S) = S.

Proof:

i) @isyq(@,S)C S holds by Lemma 5.2.ii), and Q:isyq(Q.,S) C T 4,p:syq(@,S) by
the monotonicity of the composition. Conversely it follows from

ST 4psyq(Q,S5) T (S5syq(Q,S) M T ap)isyq(Q,S)
= S3syq(S, Q)isyq(Q, S)
C Q:syq(Q,S)

by Dedekind formula and Lemma 5.2.ii).

ii) Assume that syq(@,S) is surjective. Then T 4 p;syq(@,S) = T 4.¢c by Prop. A.2
iv). Thus ii) holds by i). O

Proposition 6.3 «3,16,20 Let Q: A+ B, S: A+« (Cand U : A < D be are given
relations. Then the following holds:

i) sya(@Q, 8):sya(S, U) =syq(Q, U)Msyq(Q, §): Te,p =sya(Q, U)NT p,cisya(s, U).
ii) If syq(@, S) is total or syq(.S, U) surjective, then syq(@, S):syq(S, U) = syq(@Q, U).

Proof:

i) Monotonicity of composition yields syq(@Q,S)isyq(S, U) C syq(Q,S): Tep ,
and Prop. 4.4.1) gives us

sya(@Q, 5)isya(s, U) (Q\ST1Q7/S7):(S\UNS/U)
(Q\S):(S\U) M (Q7/S7):(57/U7)
AUNQ /U

sya(Q. U) .

It



13

Thus we have syq(@Q, S):syq(S, U) C syq(Q, U) Msyq(@,S): T¢,p. Conversely it
holds that

syd(Q, U)Msyq(Q,8)i Ten T syq(@,S)i(sya(@Q,S) ssyq(Q, U) N Tep)
= syq(Q, S):sya(S, Q)ssya(Q, U)
C syq(@Q,S)ssyq(S,U) .

ii) is shown by i) and Prop. A.2 iii) or iv). O

Corollary 6.4 131 Let ) : A <> B and S : A + C be given relations. Then the
following holds:

i) ws222 8yq(Q, 5)isyq(Q, ) Esyq(Q, Q).

i) syq(@Q, Q)isya(@,S) =sya(Q,S).

iii) 14 syq(@Q, @) is a equivalence relation.
Proof:

i) follows from replacing U with @ in Prop. 6.3 i).

ii) follows from replacing S with @ and U with S in Prop. 6.3 ii), since syq(@, @) is
total (with Lemma 5.2.iii)).

iii) syq(@, @) is reflexive by Lemma 5.2.iii), symmetric by Lemma 5.2.i) and transitive
by Lemma 5.2.ii). O

Generally, a relation ) : A <» B satisfies Q C Q;Q5Q by @ = QM T 45 C Q;(IpM
Q3 Tap)CQ:Q(QMTap)=0Q:Q Q. Arelation @ : A < B is called difunctional
if Q:Q7;Q C Q [SS93]. Hence Q is difunctional if and only if Q; Q™ Q = Q.

Proposition 6.5 Let @ : A <> B and S : A <> C be given relations. Then syq(@Q, S) is
difunctional.

Proof: Implied from Corr. 6.4 i) and ii). O

Proposition 6.6 Let P: A <> A be a given relation. Then the following holds:
i) P is symmetric if and only if T4 C syq(P~, P).
ii) P is symmetric and transitive if and only if P C syq(P", P).
iii) P is an equivalence relation if and only if P = syq(P, P).

Proof:

i) Assume that P is symmetric. Then P~ = P holds. Thus we have I 4 C syq(P", P)
by Lemma 5.2.iv). Next assume that I4 C syq(P~, P). Then I, C P7\ P holds. By
the definition of right residual P™ C P.
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ii) Assume that P is symmetric and transitive. Then syq(P~, P) = P\P M P/P holds
since P is symmetric. Also it holds that

PCP/P < P;PCP < PLP\P

since P is transitive. Therefore it holds that P C syq(P~, P). Next assume that
P Csyq(P",P). Then P;PC P and P;P C P hold. So we have

PC P;P;PCP;PC P .
Therefore it holds that P"C P and P;P C P.

iii) If P =syq(P, P), P is an equivalence relation by Corr. 6.4.iii). Next assume that P
is an equivalence relation. Then, by ii), P C syq(P, P) holds. Also by the reflexivity
of P, it holds that syq(P, P) C P:syq(P,P) = P. O

Proposition 6.7 Let both @ : A «<+ B and S : A <+ C be given injective relations.
Then the following holds:

i) Q7:5 Csyq(Q,S).

ii) @;syq(Q,S5)=Q:TpcnSs.
iii) S Csyq(Q ,sya(Q,S)).
Proof:

i) By Lemma 4.8 iii) Q@:S C Q\S and Q@3S C Q7/S™ since @ is injective and S~ is
univalent. Thus we have @755 C syq(@, S).

ii) It is trivial that @:syq(Q,S) C @: T 5 ¢MNS. Conversely it holds that Q: T 5 ¢MS C
Qi(TpecMN@Q:S8)=0Q:Q:5C Q:isyq(@,S) by i).
iii) By i) @755 Csyq(Q,S5) <= ST Q \syq(Q,S). And
Sisyq(Q,8)" = Sisyq(S, Q) E Q <= ST Q/sya(Q,5)
by Lemma 5.2.i). Therefore we have S C syq(Q~,syq(@, S)). O

Lemma 6.8 21 Let Q : A <+ B and R : A + C be two relations, then totality of
syq(@, R) is equivalent to reflexivity of (Q7/R"):(R"/Q").

Proof: Assuming totality of syq(@, R), we obtain (where I =I5 throughout):

I C sya(Q,R):sya(Q, R)” sya(Q, R) total
= syq(Q, R)ssyq(R, Q) Lemma 5.2.1)
= (Q\RNQ/R)(R\QNR/Q) Theorem 6.1
C (Q/R)(R/Q) . VU,V : UNVCU

Conversely, I C (@ /R")(R7/Q") is equivalent to I = (@ /R"):(R"/Q7) NI and we may
calculate:

I = (Q/R)«R/Q)nNI (Q/R):(R/Q") reflexive
C (Q /R NIR/Q)):(R/Q N(Q/R):I)  Dedekind
= (Q /R M Q\R)i(R/Q NMR\Q) Corr. 4.2

syq(@, R):syq(Q, R)™ . Theorem 6.1 O
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Lemma 6.9 23 Let () : A< B and S : A < C be given relations. Then it holds that

sya(@,5) Esyq((Q\S), (S\S)") -

Proof: From Lemma 4.9, it holds that

syq(Q. ) Q\SMQ7/S”
(ST/QINS/S) M (Q\S)/(S\S)
sya(S/@Q", S”/SV;V

sya((@\S) (S\S)7) - O

1

7 Symmetric Quotients, Vectors, and Points
Next we show the relationship between symmetric quotients and vector relations.

Definition 7.1 A relation r with » = T ;r is called a vector, and a relation r with
r =r;T is called a covector.? A nonempty and univalent vector is called a point. [J

For concrete binary relations between sets, vectors r : A <+ B can be considered as
descriptions of subsets of B, and a point p : A <+ B corresponds to an element of B.

In heterogeneous relation algebras, the Tarski rule lets any nonempty vector be total,
and the fact that I # 1L lets total relations be nonempty. Therefore, in heterogeneous
relation algebras, a point may equivalently be defined as a vector that is a mapping.
The following vector-related laws are elementary for practical proofs:

Proposition 7.2 11 [SS93, 2.4.2] For all relations Q: A« B,R: B+ C,S:D « C
and U : A < E the following holds:

Q:RMT:S = Q(RNT:S)
Q:RNU:T (QMU:;T):R
(QNT:S);R = Q3(RNSHT)

Restriction of a relational product by intersection with a vector is therefore equal to the

product of the two relations where just the second one is intersected with the vector; that

vector has of course be adapted to its new type by multiplication with a universal relation.
Certain residuals are always vectors:

Proposition 7.3 In Dedekind categories, for ) : A<> B, R: B+ (C,and §: A < C,
we have:

i) 161 S/ T p ¢ is a covector and T 4.5\S is a vector [Ohk98].

ii) =11 L4 ¢/R is a vector and Q\ L4 ¢ is a covector.

2Tn [SS93], our covectors are called vectors.
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Proof:

i) By monotonicity of the composition we have S/Tp ¢ C (S/Tp,¢); Tpp. Con-
versely it holds that (S/Tg.¢)i Tep: Teec =(S/Tpc)i Tre T S by Prop. 3.3.
Thus we have (S/Tp¢)iTppC S/Tp.c.

ii) It is trivial that JLA,C/R C —H_A,A§(J|_A,C/R). And it holds that TA7A§(J|_A’C/R)§R C
—"—A,A;J—A,C = J—A,C- Then we have —H_A,A§(J|_A,C/R) C JLA,C/R. O

Lemma 7.4 11 If in a Dedekind category W : A <» B is a vector and R : C < B and
S : A < C are arbitrary relations, then W /R and W™\ are vectors, too.

Proof: With Lemma 4.5.i) we have T4 4:(W/R) C (T44:W)/R = W/R. For the
second statement we calculate:

WASC WN\S <= WHW\S)CS
< WV§—H_A,A§(WV\S)ES
= Taa(WA\S)C WS . O

Proposition 7.5 221 Let both Q : A > B and S : A <+ C be given relations. Then the
following holds:

i) syq(@, T 4,4) is a covector and syq(T 4,4, @) is a vector.

ii) Let a Dedekind category be uniform. Then syq(Q,S) = T p, ¢ if and only if ) and
S are covectors and @; Tpp = 5T ¢ p holds.

iii) syq(@, @) = T p 5 if and only if @ is a covector.
iv) syq(lL4.p,S) is a vector.

Proof:

i) Since T 4 4 is an equivalence relation, it holds that syq(T 4.4, T a,4) = T 4,4, indeed
syd(T a,4, T a,a) is surjective. Thus we have

syd(Q, Taa)i Taa=syd(Q, Taa)isyd(Taa, Taa)=syq(Q, Taa)
by Prop. 6.3 ii).
Alternatively, we can use residual properties; we first use Prop. 4.7.iii)to obtain:
sYA(Q, Taa)=Q\TaaNQ /Taa=TpaNQ /Taa=Q /Taas,
and with Prop. 7.3.1) we know that @7/ 4 4 is a covector.

ii) Assume that syq(Q,S) = Tpc. Then T C Q\S and Tpe T Q7/S and via
the definition of residuals

Q;—"—B,C ES and TBV('/*%SUE Qu .
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With this we may use uniformity to calculate
Q:Tep=Q:Tpc:iTepCEES:Tep=8Tep: TppE Q:iTpp .
This implies
Q:iTpp=5TepC Q and S5Tee=Q:TpcC S

since Q: Tpp=5:T¢pforall objects D, so that () and S are shown to be vectors.

Conversely we assume that (); Tpp =@ and S;T¢ e =S, ie., that @ and S are
vectors, and @ : Tpp=S5:Tep. Then we have

S;—H—C,B = Q§—"—B,B =Q ,

yielding Tp ¢ C Q7/S™. Similarly we obtain T ¢ T Q\S, so that syq(Q,S) =
T p,¢ holds.

iii) follows directly from ii).

iv) follows from

Terisyd(Lap,S) = Trpi(lap\SMLpa/S)

Teei(TeecMNlpa/S) Prop. 4.7.ii)
—”—B,B ;(JLBA/SU)
Lpa/S” Prop. 7.3.ii)
—”—B,C 1 JLB,A/SV

= Lap\STLpa/S” Prop. 4.7.ii)

= syq(Las,S) . 0

Furthermore we may now show:

Lemma 7.6 24 If in a Dedekind category W : A <+ B is a covector and S : A < (' is
an arbitrary relation, then syq(W, S) is a vector and syq(S, W) is a covector.

Proof: syq(W,5) = (W\S)n(W7/5) Theorem 6.1
= TAa:(W\S) T4 4:(W7/S7) Lemma 7.4
T a4 ((W\S) T 44:(W7/S7)) Prop. 7.2
= Taa((W\S)N(W7/S7)) Lemma 7.4
= Taaisyq(W,S) Theorem 6.1 O

8 Symmetric Quotients and Orderings

It turns out that residuals and symmetric quotients are extremely useful in the context
of ordering. Many useful constructions, like upper bounds or suprema, allow a character-
isation using these tools.
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In [SS93], many such definitions an properties are provided, but all in the context of
heterogeneous relation algebras.

In this section we reformulate these definitions and proofs only using the formalism of
division allegories.

The results we thus obtain can also be used in a context like that of [Kaw98], which
discusses “Lattices in Dedekind categories” starting from formalisations of the algebraic
lattice definition and which later introduces the lattice ordering as a residual.

First of all, there are very nice properties of the symmetric quotient when applied to

orderings (remember that the converse of an ordering is an ordering, too):

Lemma 8.1 If F: A <+ A is an ordering in some division allegory, then:
i) syq(EF,E") CTandsyq(E,F)CT, and
ii) 231 if R : A > B is some relation, then syq(R, F) and syq(R, E~) are univalent.

Proof:
i) syq(E",E") = E\E NE/E
C ESE\E)N(FE/E)E ICFE
C EFNFE Prop. 4.3
C I antisymmetry

The second statement has essentially the same proof.
ii) with Lemma 5.2.i), Corr. 6.4.1) and i) we have:

syd(R, E) isya(R, E) = syq(E, R):syq(E,R) Csyq(E,E)C1 . O

We now turn to the basic ordering operations from [SS93]:

Definition 8.2 Let () : A «<+ B be an arbitrary relation and F : B +> B an ordering.
ubdg(Q) = Q\E and Ibdg(Q) = Q@ \E™ are called the upper bound and lower bound of
() under a given ordering E, respectively. 0

Lemma 8.3 «11 Let () : A« B be an arbitrary relation and F : B <+ B an ordering.
Then it holds that

ubdg(Q:E7) = ubdp(Q) = ubdz(Q);E and 1bdg(Q:E) = 1bdg(Q) =1bdg(Q):E .

Proof: Tt is sufficient to prove the first equations. From transitivity of £, Prop. 4.4.ii) and
Prop. 4.4.iii) we have ubdg(Q) C (E; Q7 )\(E;E) C ubdg(Q:E"), and from reflexivity
of £ we have ubdg(Q) C ubdg(Q);: E. Conversely, using Q@ ;X =Ip:Q X C E;Q: X
for arbitrary relation X : A <+ B, we have,

X LC(FE;Q)\E =ubdg(Q;E")
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Also, for arbitrary relations X : A <+ B, it holds that

XC(Q\E);E=ubdg(Q):F = QXLCQ(Q\E);ECE:FCE
< XLC Q\FE=ubdg(Q)

by Prop. 4.3 and transitivity of E. 0

Definition 8.4 Let () : A «<+ B be an arbitrary relation and F : B +> B an ordering.
Then we call

greg(Q) = @ Mubdg(Q) the greatest element.

leag(Q) = Q M1bdg(Q) the least element.

lubg(Q) = leag(ubdg(Q)) the least upper bound.

glbp(Q) = greg(lbdg(Q)) the greatest lower bound. O

Lemma 8.5 «11 Let () : A+ B be an arbitrary relation and F : B <+ B an ordering.
Then it holds that

grep(Q) = greg(Q:E7) .

Proof: “C” is obvious from Lemma 8.5 and reflexivity of £. “3” follows from

greg(Q:E7) = Q:E Mubdg(Q:E")
= Q:E Mubdg(Q) Lemma 8.3
C (QMubdg(Q):FE )(Ev M Q ;ubdg(Q)) Dedekind rule
C (QMubdg(Q))(E"ME) Lemma 8.3 and Prop. 4.3
C gregy(Q) antisymmetry of £ . [

Proposition 8.6 Let @) : A <+ B be an arbitrary relation and £ : B +> B an ordering.
Then it holds that

grep(Q) =syq(E: @, E) and leag(Q) =syq(E5Q E) .

Proof: By the definitions,
sva(E: Q" E) = (B:Q\EN(Q:E)/E and greg(Q:E) = Q:E M (E; Q)\E

So it is sufficient to prove (Q;E7)/E~ = Q:E~. “C” follows from the transitivity of £
via the residual property:

Q:EF ECQ:F < Q:F C(Q:E)/E
“J”is obtained with the reflexivity of £ and Prop. 4.3:

(QiE")/E"E((QiE)/E)iE E Qi .



20 9 RELATIONAL SPECIFICATION OF SETS

Corollary 8.7 Let Q : A <+ B be an arbitrary relation and £ : B <+ B an ordering.
Then it holds that

lubg(Q) = syq(ubdg(Q) ", E7) and glbg(Q) =syq(lbdg(Q), F) .

Proof: It follows from

lubg(Q) = leag(ubdg(Q)) = syq(E iubdg(Q)”, E7) = syq(ubdg(Q) ", E") . O

9 Relational Specification of Sets

One of the most important applications of symmetric quotients is towards domain con-
struction for programming language semantics, see [BSZ89; Zie91]. At the basis of these
constructions is the simple direct power construction based on membership relations,
which are conveniently characterised via symmetric quotients in heterogeneous relation
algebras [BSZ89] as well as in division allegories [FS90, 2.41].

In this section we make the exact relation between these two approaches precise, and
again transfer many proofs from the heterogeneous relation algebra setting to the more
general division allegory and Dedekind category settings.

Definition 9.1 2123 For two objects X and Z of a division allegory, a relation
€ : X & Z is a membership relation for X, if:

i) syq(€,€) C 1z
ii) syq(@Q, €) is total for all relations @ : X + A.

Given such a membership relation € : X « Z, we define Q¢ : Z < Z as the power
ordering:

i) Q= €\€.
The pair (€, ) is called a direct power. O

We still have to show that for every membership relation € : X < Z, the power
ordering @ = €\€ is indeed an ordering: Reflexivity and transitivity are obvious from
Prop. 4.6.ii)) and Prop. 4.4.i), respectively. Antisymmetry is satisfied since Q M Q" =
syq(€,€) C Iz by i).

In concrete relation algebras with sets as objects and binary relations as morphisms,
the archetypical membership relation for a set X is of course that between X and the
powerset of X.

In heterogeneous relation algebras, totality of a relation R is usually expressed as
“R;T = T", where the universal relations need not be further specified by indices thanks
to uniformity; therefore one frequently sees the condition ii) expressed as

“syq(@Q7,€): T =T holds for all relations @ : A < X”.
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Here, however, we rely on the allegory definition of totality, which is “I C R;R™, and by
Lemma 6.8, the totality of syq(Q~, €) is equivalent to the condition used in place of ii)

by Freyd and Scedrov in [FS90, 2.41]:
IE(Q/€)i(€/Q)
Therefore we have:

Theorem 9.2 A division allegory where membership relations exist for all objects is
equivalent to a power allegory of Freyd and Scedrov [FS90, 2.41]. 0

The above is a monomorphic definition of direct powers and indeed of membership

relations:

Proposition 9.3 Let the two relations €; : X; < Z; and €5 : X5 < Zy be
membership relations. If ® : X; < X, is a bijective mapping, the following holds for
U :=syq(€1,P:Ey) 1 Zy > Zo:

i) U is a bijective mapping.
i) €:0 = d;€,.
Proof:

i) follows from

U0 = syq(€q,P:6€5)i8yq(€1, PiEs)” Def. ¥
= syq(€1, ®:€s)isyq(P; €y, €1) Lemma 5.2.1)
= syq(€1,€1) N Ty z,i8yq(P: €, €1) Prop. 6.3 i)
= Tz, M Tz z87q(€2, P75 €1) Def. 9.1 i), Prop. 5.3 iv)
= [z Mg 2 Def. 9.1 ii)
= ]IZl )
U0 = syq(€1,P:€y) ssyq(€q, P Es) Def. ¥
= syq(®; €z, €1)i8yq(€r, @3 Es) Lemma 5.2.1)
= Syq(€s, 7€) 58yq(P 5 €y, €2) Prop. 5.3 iv)
= 8yq(€2,E2) M Tz, 7 :8yq(P €1, €a) Prop. 6.3 i)
Iz, M Tz, 2 :87q(P75 €1, €) Def. 9.1 i), Prop. 5.3 iv)
Iz, 10Tz, 2 Def. 9.1 ii)
= ]IZ2 .

ii) It holds that
€1V = €158yq(€1, P €3) = ©5€, M T, 7, 587q(€1, D5 €)

by the definition of ¥ and Prop. 6.2 i). From Def. 9.1 ii), syq(€1, ®: E,)" is total.
Thus we have Ty, z, = Tx, zsyq(€1, ®;E€y) by Prop. A.2 iii). Therefore €;;¥ =
®; €5 holds. O
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While in the application to concrete relations Def. 9.1.ii) ensures that there is at least
one powerset element for every set, we may observe that together with Def. 9.1.i) there
is always ezactly one such powerset element:

Lemma 9.4 1If € : X « Z is membership relation, then syq(@Q, €) is univalent for all
Q:X < A

Proof: With Corr. 6.4.i)) we have: syq(@, €) isyq(Q, €) C syq(€,€) C T ]

Definition 9.5 Let € : X <+ Z be a membership relations. Then we define the following
relations.

e Empty Set : 0: YV < Z with 0 =syq(Lx.y, €).
e Singleton : §: X + 7 with § =syq(Ix, €).
e Inclusion : Q: 7 + Z with €\€. O

Note that ) = Ly x/€ by Prop. 4.7.ii).

Lemma 9.6 For the “empty set” 0 :=syq(Lx y,€): Y < Z, the following holds:
i) If Iy # Ly, y, then 0 is a point.
11) (b?eu = J—Y,X-

Proof:

i) 0 = syq(lL, €) is total by the definition of €, a vector with Prop. 7.5 iv), and
univalent wit Lemma 9.4. And it holds that

07:0 = syq(Llx.y,€)isyq(Llx.y,€) Def. ()
C syq(€,€) Corr. 6.4.1)
C I, Def. 9.11) .

Next, assume that ) = 1Ly z. Then, by Def. 9.1 ii), we have
Iy Csyq(dx,y, €)isyq(€, Lxy) =0;0"= Ly y .
This is contradiction to I'y # Ly y. So 0 # Ly z. Therefore () is a point.

ii) follows from ;€ = (Ly x/€7):€ C Ly x. O
Lemma 9.7 21 For the singleton creator S := syq(Ix,€) : X « Z, the following
holds.

i) S is injective, total and univalent.

i) S;€ =1y

iii) S:Q = €.
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Proof:

i) The injectivity follows from

§:8 = syq(ly, €):syq(lx, €)” Def. S
C syq(lx,Ix) Corr. 6.4.1)
= Ix Prop. 4.4.ii) .

By Def. 9.1 ii), S is total. The univalence follows from

S8 = syq(lx, €)ssyq(ly, €) Def. S
C syq(€,€) Corr. 6.4.1)
C I, Def. 9.11) .

ii) By i), S is total. So S™ is surjective. And it holds that
(S;€) =€:8 =¢€;58yq(lx, €) = €:syq(€,Ix) .
Thus we have (S;€7)” = Ix by Prop. 6.2 ii).

iii) Since § is a mapping, it holds that S$;Q = S3(€\€) = (€:8)\€ =Ix\€ = € by
Lemma 4.8 i), ii) and Prop. 4.4.iii). O

Proposition 9.8  For the inclusion relation Q = €\€ : 7 + Z, and given relations
Q:A+ Zand R: B+ X, the following holds:

i) lubo(Q) =syq(€:Q7, €).
i) glbg(Q) = syq(lbda(@Q), ).
i) lubq(R:S) = syq(R™, €).

) luba(R/€7) =syq(R", €).

i1l

iv

Proof:
i) It holds that

Ya(€:Q7€) T syal((€:QNEY (€\e)) Lemma 6.9
= syq(€7/(Q:€),€7/€)
= syq(€/€7/Q,€7/€)
— syq(Q/Q, ) Def. Q
— wval(QN\9),9)
= syq(ubdo(Q)", Q) Def. ubd
= lubq(Q) Corr. 8.7 .

Also syq(€; @7, €) is total by Def. 9.1 ii) and lubg(Q) is univalent by Corr. 8.7 and
Lemma 8.1.ii). Therefore, by Prop. A.3, we have lubg(Q) = syq(€:Q", €).

ii) follows from Corr. 8.7.
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iii) follows from

<) i)

lubo(R:S) = syq(€:;S8 R,
€) Lemma 9.7 ii)
) -

= syq(Ix: R,
iR

= syq(Ix:R', €

)

iv) It holds that lubg(R/€7) = syq(€:(€\R"), €) by i). Now we show €;(€E\R”) = R".
It is trivial that €;(€\R") C R~ by Prop. 4.3. Conversely it holds R~ = €:S§ ;R C
€;(€\R") since €;8 =1y and

€ STRCR < S:R CE\R
hold by Lemma 9.7. O

Definition 9.9 21 Given a membership relation € : X + YV, every vector ¢t : A «+ X
can be assigned a corresponding point e; : A < Y with e; = syq(¢”, €). Conversely, every
point e : A <+ Y has a corresponding vector t, : A <+ X with ¢, = e;€". O

Lemma 9.10 Given a membership relation € : X < Y, the conversions of Def. 9.9 are
well-defined if ]IX 7£ J—X,X-

Proof: With Lemma 7.6, ¢; = syq(¢~, €) is a vector; its univalence follows from Lemma
9.4, and the definition of € gives its totality, which in turn implies nonemptyness if
Iy # 1L x x, so that e; is a point.

If e is a point, then it is a vector and ¢, = e; € is of course a vector, too. O

Lemma 9.11 The correspondences between vectors and points defined in Def. 9.9 are
isotone and mutually inverse:

i) t., =t.
ii) If e is total, e;, = e.

iii) If ey is total, e; C €3:Q7 <= t,, C to,.
) b

iv Cty < e, C ey

Proof:
i) Since syq(¢7, €) is total, syq(¢”, €)~ is surjective. Then we have:
te, = e3€ =syq(t",€):€ = (€3syq(€,17)) =1
by Prop. 6.2 ii).

ii) It holds that e;, = syq(t,,€) = syq(€:e,€) = (€:¢)\E M (e;€7)/E". By Prop.
4.3 it is trivial that e C (e;€7)/€". And by univalence of e, it holds that €:e ;e C
€ < eL (e5e)\E. Thus we have e C ¢;,. Also ¢;,, = syq(€;e”, €) is univalent
and e is total. Therefore we have e = ¢;, by Prop. A.3.
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iii) Assume that e; C e3:2". Then we have
tey = €1:€ Cei Q)€ =e3(€7/€ )€ C e € =t
by Prop. 4.3. Conversely, assume that t., C t., and ey is total. Then we have

e1iQ = e i(€E7/€7) C (e1:€7)/€”
tey /€ C ity /E = (€2:€7)/E = €23(€E7/E7) = €2:Q”

€1

I

by Lemma 4.5.
iv) By i) it holds that

tl E t2 — tetl E tet2

—  e,:€ Loy
< €y E (6t2§€v)/€v .

Since e, is total by the definition of €, it holds that (e,;€7)/€ = e, (€7/€7) =
et,;2” by Lemma 4.5.ii). Thus we have e;, T e;,:Q". Conversely, assume that
e, T e,:Q7. Then we have e, C e,:(€7/€7) = (e,:€7)/€ by Lemma 4.5.ii).
Thus, by i), it holds that

th=t., =e, i€ Ceyi€ =t, =t

t to

since ey, T (€,:€7)/€E <= ¢,;€ Ceyi€ . O

10 Owutlook and Conclusion

The importance of symmetric quotients is based mostly on the fact that they allow to
formalise comparatively complex concepts using relatively simple algebraic properties.

Since most material about such applications of symmetric quotients has been written
against a background of heterogeneous relation algebras, it is not always immediately
clear which part of this is also usable in more general contexts like Dedekind categories,
division allegories, or even just distributive allegories.

In this paper we have strived to extend the applicability of symmetric quotients by
investigating their axiomatisation and their properties in these more general contexts.

We think that especially the introduction of symmetric quotients in distributive alle-
gories and their properties therein deserve some further investigation.

Also the question how symmetric quotients interact with negation in weaker axioma-
tisations or even with pseudo-complements seems to be a very interesting one.

On the whole, we hope that this study has opened up the use of symmetric quo-
tients and of their existing applications to applications in different areas where weaker
axiomatisations of relation-like structures are essential.

We express our heartfelt thanks to Prof. Gunther Schmidt and Prof. Yasuo Kawahara
for making this cooperation possible.

We are also grateful to Michael Winter for his comments on a draft version of this
report.
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A Basic Properties of Relations

We here list a few basic definitions and properties of relations.

Definition A.1 If () : A <+ B is a relation, we call

Q totalif and only if T, C Q; Q"

@ univalent if and only if Q7 Q C Ip,

Q surjective if and only if I T Q75 Q,

@ injective if and only if Q:Q C I4,

e () mapping if and only if @ is total and univalent.

Proposition A.2 12,1320 Let Q: A< B,RLR:B+ C,S: A+ Cand T

be relations. Then the following holds:

i) If @ is univalent, then Q3 (RMR')= Q:RMN Q:R'.
ii) If T is injective, then (RO R');T =R; TN R"; T.
ii) @ is total if and only if T4 ¢ = Q:Tpc.
R is surjective if and only if T4 ¢ =T p:R.
If @ is a mapping, then S C ;R < @ ;S C R.
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)
)
iv)
)

A%

Theoretical Computer

:C & D

O

Proposition A.3 23 249 Let a relation ) : A <+ B be total and a relation Q' : A <+ B

be univalent. Then if @ C Q' holds, Q = Q.
For homogeneous relations, the following properties can apply:

Definition A.4 If P: A <+ A is a relation, we call
o P reflexive if and only if [, C P.

P transitive if and only if P; P C P.

P symmetric if and only if P~ C P.

P antisymmetric if and only if P11 P~ C T 4.

O

e P an equivalence relation if and only if P is reflexive, transitive and symmetric.

P a preorder if and only if P is reflexive and transitive.

Note that a relation P : A <+ A is symmetric if and only if P = P".

P an ordering if and only if P is reflexive, transitive and antisymmetric.
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