@article{, author = {Bin, Jianhui; Allinger, Klaus; Assmann, Walter;Dollinger, Günther; Drexler, Guido A.; Friedl, Anna A.; Habs, Dieter; Hilz, Peter; Hoerlein, Rainer; Humble, Nicole; Karsch, Stefan; Khrennikov, Konstantin; Kiefer, Daniel; Krausz, Ferenc; Ma, Wenjun; Michalski, Dörte; Molls, Michael; Raith, Sebastian; Reinhardt, Sabine; Roeper, Barbara; Schmid, Thomas E.; Tajima, Toshiki; Wenz, Johannes; Zlobinskaya, Olga; Schreiber, Joerg; Wilkens, Jan J.}, title = {A laser-driven nanosecond proton source for radiobiological studies}, editor = {}, booktitle = {}, series = {}, journal = {Applied Physics Letters}, address = {}, publisher = {}, edition = {}, year = {2012}, isbn = {}, volume = {101}, number = {24}, pages = {243701}, url = {http://link.aip.org/link/doi/10.1063/1.4769372}, doi = {10.1063/1.4769372}, keywords = {cellular biophysics ; high-speed optical techniques ; ion accelerators ; laser applications in medicine ; proton sources ; radiation therapy ; tumours}, abstract = {Ion beams are relevant for radiobiological studies and for tumor therapy. In contrast to conventional accelerators, laser-driven ion acceleration offers a potentially more compact and cost-effective means of delivering ions for radiotherapy. Here, we show that by combining advanced acceleration using nanometer thin targets and beam transport, truly nanosecond quasi-monoenergetic proton bunches can be generated with a table-top laser system, delivering single shot doses up to 7Gy to living cells. Although in their infancy, laser-ion accelerators allow studying fast radiobiological processes as demonstrated here by measurements of the relative biological effectiveness of nanosecond proton bunches in human tumor cells.}, note = {}, institution = {Universität der Bundeswehr München, Fakultät für Luft- und Raumfahrttechnik, LRT 2 - Institut für angewandte Physik und Messtechnik, Professur: Dollinger, Günther}, }