In this paper, we present a system which makes scientific data available following the linked open data principle using standards like RDF and URI as well as the popular D2R server (D2R) and the customizable D2RQ mapping language. Our scientific data sets include acronym data and expansions, as well as researcher data such as author name, affiliation, coauthors, and abstracts. The system can easily be extended to other records. Regarding this, a domain adaptation to patent mining seems possible. For this reason, obvious similarities and differences are presented here. The data set is collected from several different providers like publishing houses and digital libraries, which follow different standards in data format and structure. Most of them are not supporting semantic web technologies, but the legacy HTML standard. The integration of these large amounts of scientific data into the Semantic Web is challenging and it needs flexible data structures to access this information and interlink them. Based on these data sets, we will be able to derive a general technology trend as well as the individual research domain for each researcher. The goal of our Linked Open Data System for scientific data is to provide access to this data set for other researchers using the Web of Linked Data. Furthermore we implemented an application for visualization, which allows usto explorethe relations between single data sets.
«In this paper, we present a system which makes scientific data available following the linked open data principle using standards like RDF and URI as well as the popular D2R server (D2R) and the customizable D2RQ mapping language. Our scientific data sets include acronym data and expansions, as well as researcher data such as author name, affiliation, coauthors, and abstracts. The system can easily be extended to other records. Regarding this, a domain adaptation to patent mining seems possible....
»