@manual{ titlea = "Prof.", vornamea = "Christian", namea = "Kähler", departmenta = "Fakultät für Luft- und Raumfahrttechnik", institutea = "LRT 9 - Institut für Raumfahrttechnik und Weltraumnutzung", titleb = "", vornameb = "", nameb = "", departmentb = "", instituteb = "", titlec = "", vornamec = "", namec = "", departmentc = "", institutec = "", external-funds = "EU FP7", company = "", project-title = "Advanced Flow Diagnostics for Aeronautical Research", project-abstract = "The objective of AFDAR is to develop, assess and demonstrate new image-based experimental technologies for the analysis of aerodynamic systems and aerospace propulsion components. The main development focus is on new three-dimensional methods based on Particle Image Velocimetry (PIV) to measure the flow field around aircraft components, and on the high-speed version of the planar technique for the analysis in time-resolved regime of transient/unsteady aerodynamic problems. The progress beyond the state of the art with respect to current technologies is summarized by three aimed breakthroughs: 1) three-dimensional volumetric measurements over wings and airfoils; 2) time-resolved measurements and aerodynamic analysis several orders of magnitude faster than today; 3) turbulence characterization in aerodynamics wind-tunnels at resolution orders of magnitude higher than today by Long-Range Micro-PIV. The project ultimately aims to support the design of better aircraft and propulsion systems by enabling the designer to use experimental data during the development cycle of unprecedented completeness and quality. The work also covers the simultaneous application of PIV-based techniques and other methods to determine aeroacoustic noise emissions from airframe and to improve combustion processes to lower NOx, CO2 and soot emissions from engines.", proj-beginn = "01.10.2010", proj-end = "31.10.2013", forschungszentrum = "" }